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Abstract

The purpose of this paper is to extend the boundary approximation method proposed by Li et al. [SIAM J. Numer. Anal. 24 (1987) 487], i.e.

the collocation Trefftz method called in this paper, for biharmonic equations with singularities. First, this paper derives the Green formulas

for biharmonic equations on bounded domains with a non-smooth boundary, and corner terms are developed. The Green formulas are

important to provide all the exterior and interior boundary conditions which will be used in the collocation Trefftz method. Second, this paper

proposes three crack models (called Models I, II and III), and the collocation Trefftz method provides their most accurate solutions. In fact,

Models I and II resemble Motz’s problem in Li et al. [SIAM J. Numer. Anal. 24 (1987) 487], and Model III with all the clamped boundary

conditions originated from Schiff et al. [The mathematics of finite elements and applications III, 1979]. Moreover, effects on d1 of different

boundary conditions are investigated, and a brief analysis of error bounds for the collocation Trefftz method is made. Since accuracy of the

solutions obtained in this paper is very high, they can be used as the typical models in testing numerical methods. The computed results show

that as the singularity models, Models I and II are superior to Model III, because more accurate solutions can be obtained by the collocation

Trefftz method.
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Keywords: Biharmonic equation; Boundary condition; Corner condition; Green function; Singular problems; Collocation Trefftz methods; Boundary

approximation method

1. Introduction

When an interior crack occurs within a thin elastic plate,

determination of a stress intensity factor at the crack front is

significant in fracture mechanics. Such a mechanical

problem can be described as the biharmonic equations

with the crack singularity, and the stress intensity factor is

given by K ¼
ffiffiffiffi
2p

p
d1; where d1 is the leading coefficient of

singular particular solutions.

The singular problems have drawn much attention in the

last several decades, and reported in many papers. Most of

them deal with the second order partial differential

equations (PDEs) including the singular boundary layers

[28]. There exist a few books and papers for the fourth order

PDEs, such as the biharmonic equations with crack

singularities, see Grisvard [8], Lefeber [18], Schiff et al.

[30], Whiteman [33], Russo [29], and Karageorghis [15].

Some textbooks and papers for biharmonic equations by the

finite element method, the finite difference method, and

the boundary element method are given by Chien [5], Oden

and Carey [4], Birkhoff and Lynch [2], Arad et al. [1] and

Brebbia and Dominguez [3]. In this paper, we pursue better

crack models with series expansion solutions of very high

convergent rates. Three crack models are found: Models I

and II mimic Motz’s problem in Ref. [26], and Model III

results from Schiff et al. [30]. The Trefftz method was

proposed in Ref. [32] in 1926, and several researches have

been studied in mathematical aspects and applications of

Trefftz methods, e.g. Jin, Cheung and Zienkiewicz [13],

Herrera [11], Jirousek and Guex [14], Kita and Kamiya [16]

and Piltner and Taylor [27]. The use of the term, Trefftz

means boundary collocation, is somewhat recent but several

authors used collocation Trefftz approaches such as

Kolodziej [17], Herrera and Diaz [10], and Leitao [19] for

singular problems. In parallel, the boundary approximation

method (BAM) was studied by Li et al. in Refs. [20–23],

which is, indeed, the collocation Trefftz method called in

this paper. It is noted that Li et al. [20] provide the most

accurate solutions for Motz’s problem in double precision,

with the 35 leading expansion coefficients, although a typo-

error of one coefficient was pointed out by Lucas and Oh
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in Ref. [24]. More detailed discussions about the model of

Schiff et al. are provided by Hsu [12]. Also the collocation

Trefftz method was applied to the interface problems and

the unbounded domain problems in Refs. [21,22]. In this

paper, the collocation Trefftz method is developed to

compute very accurate solutions for the crack models of

biharmonic equations.

This paper is organized as follows. In Section 2, we

derive the Green formulas for rectangular and polygonal

domains, and provide different types of boundary

conditions. In Section 3, three crack models are developed,

and the collocation Trefftz method is described. In Sections

4 and 5, a brief analysis for the collocation Trefftz method

is made, and the collocation Trefftz method is applied to

the interior boundary. In Section 6, numerical experiments

are carried out to provide very accurate solutions for three

models, and in Section 7 concluding remarks are

addressed.

2. The Green formulas of D2u

2.1. On rectangular domains

First, consider the rectangular domain S ¼ {ðx; yÞ; 0 ,

x , a; 0 , y , b}: We will derive the following Green

formulas for D2u;ðð
S
Lmðu; vÞ ¼

ðð
S

vD2u 2
ð
›S

mðuÞvn 2
ð
›S

pðuÞv

þ 2ð1 2 mÞð½uxyv�43 2 ½uxyv�21Þ; ð2:1Þ

where Du ¼ ð›2u=›x2Þ þ ð›2u=›y2Þ; ½v�21 ¼ v2 2 v1; and 1, 2,

3, 4 are four corners of S; see Fig. 1. The notations are

Lmðu; vÞ ¼ Du Dv þ ð1 2 mÞð2uxyvxy 2 uxxvyy 2 uyyvxxÞ

¼ uxxvxx þ uyyvyy þ mðuxxvyy þ uyyvxxÞ

þ 2ð1 2 mÞuxyvxy; ð2:2Þ

mðuÞ ¼2unn 2muss; pðuÞ ¼ unnn þð22mÞussn; ð2:3Þ

where 0#m, 1 and n and s are normal and tangent

directions along the boundary ›S of S; respectively, and

uxy ¼ ›2u=›x ›y; uxx ¼ ›2u=›x2; unn ¼ ›2u=›n2; uss ¼ ›2u=›s2;

etc. In Eq. (2.1), we assume that all integrands wherein are

continuous.

In Fig. 1, let ‘i with i ¼ 1; 2; 3; 4 denote four edges of S;

we obtain from integration by parts,

ðð
S

uxxvxx ¼
ð

‘1

2
ð

‘2

� �
vxuxx 2

ðð
S

vxuxxx

¼
ð

‘1

2
ð

‘2

� �
vxuxx 2

ð
‘1

2
ð

‘2

� �
vuxxx

þ
ðð

S
vuxxxx; ð2:4Þ

and

ðð
S

uyyvyy ¼
ð

‘3

2
ð

‘4

� �
vyuyy 2

ð
‘3

2
ð

‘4

� �
vuyyy

þ
ðð

S
vuyyyy: ð2:5Þ

Similarly, we have

ðð
S

uyyvxx ¼
ð

‘1

2
ð

‘2

� �
vxuyy 2

ð
‘1

2
ð

‘2

� �
vuxyy

þ
ðð

S
vuxxyy; ð2:6Þ

and

ðð
S

uxxvyy ¼
ð

‘3

2
ð

‘4

� �
vyuxx 2

ð
‘3

2
ð

‘4

� �
vuxxy

þ
ðð

S
vuxxyy: ð2:7Þ

Also, from integration by parts again we have

ðð
S

uxyvxy ¼
ð

‘1

2
ð

‘2

� �
vyuxy 2

ðð
S

vyuxxy

¼
ð

‘1

2
ð

‘2

� �
vyuxy 2

ð
‘3

2
ð

‘4

� �
vuxxy

þ
ðð

S
vuxxyy; ð2:8Þ

where

ð
‘1

2
ð

‘2

� �
vyuxy

¼ ½uxyv�43 2 ½uxyv�21 2
ð

‘1

2
ð

‘2

� �
vuxyy: ð2:9Þ

Fig. 1. A rectangle.
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After some manipulation, we obtain from Eqs. (2.4)–(2.9)ðð
S
Lmðu; vÞ ¼

ðð
S

{uxxvxx þ uyyvyy þ mðuxxvyy þ uyyvxxÞ

þ 2ð1 2 mÞuxyvxy} ¼
ðð

S
vD2u

þ
ð

‘1

2
ð

‘2

� �
ðuxx þ muyyÞvx

þ
ð

‘3

2
ð

‘4

� �
ðuyy þ muxxÞvy

2
ð

‘1

2
ð

‘2

� �
ðuxxx þ ð2 2 mÞuxyyÞv

2
ð

‘3

2
ð

‘4

� �
ðuyyy þ ð2 2 mÞuxxyÞv

þ 2ð1 2 mÞð½uxyv�43 2 ½uxyv�21Þ

¼
ðð

S
vD2u 2

ð
›S

mðuÞvn 2
ð
›S

pðuÞv

þ 2ð1 2 mÞð½uxyv�43 2 ½uxyv�21Þ: ð2:10Þ

This completes the proof of Eq. (2.1).

2.2. Corner effects on polygons

For the rectangular domains in Fig. 1, there do exist the

corner terms

2ð1 2 mÞð½uxyv�43 2 ½uxyv�21Þ ð2:11Þ

in the Green formulas, which are different from those

in Courant and Hilbert [6], p. 252 and Carey and Oden [4],

p. 250. In fact, the formulas in Ref. [6] are valid only for the

smooth boundary ›S: There are many papers on Green

formulas, see Herrera [9], Gourgeon and Herrera [7], and

Russo [29], but only a few reports (e.g. Chien [5]) mention

corner effects for biharmonic equations. Below, we will

drive the Green formulas by different approaches from

Section 2.1 and Chien [5].

Consider a polygon S in Fig. 2, where the

boundary ›S ¼
Pm

i¼1 Gi and Gi are straight segments.

The corners are denoted by P1;P2;…;Pm: We have from

calculus,ðð
S
DuDv¼

ðð
S
ðD2uÞvþ

ð
›S
ðDuÞvn2

ð
›S

›ðDuÞ

›n
v; ð2:12Þ

andðð
S
ðuxxvyyþuyyvxxÞ

¼
ð
›S
ðuxxvyynþuyyvxxnÞ2

ðð
S
ðuxxyvyþuxyyvxÞ

¼
ð
›S
ðuxxvyynþuyyvxxnÞ2

ð
›S

uxyðvyxnþvxynÞþ2
ðð

S
uxyvxy;

ð2:13Þ

where xn; yn and xs; ys are the directional cosines of the

outward normal and the tangent vectors, respectively.

Since xn¼ys and yn¼2xs; we obtainðð
S
ð2uxyvxy2uxxvyy2uyyvxxÞ

¼2
ð
›S
ðuxxvyynþuyyvxxnÞþ

ð
›S

uxyðvyys2vxxsÞ:

ð2:14Þ

Since xs; xn; ys and yn on the straight segments Gi

are constant, we have the following derivative relations

vy¼vnynþvsys; vx¼vnxnþvsxs; un¼uxxnþuyyn;

us¼uxxsþuyys; uss¼uxxx2
s þ2uxyxsysþuyyy2

s ;

uns¼uxxxnxsþuxyðxnysþxsynÞþuyyynys:

ð2:15Þ

Eq. (2.14) is then reduced toðð
S
ð2uxyvxy2uxxvyy2uyyvxxÞ

¼2
ð
›S
ðuxxx2

s þ2uxyxsysþuyyy2
s Þvnþ

ð
›S
ðuxxxnxs

þuxyðxnysþxsynÞþuyyynysÞ
›v

›s

¼2
ð
›S

ussvnþ
ð
›S

uns

›v

›s
: ð2:16Þ

Next, we have from integral by parts,ð
›S

uns

›v

›s
¼
Xm
i¼1

ð
Gi

uns

›v

›s

¼2
Xm
i¼1

d½uns�ivi2
Xm
i¼1

ð
Gi

›

›s
uns

� �
v; ð2:17Þ

where vi¼vðPiÞ and d½uns�i denote the jumps of uns at

corner Pi along the counter clockwise,

d½uns�i¼unsðPiÞlGi
2unsðPiÞlGi21

; ð2:18Þ

Fig. 2. A polygon with corners.
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and Gmþ1¼G1: From Eqs. (2.12), (2.16) and (2.17), we

obtain the Green formulas,ðð
S
Lmðu;vÞ¼

ðð
S
DuDvþð12mÞ

�
ð
›S
ð2uxyvxy2uxxvyy2uyyvxxÞ¼

ðð
S
ðD2uÞv

þ
ð
›S
ðDuÞvn2

ð
›S

›ðDuÞ

›n
vþð12mÞ

� 2
ð
›S

ussvn2
ð
›S

›

›s
uns

� �
v2

Xm
i¼1

d½uns�ivi

( )

¼
ðð

S
vDu22

ð
›S
ðmðvÞvnþpðvÞvÞ

2ð12mÞ
Xm
i¼1

d½uns�ivi; ð2:19Þ

where the general forms of mðvÞ and pðvÞ are denoted

by [6]

mðuÞ¼2Duþð12mÞuss¼2ðunnþmussÞ;

pðuÞ¼
›

›n
Duþð12mÞunss¼unnnþð22mÞunss:

ð2:20Þ

There also exist the corner terms1 in the Green formulas

(2.19),

2ð12mÞ
Xm
i¼1

d½uns�ivi: ð2:21Þ

When the corner angles at Pi in Fig. 2 are just p/2, and

when the second order derivatives are also continuous:

unsðPiÞlGi
¼2unsðPiÞlGi21

; ð2:22Þ

the corner conditions (2.21) are reduced to

2ð12mÞd½uns�ivi¼2ð12mÞunsðPiÞlGi21
: ð2:23Þ

Note that Eq. (2.23) coincides well with Eq. (2.11).

Obviously, for the smooth boundary ›S; the corner terms

disappear, and the Green formulas in Ref. [6] are

obtained. This shows that the Green formulas in Ref.

[6] are the special cases of Eq. (2.19).

Remark 2.1. Let us consider the piecewise curved boundary

Gi: Denote by a ¼ aðsÞ the angle between the tangent

direction of Gi and the x axis, then

xs ¼ cos a; yn ¼ 2cos a; xn ¼ ys ¼ sin a;

un ¼ uxxn þ uyyn ¼ ðsin aÞux 2 ðcos aÞuy;

us ¼ uxxs þ uyys ¼ ðcos aÞux þ ðsin aÞuy:

ð2:24Þ

There exist the derivatives of a with respect to s : ›a=

›s ¼ 1=r; where r denotes the curvature radius of Gi; r is

positive if the curvature center is within S; or negative

otherwise. We have from Eq. (2.24) by calculus,

uss ¼ uxxx2
s þ 2uxyxsys þ uyyy2

s 2
un

r
;

uns ¼ uxxxnxs þ uxyðxnys þ xsynÞ þ uyyynys þ
us

r
:

ð2:25Þ

Note that there are two additional terms, 2un=r and us=r in

Eq. (2.25), compared with those in Eq. (2.15).

Similarly, Eq. (2.14) is reduced toðð
S
ð2uxyvxy 2 uxxvyy 2 uyyvxxÞ

¼ 2
ð
›S
ðuxxx2

s þ 2uxyxsys þ uyyy2
s Þvn

þ
ð
›S
ðuxxxnxs þ uxyðxnys þ xsynÞ þ uyyynysÞ

›v

›s

¼ 2
ð
›S

uss þ
un

r

� �
vn þ

ð
›S

uns 2
us

r

� �
›v

›s

¼ 2
ð
›S

uss þ
un

r

� �
vn 2

Xn

i¼1

d uns 2
us

r

	 

i

vi

2
ð
›S

›

›s
uns 2

us

r

� �
v: ð2:26Þ

From Eqs. (2.12) and (2.26), we obtain the Green formulas,ðð
S
Lmðu; vÞ ¼

ðð
S
Du Dv þ ð1 2 mÞ

�
ð
›S
ð2uxyvxy 2 uxxvyy 2 uyyvxxÞ

¼
ðð

S
vDu2

2
ð
›S
ðmpðvÞvn þ ppðvÞvÞ

2 ð1 2 mÞ
Xm
i¼1

d uns 2
us

r

	 

i

vi; ð2:27Þ

where

mpðuÞ ¼ 2Du þ ð1 2 mÞ uss þ
un

r

� �

¼ mðuÞ þ ð1 2 mÞ
un

r
;

ppðuÞ ¼
›

›n
Du þ ð1 2 mÞ unss 2

›

›s

us

r

� �� �

¼ pðuÞ2 ð1 2 mÞ
›

›s

us

r

� �
;

ð2:28Þ

and mðuÞ and pðuÞ are defined in Eq. (2.20). When natural

boundary conditions are subjected to Gi21 and Gi; we obtain

1 For the curved Gi; the additional terms 2ð1 2 mÞ
Pm

i¼1 d½uns 2 ðus=rÞ�ivi

are provided by Chien [5], p. 59, see Remark 2.1, where r denotes the

curvature radius of Gi; r is positive if the curvature center is within S; or

negative otherwise. Obviously, when Gi are straight lines, r ¼ 1; the

corner terms (2.21) are obtained.
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the boundary equations

mpðuÞ ¼ 0; ppðuÞ ¼ 0 on Gi21 < Gi; ð2:29Þ

and the corner conditions

d uns 2
us

r

	 

¼ 0 at Pi: ð2:30Þ

Eqs. (2.27), (2.29) and (2.30) are given by Chien [5], pp.

245, 238 and 59, respectively. Where Gi are straight lines,

r ¼ 1; Eq. (2.27) leads to Eq. (2.19), and the corner terms

2ð1 2 mÞ
Pm

i¼1 d½uns 2 ðus=rÞ�ivi in Eq. (2.27) to (2.21).

2.3. Boundary conditions for biharmonic equations

on polygons

Consider a polygon S; and the exterior boundary

conditions on ›S can be easily derived from the Green

formulas. Let the solution u [ H2ðSÞ; where H2ðSÞ is

the Sobolev space defined in Ref. [31]. From H2ðSÞ;

the biharmonic solution and its derivatives are

continuous on the entire S; i.e. u [ C1ðSÞ: Then the

solution of the biharmonic equation, D2u þ f ¼ 0 in S;

can be expressed in a weak form: to seek u [ H2ðSÞ

such thatðð
S
Lmðu; vÞ þ

ðð
S

fv ¼ 0; v [ H2
0ðSÞ; ð2:31Þ

where H2
0ðSÞ is a subspace of H2ðSÞ satisfying suitable

homogeneous boundary conditions for v: Based on the

Green formulas in Section 2.1,

0 ¼
ðð

S
ðD2u þ f Þv 2

ð
›S
ðmðuÞvn þ pðuÞvÞ þ 2ð1

2 mÞð½uxyv�43 2 ½uxyv�21Þ; ð2:32Þ

we obtain three equations from an arbitrary function v;ðð
S
ðD2u þ f Þv ¼ 0; ð2:33Þ

ð
›S
ðmðuÞvn þ pðuÞvÞ ¼ 0; ð2:34Þ

2ð1 2 mÞð½uxyv�43 2 ½uxyv�21Þ ¼ 0: ð2:35Þ

Since v in S is arbitrary, we obtain the biharmonic

equation, D2u þ f ¼ 0 in S from Eq. (2.33), where f also

represents the exterior surface force. Next, let us consider

different exterior boundary conditions. For the clamped

condition: u ¼ g1 and un ¼ g2 on ›S; in view of v ¼ 0

and vn ¼ 0 on ›S; we can see that the boundary integrals

satisfy Eq. (2.34) automatically. Next, for the simply

supported condition u ¼ g1; since vn on ›S is arbitrary,

then the additional condition, the boundary blending

moment mðuÞ ¼ 0 on ›S; is obtained from Eq. (2.34). For

the special case: u ¼ constant; we have uss ¼ 0; which

gives mðuÞ ¼ 2unn 2 muss ¼ 2unn ¼ 0: Hence we obtain

a concise form of the simply supported conditions: u ¼

constant and unn ¼ 0 on ›S:

For symmetric conditions, un ¼ 0 on ›S; we have the

additional condition: pðuÞ ¼ unnn þ ð2 2 mÞunss ¼ 0 from

Eq. (2.34). Since unss ¼ 0 on ›S; pðuÞ ¼ 0 is also simplified

to unnn ¼ 0 on ›S: So we obtain the symmetric conditions:

un ¼ unnn ¼ 0 on ›S: For the simple natural boundary

condition, e.g. no constraints are given on ›S; then mðuÞ ¼ 0

and pðuÞ ¼ 0 from Eq. (2.34). Suppose that the natural

boundary conditions are given by the exterior boundary

force pðuÞ ¼ g3 and the bending moment mðuÞ ¼ g4 on GN ;

where GN is a partial of ›S; and the clamped boundary

condition is subjected on ›S\GN : The unique solution of

biharmonic equations is then expressed: to seek u [ H2ðSÞ

such thatðð
S
Lmðu; vÞ þ

ðð
S

fv þ
ð
GN

ðg3v þ g4vnÞ ¼ 0; v [ H2
0 ðSÞ:

ð2:36Þ

We may consider mixed types of different boundary

conditions, where different conditions are given on

different edges of ›S: In this case, the corner terms must

be considered for the natural corners, where two adjacent

edges are all subjected to the natural conditions. Since v is

arbitrary, we obtain the corner condition uxy ¼ 0 from

Eq. (2.35), which is important for the collocation Trefftz

method, see Section 3.3, because all boundary conditions

including the corner conditions must be satisfied as best as

possible. Moreover, the corner condition uxyv ¼ 0 is

satisfied automatically, if one adjacent edge of the corner

is subjected to (1) the clamped condition, (2) the

symmetric condition, or (3) the simply supported condition

with un ¼ constant: It is easy to see that either v ¼ 0 or

uns ¼ uxy ¼ 0 on one edge yields uxyv ¼ 0 automatically at

the corner.

We may discuss the uniqueness of the solutions by

considering the homogeneous biharmonic equation

D2u ¼ 0: A solution u can be also described as the

minimal energy:

EðuÞ ¼ min
v[H2

0
ðSÞ

EðvÞ; ð2:37Þ

where

EðvÞ ¼
1

2

ðð
S
Lmðv; vÞ

¼
1

2

ðð
S
mðv2

xx þ v2
yyÞ þ ð1 2 mÞðv2

xx þ v2
yy þ 2v2

xyÞ:

ð2:38Þ

When 0 # m , 1; condition EðvÞ ¼ 0 leads to that vxx ¼

vyy ¼ vxy ¼ 0; then the linear functions are obtained, i.e. v ¼

a þ bx þ cy with constants a; b and c: To guarantee the

unique solutions, the linear functions must be zero: v ¼

a þ bx þ cy ; 0: For the mixed types of boundary con-

ditions, there exist unique solutions for one edge, e.g. AB in

Fig. 3, subjected to the clamped boundary condition. Since
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vn (e.g. vx) ¼ v ¼ 0 on AB; then the constants b ¼ 0 and

ða þ cyÞlx¼1 ¼ 0: So a ¼ c ¼ 0 and then v ; 0: This

confirms the unique solutions if one edge of a corner is

subjected to the clamped boundary condition.

In summary, we have derived five typical boundary

conditions for biharmonic equations on polygonal domains:

1. The symmetric condition: un ¼ 0; unnn ¼ 0:

2. The clamped condition: u ¼ c0; un ¼ c1:

3. The simply supported condition: u ¼ c0; unn ¼ c2:

4. The natural condition: mðuÞ ¼ 2unn 2 muss ¼ c3; pðuÞ ¼

unnn þ ð2 2 mÞunss ¼ c4: Here ci are the given constants,

which are dependent on the problems to be solved.

5. The natural corner condition: uxy ¼ 0:

Note that for biharmonic equations, the interior and

exterior boundary conditions and the corner conditions are

important not only to the collocation Trefftz method but also

to the collocation methods using the radial basis functions,

or the Sinc functions, etc.

3. The collocation Trefftz methods

3.1. Three crack models

Consider the homogeneous biharmonic equation

D2u ¼ 0 in S; ð3:1Þ

where the solution domain is the rectangle: S ¼

{ðx; yÞ;21 , x , 1; 0 , y , 1}: In this paper, we study

three crack models of singularity problems, shown in

Figs. 3–5. The section OD represents an interior crack under

the clamped condition u ¼ un ¼ 0: From Section 2.3, the

symmetric conditions, un ¼ unnn ¼ 0 on OA < BC < CD;

are required. Here n is the outward normal direction to the

boundary ›S: On AB; when the clamped conditions are

provided, we propose the biharmonic boundary value

problem with the following conditions, called Model I in

this paper, see Fig. 3:

ulOD ¼ 0; uylOD ¼ 0; ð3:2Þ

uylOA ¼ 0; uyyylOA ¼ 0; ð3:3Þ

ulAB ¼ 1; uxlAB ¼ 0; ð3:4Þ

uylBC ¼ 0; uyyylBC ¼ 0; ð3:5Þ

uxlCD ¼ 0; uxxxlCD ¼ 0: ð3:6Þ

We may replace the clamped condition on AB by the simply

supported condition,

ulAB ¼ 1; uxxlAB ¼ 0; ð3:7Þ

but the other boundary conditions remain the same as those

in Model I. Such a model is called Model II, see Fig. 4. Note

that Models I and II resemble the Motz’s problem in Refs.

[20,26].

Next, we choose the models by Schiff et al. [30] with all

the clamped conditions on ›S; see Fig. 5,

D2u ¼ 0; on S; ð3:8Þ

ulOD ¼ 0; uylOD ¼ 0; ð3:9Þ

uylOA ¼ 0; uyyylOA ¼ 0; ð3:10Þ

ulAB ¼ 2a2
; uxlAB ¼ 2a; ð3:11Þ

ulBC ¼
x2

2
þ ax þ

a2

2
; uylBC ¼ 0; ð3:12Þ

ulCD ¼ 0; uxlCD ¼ 0; ð3:13Þ

where S ¼ {ðx; yÞ;2a , x , a; 0 , y , b}: When par-

ameters a ¼ b ¼ 1; the model (3.8)– (3.13) is called

Model III in this paper.

Fig. 3. The boundary conditions of biharmonic equations for Model I.

Fig. 4. The boundary conditions of biharmonic equations for Model II.

Fig. 5. The boundary conditions of biharmonic equations for Model III.
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For the clamped crack on OD; the particular solutions

of these models are known, and given by Schiff et al.

[30]:

u ¼
X1
i¼1

ðdifiðr; uÞ þ cifiðr; uÞÞ; ð3:14Þ

where di and ci are expansion coefficients, and the

singular particular solutions are

fiðr; uÞ ¼ riþð1=2Þ cos i 2
3

2

� �
u2

i2
3
2

iþ
1
2

cos i þ
1

2

� �
u

( )
;

ð3:15Þ

and the analytic particular solutions

fiðr; uÞ ¼ riþ1{cosði 2 1Þu2 cosði þ 1Þu}: ð3:16Þ

3.2. Description of the method

Take Model I as an example and describe the

collocation Trefftz method, since the algorithms of the

collocation Trefftz method for other models may be

similarly described. Choose finite terms of particular

solutions

uN ¼
XN
i¼1

ð~difiðr; uÞ þ ~cifiðr; uÞÞ; ð3:17Þ

where ~di and ~ci are approximate coefficients to be sought.

Since the particular solutions (3.15) and (3.16) satisfy the

biharmonic equation (3.1) in S and the boundary

conditions on OD and OA already, the unknown

coefficients ~ci and ~di can be obtained by satisfying the

rest of boundary conditions as best as possible.

For Model I, there exists the crack point at O: We split S

into Sþ and S2; where Sþ ¼ S > ðx $ 0Þ and S2 ¼ S >
ðx # 0Þ: Then the Green formulas are applied to Sþ and S2

in Fig. 3, to giveðð
S
Lmðu; vÞ ¼

ðð
Sþ

Lmðu; vÞ þ
ðð

S2
Lmðu; vÞ

¼
ðð

S
vD2u 2

ð
›S
ðmðuÞvn þ pðuÞvÞ þ 2ð1 2 mÞ

� ð½uxyv�BA 2 ½uxyv�EOþ þ ½uxyv�EO2 2 ½uxyv�CDÞ; ð3:18Þ

where point E ¼ ð0; 1Þ: From Eqs. (3.2)–(3.6), we obtain

vðAÞ ¼ vðBÞ ¼ vðDÞ ¼ vðO2Þ ¼ 0;

uxyðCÞ ¼ uxyðEÞ ¼ uxyðO
þÞ ¼ 0:

Hence, the last term on the right hand side of Eq. (3.18) is

zero automatically. In this case, the corner conditions at E

and O may not be needed in the collocation Trefftz method,

either. We confirm again the boundary conditions given in

Eqs. (3.2)–(3.6).

For Model I with the boundary conditions (3.2)–(3.6),

define an energy on the boundary by

IðvÞ ¼ Iðdi; ciÞ

¼
ð

AB
ððv 2 1Þ2 þ w2

1v2
xÞ þ

ð
BC

ðw2
1v2

y þ w2
3v2

yyyÞ

þ
ð

CD
ðw2

1v2
x þ w2

3v2
xxxÞ; ð3:19Þ

where the weights wi ¼ 1=ðN þ 1Þi; based on the analysis in

Refs. [20,23]. The approximate coefficients ~di and ~ci can be

found by

IðuNÞ ¼ Ið~di; ~ciÞ ¼ min
di ;ci

Iðdi; ciÞ: ð3:20Þ

To be more precise, we use the simplest midpoint rule to

discretize the integrals in Eq. (3.19), where the uniform

partitions are chosen for AB < BC < CD; and the division

number of AB is denoted by M: This is equivalent to the

direct collocation method to establish the linear algebraic

equations,

F~x ¼ ~b; ð3:21Þ

where ~x consists of 2N coefficients ~di and ~ci; and F is the

8M £ 2N matrix. Choose 8M q 2N; and the least squares

solution is just the solution ~x; e.g. the coefficients ~di and ~ci:

In computation, we use the error notation for accuracy,

E2 ¼ kekB ¼ ku 2 vkB ¼
ffiffiffiffiffi
IðvÞ

p
; ð3:22Þ

and the condition number for stability

Cond: ¼
lmaxðF

TFÞ

lminðF
TFÞ

( )1=2

; ð3:23Þ

where lmaxðAÞ and lminðAÞ are the maximal and minimal

eigenvalues of the matrix A ¼ FTF:

3.3. The collocation Trefftz method with natural corners

Let the clamped and the natural conditions be given on

AB and BC < CD in Fig. 3, respectively,

u ¼ 1; un ¼ 0; on AB;

mðuÞ ¼ pðuÞ ¼ 0 on BC < CD:

ð3:24Þ

Since point C is a natural corner, the corner condition is

needed: uxyðCÞ ¼ 0: The collocation Trefftz method invol-

ving the natural corner C is given by

IpðuNÞ ¼ Ipð~di; ~ciÞ ¼ min
di ;ci

Ipðdi; ciÞ; ð3:25Þ

where

IpðvÞ ¼
ð

AB
ððv 2 1Þ2 þ w2

1v2
nÞ þ

ð
BC<CD

ðw2
2m2ðvÞ

þ w2
3p2ðvÞÞ þ 2ð1 2 mÞw2

2v2
xyðCÞ; ð3:26Þ
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and the weights are wi ¼ 1=ðN þ 1Þi: Note that the corner

term involving v2
xyðCÞ is necessary to the collocation Trefftz

method for the biharmonic equations with natural corners.

When the corner angles at /DCB is not just p/2, the corner

contribution in Eq. (3.26) is replaced by ð1 2

mÞw2
2ðv

þ
nsðCÞ2 v2nsðCÞÞ2 based on the analysis in Section 2.2.

3.4. Formulas of partial derivatives

In this section, we provide useful derivative formulas for

ux; uy; uxx; uyy; uxy; uxxx; uyyy; uxxy and uxyy; which are

required by the collocation Trefftz method. Since the

particular solutions (3.15) and (3.16) in S are given in

polar coordinates, we will find their explicit formulas of

partial derivatives with respect to x and y: Let the origins of

the Cartesian and polar coordinates be the same, we obtain

ux ¼ cos u
›u

›r
2 sin u

›u

r›u
;

uy ¼ sin u
›u

›r
þ cos u

›u

r›u
:

ð3:27Þ

Based on Eq. (3.27), we have

uxx ¼ cos u
›

›r
2 sin u

›

r›u

� �
cos u

›

›r
2 sin u

›

r›u

� �
u

¼ cos2 u
›2u

›r2
2 sin 2u

›

r›r

›u

›u
2

›u

r2›u

� �
þ

sin2 u

r

›u

›r

þ
sin2 u

r2

›2u

›u2
: ð3:28Þ

Similarly, we have

uyy ¼ sin2 u
›2u

›r2
þ sin 2u

›

r›r

›u

›u
2

›u

r2›u

� �

þ
cos2 u

r

›u

›r
þ

cos2 u

r2

›2u

›u2
; ð3:29Þ

and

uxy ¼ cos u sin u
›2u

›r2
þ

cos2 u

r

›

›r

›u

›u
2

cos2 u

r2

›u

›u

2
sin2 u

r

›

›r

›u

›u
2

cos u sin u

r

›u

›r

2
cos u sin u

r2

›2u

›u2
þ

sin2 u

r2

›u

›u
: ð3:30Þ

After some manipulation, we can also obtain

uxxx ¼ cos u
›

›r
2 sin u

›

r›u

� �

� cos2 u
›2

›r2
2 sin 2u

›

r›r

›

›u
2

›

r2›u

� �"

þ
sin2 u

r

›

›r
þ

sin2 u

r2

›2

›u2

#
u

¼ cos3 u
›3u

›r3
2

3 cos u sin 2u

2r

›2

›r2

›u

›u

þ
3 sin u sin 2u

2r2

›

›r

›2u

›u2
2

sin3 u

r3

›3u

›u3

þ
3 sin u sin 2u

2r

›2u

›r2
2

3ðsin u2 3 sin 3uÞ

4r2

�
›

›r

›u

›u
2

3 sin u sin 2u

r3

›2u

›u2

2
3 sin u sin 2u

2r2

›u

›r
2

2 sin 3u

r3

›u

›u
: ð3:31Þ

Other derivatives of third order are given by

uyyy¼sin3 u
›3u

›r3
þ

3sinusin2u

2r

›2

›r2

›u

›u

þ
3cosusin2u

2r2

›

›r

›2u

›u2
þ

cos3 u

r3

›3u

›u3

þ
3cosusin2u

2r

›2u

›r2
þ

3ðcosuþ3cos3uÞ

4r2

›

›r

›u

›u

2
3cosusin2u

r3

›2u

›u2
2

3cosusin2u

2r2

›u

›r
2

2cos3u

r3

›u

›u
;

uxxy¼sinucos2 u
›3u

›r3
þ

cosuþ3cos3u

4r

›2

›r2

›u

›u

þ
sinu23sin3u

4r2

›

›r

›2u

›u2
þ

sinusin2u

2r3

›3u

›u3

þ
sinu23sin3u

4r

›2u

›r2
þ

cosu29cos3u

4r2

›

›r

›u

›u

2
2sinu23sin3u

2r3

›2u

›u2
2

sinu23sin3u

4r2

›u

›r

þ
2cos3u

r3

›u

›u
; ð3:32Þ
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and

uxyy¼cosusin2 u
›3u

›r3
þ

3sin3u2sinu

4r

›2

›r2

›u

›u

þ
cosuþ3cos3u

4r2

›

›r

›2u

›u2
2

sinucos2 u

r3

›3u

›u3

þ
cosuþ3cos3u

4r

›2u

›r2
2

sinuþ9sin3u

4r2

›

›r

›u

›u

2
cosuþ3cos3u

2r3

›2u

›u2
2

cosuþ3cos3u

4r2

›u

›r

þ
2sin3u

r3

›u

›u
: ð3:33Þ

In the computation of Eqs. (3.27)–(3.33), the derivatives

of u with respect to r and u can be easily obtained

directly from Eqs. (3.15) and (3.16). For the analytical

particular solutions fiðr;uÞ in Eq. (3.16), the explicit

derivatives, ux;uy;…;uxyy; can be derived straightforward.

However, for the singular particular solutions, fiðr;uÞ in

Eq. (3.15), the above computational formulas are

essential in computations.

4. The collocation Trefftz method with interior boundary

4.1. Interior continuity conditions on interfaces

For simplicity, let S ¼ Sþ < S2; where S; Sþ and S2

are all polygons, shown in Fig. 6. The interface is

a straight line, denoted by G0 ¼ EO: Suppose that

the particular solutions u^ satisfy D2u^ ¼ f in S^:

Also let the clamped and the natural conditions be

enforced on CD < DA < AB and BC; respectively. We

will derive the interior continuity conditions on the

interface:

uþ ¼ u2
; uþ

n ¼ u2
n ; uþ

nn ¼ u2
nn;

uþ
nnn ¼ u2

nnn; on G0;

ð4:1Þ

where n is the outnormal to ›Sþ: By applying the Green

formulas to Sþ and S2; we haveðð
Sþ

Lmðu; vÞ ¼
ðð

Sþ
vD2u 2

ð
›Sþ

ðmðuÞvn þ pðuÞvÞ

þ 2ð1 2 mÞððuþ
nsvÞðEÞ2 ð2uþ

xyvÞðEÞÞ;

ðð
S2

Lmðu; vÞ ¼
ðð

S2
vD2u 2

ð
›S2

ðmðuÞvn þ pðuÞvÞ

þ 2ð1 2 mÞðð2u2
nsvÞðEÞ2 ðu2

xyvÞðEÞÞ;

where s is the tangent direction in Fig. 6, and mðuÞ and

pðuÞ are defined in Eq. (2.3). For the given boundary

conditions, we obtain

0¼
ðð

Sþ
Lmðu;vÞþ

ðð
S2
Lmðu;vÞ2

ðð
S

fv

¼
ðð

S
vðD2u2 f Þ2

ð
G0

{ðmðuþÞvþn 2mðu2Þv2n Þ

þ ðpðuþÞvþ2pðu2Þv2Þ}þ2ð12mÞ{ðuþ
ns þuþ

xyÞvðE
þÞ

2 ðu2
ns þu2

xyÞvðE
2Þ}: ð4:2Þ

Since u; v[C1ðSÞ we have the first continuity con-

ditions:

uþ ¼ u2
; uþ

n ¼ u2
n onG0: ð4:3Þ

Then the boundary integrals in Eq. (4.2) are expressed asð
G0

{ðmðuþÞ2mðu2ÞÞvn þðpðuþÞ2pðu2ÞÞv}¼ 0: ð4:4Þ

Since v and vn are arbitrary on G0; we obtained the

second continuity conditions:

mðuþÞ¼mðu2Þ; pðuþÞ¼2pðu2Þ onG0: ð4:5Þ

From Eq. (4.3) we have uþ
ss ¼ u2

ss and uþ
nss ¼ u2

nss on G0:

The above conditions (4.5) are then simplified to

uþ
nn ¼ u2

nn; uþ
nnn ¼ u2

nnn; onG0: ð4:6Þ

Hence, by noting Eqs. (2.2) and (2.3), we have derived

the interior continuity conditions in Eq. (4.1).

Next, consider the boundary point condition at E: Since

u [ C1ðSÞ and vðEÞð¼ vðEþÞ ¼ vðE2ÞÞ is arbitrary, from

Eq. (4.2) we also obtain the boundary point conditions,

uþ
ns þ uþ

xy ¼ u2
ns þ u2

xy at E: ð4:7Þ

Suppose that second order derivatives of u are continuous

far from the singular points. The first two equalities in

Eq. (4.1) lead to uþ
ss ¼ u2

ss and uþ
ns ¼ u2

ns at E; which with

uþ
nn ¼ u2

nn at E give Eq. (4.7) automatically. Hence the point

continuity condition at E is unnecessary for this interface

problem. Such a conclusion is also valid for other kinds of

boundary conditions on BC: A similar analysis can be made

for the interface problems where two interior boundaries areFig. 6. An interior boundary.
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intersected at an interior point E [ S: The same continuity

interior conditions (4.1) on G0 are obtained, but the interior

intersection E may become a singular point which must be

considered carefully [22].

4.2. Description of the collocation Trefftz method

Let the solution domain S be divided into three

subdomains S0; S1 and S2 shown in Fig. 7. The polar

coordinates at three corners O; B and C are ðr; uÞ; ðj;fÞ and

ðh;cÞ; respectively. The piecewise particular solutions of

Model I are given explicitly by

uN ¼
XN
i¼1

dir
iþð1=2Þ cos i2

3

2

� �
u2

i2 3
2

iþ 1
2

cos iþ
1

2

� �
u

 !(

þ cir
iþ1ðcosði21Þu2 cosðiþ1ÞuÞ

)
; ðr;uÞ[ S0; ð4:8Þ

uM ¼1þ
XM
i¼1

{aij
2iðcosð2i22Þfþ cos 2ifÞ

þbij
2iþ1ðcosð2i21Þfþ

2i21

2iþ1
cosð2iþ1Þf};

ðj;fÞ[ S1; ð4:9Þ

uK ¼
XK
i¼1

ap
i h

2i{cosð2i22Þcþ cos 2ic}; ðh;cÞ[ S2; ð4:10Þ

where di; ci; ai; bi and ap
i are expansion coefficients to be

sought. For Model II, the particular solutions in S1 are

replaced by:

uM ¼ 1þ
XM
i¼1

aij
2iðcosð2i22Þfþ cos 2ifÞ; ðj;fÞ

[ S1; ð4:11Þ

and the other solutions uN and uK remain the same as those

in Eqs. (4.8) and (4.10). Note that for Model I, the piecewise

particular solutions (4.8)–(4.10) satisfy the biharmonic

equation in S and all the exterior boundary conditions on ›S:

The piecewise solutions must match the following interior

continuity boundary conditions, based on Section 4.1

uþ ¼ u2
; uþ

n ¼ u2
n ; uþ

nn ¼ u2
nn;

uþ
nnn ¼ u2

nnn; onG0;

ð4:12Þ

where uþ ¼ ulS0
and u2 ¼ ulS1<S2

: Denote the interior

boundary G0 ¼AE<DE and define the energy

IðvÞ ¼ Iðdi;ci;ai;bi;a
p
i Þ

¼
ð
G0

{ðvþ2 v2Þ2 þw2
1ðv

þ
n 2 v2n Þ

2 þw2
2ðv

þ
nn 2 v2nnÞ

2

þw2
3ðu

þ
nnn 2 v2nnnÞ

2}; ð4:13Þ

where wi ¼ 1=ðmax{N þ1;2M;2K}Þi: Hence the solution of

the collocation Trefftz method with interior boundary G0

can be described as

IðuN;M;KÞ ¼ Ið~di; ~ci; ~ai; ~bi; ~a
p
i Þ ¼ min

;di;ci ;ai ;bi ;a
p
i

IðvÞ; ð4:14Þ

where the admissible functions are given in Eqs. (4.8)–

(4.10).

The interior boundary G0 consists of two straight line

segments DE and AE; with angles Q ¼ 1
4
p and Q ¼ 2 1

4
p

to the y axis, respectively, see Fig. 7. To carry out the

collocation Trefftz method in Eq. (4.14) we need the

derivative formulas un; unn and unnn: From the following

arguments, we may simply use the derivatives formulas of

ux; uy; etc. in Section 3.4, by replacing u with u2Q:

In fact, we have for G0ð¼ AEÞ in Fig. 8,

›u

›n
¼

›u

›r
cosðn; rÞ þ

›u

r›u
cosðn; uÞ;

›u

›s
¼

›u

›r
cosðs; rÞ þ

›u

r›u
cosðs; uÞ;

ð4:15Þ

Fig. 7. Partition of S by the interior boundary G0: Fig. 8. The normal and tangent directions of G0:
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where

cosðn; rÞ ¼ cosðu2QÞ;

cosðn; uÞ ¼ cos
1

2
pþQ2 u

� �
¼ 2sinðu2QÞ;

cosðs; rÞ ¼ cos
1

2
p2 ðu2QÞ

� �
¼ sinðu2QÞ;

cosðs; uÞ ¼ cosðu2QÞ:

ð4:16Þ

Hence we have

›u

›n
¼

›u

›r
cosðu2QÞ2

›u

r›u
sinðu2QÞ; ð4:17Þ

›u

›s
¼

›u

›r
sinðu2QÞ þ

›u

r›u
cosðu2QÞ; ð4:18Þ

where Q ¼ ^ 1
4
p: Note that when Q ¼ 0; we obtain ux and

uy in Eq. (3.27) from Eqs. (4.17) and (4.18). Therefore, we

may directly obtain the corresponding formulas from

Section 3.4 by replacing u with u2Q:

5. Error bounds

For simplicity, we consider the collocation Trefftz

method for Model I in Fig. 3. Let S ¼ S1 < S2; where S1 ¼

S > ðx , 0Þ and S2 ¼ S > ðx . 0Þ: We have the Green

formulas for v ¼ uN ; Gðð
S
Lmðv; vÞ ¼

ðð
S

vD2v 2
ð
›S

mðvÞvn 2
ð
›S

pðvÞv

þ 2ð1 2 mÞ{½vxyv�BA 2 ½vxyv�EOþ þ ½vxyv�EO2

2 ½vxyv�CD}; ð5:1Þ

where E ¼ ð0; 1Þ; mðvÞ ¼ 2vnn and pðvÞ ¼ vnnn on AB <
BC < CD for Model I. Hence for the particular solutions

v of biharmonic equations, since vlD ¼ vlO2 ¼ 0 and

vxylA ¼ vxylOþ ¼ 0 for v ¼ vN ; the Green formulas are

simplified toðð
S
Lmðv; vÞ ¼

ð
AB<BC<CD

ðvnnvn 2 vnnnvÞ

þ 2ð1 2 mÞ½vxyv�BC: ð5:2Þ

Moreover, the boundary norm (3.22) is expressed as

kekB ¼ku 2 vkB ¼
ffiffiffiffiffi
IðvÞ

p
¼ {kv 2 1k2

0;AB
þ w2

1kvnk
2

0;AB

þ w2
1kvnk

2

0;BC
þ w2

3kvnnnk
2

0;BC
þ w2

1kvnk
2

0;CD

þ w2
3kvnnnk

2

0;CD
}1=2

; ð5:3Þ

where wi ¼ 1=ðN þ 1Þi: Then we have the following

theorem.

Theorem 5.1. Let v ¼ uN in Eq. (3.17) be chosen for Model

I. Suppose that the inverse inequalities hold:

kennnk0;AB # KNkek2;S;

kennk0;AB<BC<CD # Kp
Nkek2;S;

ð5:4Þ

lvxyðBÞl # Kpp
N kvnk0;BC; lvxyðCÞl # Kpp

N kvnk0;BC; ð5:5Þ

where KN ; Kp
N and Kpp

N may be unbounded as N !1: Then

there exist the error bounds,

kek2;S ¼ ku 2 vk2;S

# CðKN þ ðKpp
N þ Kp

NÞ=w1 þ 1=w3Þku 2 vkB; ð5:6Þ

where C is a bounded constant independent of N:

Proof. For m [ ½0; 1Þ and the clamped boundary conditions

on OD < AB; from Marti [25] and Eq. (5.2) we have

kek22;S # Cle l22;S # C
ðð

S
Lmðe ; eÞ

# C{kennk0;ABkvnk0;AB þ kennnk0;ABkv 2 1k0;AB

þ kennk0;BCkvnk0;BC þ kvnnnk0;BCkek0;BC

þ kennk0;CDkvnk0;CD þ kvnnnk0;CDkek0;CD

þ lvxyðBÞlleðBÞlþ lvxyðCÞlleðCÞl}: ð5:7Þ

From the Sobolev embedded theorem [31], there exist the

bounds,

kek0;BC<CD # Ckek2;S; leðBÞl # Ckek2;S;

leðCÞl # Ckek2;S:
ð5:8Þ

Hence from Eqs. (5.4), (5.7) and (5.8) we have

kek22;S # C{Kp
Nkvnk0;AB þ KNkv 2 1k0;AB þ Kp

Nkvnk0;BC

þ kvnnnk0;BC þ Kp
Nkvnk0;CD þ kvnnnk0;CD

þ lvxyðBÞlþ lvxyðCÞl}kek2;S: ð5:9Þ

Moreover, from Eq. (5.5)

lvxyðBÞlþ lvxyðCÞl # 2Kpp
N kvnk0;BC # 2

Kpp
N

w1

kekB: ð5:10Þ

Combining Eqs. (5.9) and (5.10) leads to

kek2;S # C{Kp
Nkvnk0;AB þ KNkv 2 1k0;AB þ Kp

Nkvnk0;BC

þ kvnnnk0;BC þ Kp
Nkvnk0;CD þ kvnnnk0;CD}

þ 2Kpp
N =w1kekB

# C{KN þ ðKp
N þ Kpp

N Þ=w1 þ 1=w3}kekB; ð5:11Þ
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where we have used Eq. (5.3). This completes the proof of

Theorem 5.1. A

Note that although the corner condition vxyðBÞ ¼ vxyðCÞ

is not imposed explicitly on v; it is also satisfied

approximately based on Theorem 5.1. The analysis for the

collocation Trefftz method with interior boundary con-

ditions can be made similarly by following Ref. [20] and

this paper. In fact, the assumption (5.5) can be obtained by

lvxyðBÞl # lvxyl1;BC # K1kvnk3=2;BC # K1K2kvnk0;BC

# Kpp
N kvnk0;BC; ð5:12Þ

where Kpp
N ¼ K1K2: When S is a sector, we can show that

KN ¼ OðN2Þ; Kp
N ¼ OðNÞ and Kpp

N ¼ OðN3=2Þ:

6. Numerical experiments

We carry out the collocation Trefftz method in double

precision for these crack models. For Model I, the computed

results of errors, condition numbers and coefficients are

given in Tables 1 and 2 with the numerical asymptotic

Table 1

The computed results from Model I: the clamped condition on AB and the

symmetric condition on BC

N M E2 Cond. d1 c1

5 5 0.684(22) 122 1.558314068 0.5439790(21)

10 10 0.310(23) 0.525(4) 1.579179739 0.8584309(21)

15 15 0.172(24) 0.897(5) 1.579103462 0.8433073(21)

20 20 0.211(25) 0.965(6) 1.579146775 0.8451656(21)

25 25 0.628(26) 0.766(7) 1.579146331 0.8455956(21)

30 30 0.292(26) 0.142(9) 1.579144492 0.8455695(21)

35 35 0.141(26) – 1.579144356 0.8455997(21)

Table 2

The computed coefficients from Model I at N ¼ M ¼ 30

k dk ck

1 0.157914449154(1) 0.845569495127(21)

2 20.101875081011(1) 0.218682879130

3 20.388345996362 0.147059328607

4 20.126596391437 0.258957626846(21)

5 20.901531703063(22) 20.661047276514(22)

6 20.410342771786(22) 0.692602886653(22)

7 20.152219180639(21) 0.109004031831(21)

8 20.105644615332(21) 0.533572185075(22)

9 20.353330627848(22) 0.128477201276(22)

10 20.108364832609(22) 0.799088937995(23)

11 20.932961247848(23) 0.638532919383(23)

12 20.560626543201(23) 0.321076862256(23)

13 20.217242844519(23) 0.977392253721(24)

14 20.883260517136(24) 0.702432472164(24)

15 20.620368652529(24) 0.324466328939(24)

16 20.285719771197(24) 0.252039158155(24)

17 20.232213823882(24) 0.131914570651(24)

18 20.102940821331(24) 0.666829468399(25)

19 20.157042167188(25) 20.394496927639(25)

20 0.320173251469(25) 0.183197951331(25)

21 20.572645396667(25) 0.504462110589(25)

22 20.311064327607(25) 0.563661160729(26)

23 0.131511891651(25) 20.201658325294(25)

24 0.120638425971(25) 0.462845013470(26)

25 20.155256612338(25) 0.131479847331(25)

26 20.667684153216(26) 0.383815032080(27)

27 0.230910782803(26) 20.222247821436(26)

28 0.866642073153(27) 0.784944120044(27)

29 20.163894984647(26) 0.125626303448(26)

30 20.631610177158(27) 0.148114879917(27)

Table 3

The computed results from Model II: the simply supported condition on AB

and the symmetric condition on BC

N M E2 Cond. d1 c1

5 5 0.333(22) 228 0.850292568 20.1238970

10 10 0.568(24) 0.678(4) 0.843682925 20.1339992

15 15 0.280(25) 0.106(6) 0.843237554 20.1344272

20 20 0.138(26) 0.111(7) 0.843266263 20.1344504

25 25 0.330(28) 0.961(7) 0.843265749 20.1344259

30 30 0.234(29) 0.672(8) 0.843265738 20.1344254

35 35 0.151(210) – 0.843265743 20.1344254

Table 4

The computed coefficients from Model II at N ¼ M ¼ 30

k dk ck

1 0.843265737636 20.134425410478

2 20.810315226397(21) 0.555684857969(22)

3 20.760189138549(21) 0.389434470960(21)

4 20.406409839309(21) 0.147075362850(21)

5 20.107965037008(22) 20.873849200785(22)

6 0.926519150105(22) 20.352886098194(22)

7 20.537688211088(23) 0.152504271457(22)

8 20.159558209100(22) 0.619084537209(23)

9 20.602403160151(24) 20.295608460532(23)

10 0.312644128283(23) 20.136655913609(23)

11 20.171094471457(24) 0.703637646769(24)

12 20.746810945381(24) 0.332124185817(24)

13 20.202261881438(25) 20.166584246932(24)

14 0.172358111626(24) 20.770462588631(25)

15 20.680975685900(26) 0.381985848508(25)

16 20.393029468513(25) 0.177201776927(25)

17 20.753002175322(27) 20.889681257230(26)

18 0.908970763257(26) 20.413094733348(26)

19 20.347771312608(27) 0.210684813352(26)

20 20.212002381035(26) 0.955540479240(27)

21 20.117653124582(28) 20.496876236952(27)

22 0.489076758087(27) 20.212558167696(27)

23 20.310394116929(28) 0.117984903867(27)

24 20.106176086258(27) 0.417122852930(28)

25 0.436460058617(29) 20.242925552763(28)

26 0.209830897613(28) 20.795430112067(29)

27 20.244865068337(29) 0.514646524550(29)

28 20.366636428060(29) 0.883960453604(210)

29 0.436452408457(210) 20.557222929732(210)

30 0.268911356390(210) 20.756987886739(211)
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relations,

E2 ¼ Oð0:83NÞ; Cond: ¼ Oð1:6NÞ; ð6:1Þ

where E2 and Cond. are defined in Eqs. (3.22) and (3.23),

respectively. For Model II, the results are listed in

Tables 3 and 4, with

E2 ¼ Oð0:58NÞ; Cond: ¼ Oð1:5NÞ: ð6:2Þ

Obviously, Model II is better than Model I as a crack model

due to higher accuracy and better stability. The important

leading coefficient d1 has eight significant digits for N ¼

M ¼ 30 in Tables 2 and 4.

Note that for Models I and II, the particular solutions

have vxyðBÞ – 0 and vxyðCÞ – 0: We may also add the

corner contribution, 2ð1 2 mÞw2
2{v2

xyðBÞ þ v2
xyðCÞ}; to the

energy (4.13), and carry out the corresponding collocation

Trefftz method. The numerical solutions obtained are only

slightly different from those in Tables 2 and 4. This fact

verifies well the analysis in Section 5.

Let us change the boundary conditions on AB and BC

only, and retain other boundary conditions to be the same as

those in Models I and II. First, choose the simply supported

conditions on AB instead

ulAB ¼ 1; unnlAB ¼ 0: ð6:3Þ

The computed results are listed in Tables 5 and 6. Second,

choose the natural conditions on BC;

ðuyy þ muxxÞlBC ¼ 0; ðuyyy þ ð2 2 mÞuxxyÞlBC ¼ 0: ð6:4Þ

Tables 7 and 8 list the computed results for Eq. (6.4) with

m ¼ 0 and 1=2:

From Tables 1, 3, and 5–8, we discover the following

interesting facts.

(1) The clamped boundary condition will enhance

the crack singularity ðK ¼
ffiffiffiffi
2p

p
d1Þ; where the leading

coefficient d1 ¼ 1:5791 in Table 1 is largest.

(2) The simply supported boundary will decline the

crack singularity due to release of internal force,

where d1 ¼ 0:10718 in Table 6 is smallest.

Table 6

The computed results for the simply supported condition on AB and BC

N M E2 Cond. d1 c1

5 5 0.549(22) 97.1 0.106751524 0.5789919

10 10 0.136(23) 0.146(4) 0.107175441 0.5821202

15 15 0.274(25) 0.150(5) 0.107184297 0.5820906

20 20 0.159(26) 0.146(6) 0.107184194 0.5820990

25 25 0.881(28) 0.154(7) 0.107184186 0.5820988

30 30 0.535(29) 0.146(8) 0.107184187 0.5820988

35 35 0.118(210) – 0.107184187 0.5820988

Table 5

The computed results for the clamped condition on AB and the simply

supported condition on BC

N M E2 Cond. d1 c1

5 5 0.225(21) 78.2 0.155100168 0.5763955

10 10 0.390(23) 0.123(4) 0.158398736 0.5921653

15 15 0.120(24) 0.155(5) 0.158417284 0.5921496

20 20 0.601(26) 0.159(6) 0.158417050 0.5921666

25 25 0.435(27) 0.153(7) 0.158417062 0.5921658

30 30 0.256(28) 0.146(8) 0.158417061 0.5921659

35 35 0.121(29) – 0.158417061 0.5921659

Table 7

The computed results for the clamped condition on AB and the natural condition on BC

N M m ¼ 0 m ¼ 0:5

E2 Cond. d1 c1 E2 Cond. d1 c1

5 5 0.129(21) 96.7 1.5430987 0.0574098 0.169(21) 101 1.5353281 0.0297869

10 10 0.541(23) 0.438(4) 1.5539560 0.0769581 0.205(22) 0.488(4) 1.5611910 0.0107761

15 15 0.221(23) 0.841(5) 1.5528777 0.0711955 0.809(23) 0.897(5) 1.5694103 0.0175093

20 20 0.775(24) 0.900(6) 1.5544130 0.0809604 0.304(23) 0.894(6) 1.5748700 0.0199416

25 25 0.351(24) 0.666(7) 1.5550780 0.0865020 0.135(23) 0.639(7) 1.5746413 0.0194029

30 30 0.175(24) 0.698(8) 1.5555684 0.0907366 0.690(24) 0.723(8) 1.5737998 0.0186469

Table 8

The computed results for the simply supported condition on AB and the natural condition on BC

N M m ¼ 0 m ¼ 0:5

E2 Cond. d1 c1 E2 Cond. d1 c1

5 5 0.355(22) 151 0.8510274 20.1059579 0.257(22) 165 0.8567461 20.1418792

10 10 0.105(23) 0.616(4) 0.8368815 20.1252351 0.972(24) 0.686(4) 0.8413529 20.1629535

15 15 0.228(24) 0.106(6) 0.8370426 20.1249991 0.217(24) 0.117(6) 0.8412125 20.1634846

20 20 0.545(25) 0.105(7) 0.8369060 20.1251114 0.452(25) 0.114(7) 0.8409659 20.1639608

25 25 0.192(25) 0.773(7) 0.8368681 20.1251136 0.139(25) 0.825(7) 0.8408906 20.1641277

30 30 0.113(25) 0.847(8) 0.8368767 20.1250077 0.623(26) 0.929(8) 0.8408885 20.1640853
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(3) The symmetric boundary condition results from

symmetry of the solution. The effects of the natural

conditions on d1 are slightly less than those of the

symmetric condition by comparing Tables 7 and 8 with

Tables 1 and 3.

All these conclusions agree with our physical intuition.

We also expect coefficient d1 would be larger from Model

III than that from Model I, where the clamped boundary

condition is subjected on the entire boundary ›S: The

computed coefficient d1 ¼ 2:1275 given in Table 14 later

confirms such an expectation.

Next, we carry out the models of Schiff et al. In

computation, take parameters a ¼ 0:4 and b ¼ 0:7 as in Ref.

[30], and choose the uniform partition on ›S: Denote by M1

and M2 the partitions number of AB and BC: Tables 9–12

list the computed results. It can be seen that the computed

results coincide very well with other methods given in Refs.

[30,33].

When parameters a ¼ b ¼ 1; the model of Schiff et al.

is our Model III with the clamped conditions in Eqs.

(3.9)–(3.13). The computed results are provided in

Tables 13 and 14. It can be seen that the solutions

have slower convergence than those of Models I and II.

Interestingly, the leading coefficient of d1 in Model III

for N ¼ M ¼ 30 also has seven significant digits, see

Table 13.

Table 9

The computed results from the model of Schiff et al. [30] with a ¼ 0:4 and

b ¼ 0:7

N M1 M2 E2 Cond. d1 c1

7 7 6 0.202(22) 0.729(3) 20.12545711 20.84205789

14 14 16 0.161(23) 0.724(5) 20.12650102 20.94471478

21 21 24 0.237(24) 0.557(7) 20.12650639 20.94411067

28 28 32 0.585(25) 0.357(9) 20.12650611 20.94427916

Table 10

Comparison on some nodal solutions from the model of Schiff et al. [30]

with a ¼ 0:4 and b ¼ 0:7

x y Refinement [30] Whiteman [33] Collocation Trefftz

method

20.1 0.1 20.2 20.2 20.15

0 0.1 146.5 146.6 146.54

0.1 0.1 617.3 617.3 617.28

0.1 0 508.1 508.1 508.11

20.2 0.2 23.8 23.8 23.82

0 0.3 503.5 503.7 503.59

0.2 0.2 1515.5 1515.5 1515.58

0.3 0.1 2321.8 2321.6 2321.83

20.2 0.4 123.4 123.4 123.46

0 0.5 722.5 722.8 722.50

0.2 0.4 1703.2 1703.2 1703.21

Table 11

Comparison of leading coefficients for the model of Schiff et al. [30] with

a ¼ 0:4 and b ¼ 0:7

di and ci Refinement [30] Whiteman [33] Collocation Trefftz

method

d1 1.2649 1.2651 1.2650611

d2 20.9354 20.9361 20.9360218

d3 20.8013 20.7985 20.8010796

d4 21.0040 20.9961 20.9976181

c1 20.0945 20.0944 20.0944279

c2 0.1007 0.1004 0.1011681

c3 0.4684 0.4603 0.4641121

Table 12

The computed coefficients from the model of Schiff et al. [30] with a ¼ 0:4

and b ¼ 0:7

k dk ck

1 0.126506110061(1) 20.944279161457(21)

2 20.936021839307 0.101168072395

3 20.801079627221 0.464112132938

4 20.997618091594 0.396464688101

5 20.105301853401(1) 0.123461423186(1)

6 20.229836599320(1) 0.120497827195(1)

7 20.124156774129(1) 0.155145289337(1)

8 20.381641467043(1) 0.310537969427(1)

9 20.238720411821(1) 0.173097719915(1)

10 20.591294036802(1) 0.733160209882(1)

11 20.555017829366(1) 0.572735184513

12 20.638776268248(1) 0.151705915581(2)

13 20.151886092148(2) 20.501804399258

14 20.245308286590(1) 0.263242128941(2)

15 20.369114292099(2) 0.232732717009(1)

16 0.105446614959(2) 0.351213245198(2)

17 20.758820662861(2) 0.223936816349(2)

18 0.268975706382(2) 0.324998364448(2)

19 20.125018972003(3) 0.735139264579(2)

20 0.245844631003(2) 0.166808451244(2)

21 20.157558912596(3) 0.143594590248(3)

22 20.156534339595(2) 0.268733725020(1)

23 20.145629281481(3) 0.184742907459(3)

24 20.750616959430(2) 0.742968495770(1)

25 20.904763921775(2) 0.149922923157(3)

26 20.938412699634(2) 0.194247065221(2)

27 20.303834486338(2) 0.646114763546(2)

28 20.535812083701(2) 0.174429927114(2)

Table 13

The computed results from Model III of Schiff et al. [30] with a ¼ b ¼ 1

N M E2 Cond. d1 c1

5 5 0.382(21) 75.3 2.0562025 0.12853961

10 10 0.112(22) 0.908(3) 2.1270176 0.16689967

15 15 0.205(23) 0.864(4) 2.1275137 0.16675604

20 20 0.510(24) 0.756(5) 2.1275130 0.16676800

25 25 0.142(24) 0.675(6) 2.1275131 0.16676291

30 30 0.622(25) – 2.1275135 0.16676210
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In summary, in this section we have provided the

numerical solutions for Models I–III by the collocation

Trefftz method. The advantage of Model II (as well as

Model I) over Model III is that only one crack

singularity exists at the origin. Note that in Model III,

there may exist a mild singularity at the corners B and C

from the clamped boundary condition, see Lefeber [18],

p. 55. We carry out the collocation Trefftz method by

Mathematica using the working decimal digits

Pre. # 100, and the errors are listed in Table 15

for Models II and III. The error curves given in Figs. 9

and 10 display that Model II yields exponential

convergent rates, but Model III does not. This fact

indicates existence of a corner singularity in Model III.

Since Model III provides much larger errors shown in

Table 15, Models II and III are better crack models and

Model II is the best crack model of singularity

problems for biharmonic equations. To give a clear

view, profiles of the solutions from Model II are

provided in Fig. 11.

It is worth pointing out that the approximate solutions of

three models converge slower than those of the Motz’s

problem in Ref. [20]. This result is reasonable because the

biharmonic equations are more complicated than Laplace’s

equation.

Fig. 10. The error curves of E2 from Model III.

Fig. 9. The error curves of E2 from Model II.

Table 15

Comparisons on E2 from Models II and III, where Pre. is the working

precision digits used in Mathematica

N Pre. E2 (Model II) ln E2 E2 (Model III) ln E2

5 20 0.149(22) 22.83 0.382(21) 21.42

10 20 0.929(25) 25.03 0.112(22) 22.95

20 30 0.207(27) 27.68 0.510(24) 24.29

30 40 0.351(210) 210.56 0.622(25) 25.21

40 50 0.104(212) 212.98 0.205(25) 25.69

50 60 0.216(215) 215.66 0.629(26) 26.20

60 70 0.820(218) 218.09 0.291(26) 26.54

70 80 0.152(220) 220.82 0.167(26) 26.78

80 90 0.710(223) 223.15 0.101(26) 27.00

90 100 0.119(225) 225.92 0.633(27) 27.20

100 100 0.648(228) 228.19 0.424(27) 27.37

Table 14

The computed coefficients for Model III of Schiff et al. [30] with a ¼ b ¼ 1

at N ¼ 30 and M ¼ 30

k dk ck

1 0.212751351189(1) 0.166762096608

2 20.103669248813(1) 0.624433242670(21)

3 0.371710686206(21) 20.132473844421

4 0.117748896104 20.102209420793(21)

5 20.122728218338 0.105845606844

6 20.109908664317 0.311525254876(21)

7 20.225523569851(22) 20.714919699164(22)

8 0.686312696358(22) 20.168432409440(22)

9 20.593565985657(22) 0.948384227186(22)

10 20.110320364140(21) 0.428077318143(22)

11 20.372990401057(23) 20.251437034002(23)

12 20.434606261276(23) 0.300065928400(23)

13 0.395471328942(23) 20.279833704674(23)

14 20.363701441420(23) 0.415900781575(23)

15 0.849752152135(24) 20.394160763591(23)

16 0.164814091626(23) 0.137207394892(23)

17 20.134885562580(23) 0.114185322520(24)

18 20.661256038945(24) 0.128433796144(23)

19 20.442704344901(24) 20.895164048915(24)

20 0.881231488859(24) 0.101254396117(24)

21 20.513612091552(24) 0.237215483998(24)

22 20.185089281333(24) 0.287229819371(24)

23 20.110577269133(24) 20.290039116621(24)

24 0.383799694523(24) 20.783857638552(25)

25 20.193733376681(24) 0.200879527653(24)

26 20.123722918845(24) 0.597917917868(25)

27 20.218094975397(25) 20.273563392080(25)

28 0.496907945145(25) 20.185227194727(25)

29 20.211257805760(25) 0.303478369806(25)

30 20.189383438010(25) 0.462805951252(26)
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7. Concluding remarks

To conclude this paper, let us address a few remarks.

1. The terms, ðuþ
ns 2 u2

nsÞv at the corners and unsv at those

with the right angles, are developed for the Green

formulas of biharmonic equations on polygons. The

corner terms coincide with those in Chien [5], also see

Remark 2.1. Those terms are important to the natural

corners, to yield the corner condition uþ
ns ¼ u2

ns; which

indicates in physics that the corner angles of thin plates

keep invariant. Also based on the Green formulas, the

interior continuity conditions, uþ ¼ u2; uþ
n ¼ u2

n ; uþ
nn ¼

u2
nn and uþ

nnn ¼ u2
nnn on G0; are derived.

2. Error bounds in Section 5 are derived for a brief analysis,

which provides a justification for the collocation Trefftz

Fig. 11. Profiles of the solutions from Model II.
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method, and the computational formulas of partial

derivatives of the series solutions in Section 3.4 are

provided for the collocation Trefftz method in

computation.

3. Two new crack models I and II are proposed, which

resemble Motz’s problem in Ref. [20] with only one

crack singularity. Also Model III results from Schiff et al.

[30].

4. The collocation Trefftz method (i.e. the BAM in Refs.

[20,23]) are proposed to provide the most accurate

solutions in double precision for three models. The

exponential convergence rates are obtained for Models I

and II, but not for Model III. The slow convergence of

Model III shown in Table 15 displays existence of mild

corner singularities in the model, which is explored in

Ref. [12] in detail.

5. Model II with higher convergent rates is recommended

for crack models, whose leading coefficient d1 is

obtained with eight significant decimal digits. The

crack models are important to test numerical methods,

and the very accurate solutions given in this paper may

be used as the true solutions, to evaluate errors of other

numerical methods, see Ref. [23].

6. This paper is an important extension of the collocation

Trefftz method (i.e. the BAM [20]) for crack singularity

of biharmonic equations. This method may also be

regarded as a variant of the boundary element method

(BEM). Particular solutions are chosen instead of

fundamental solutions in BEM, and only the boundary

conditions need to be fitted as best as possible. The most

remarkable advantage of the collocation Trefftz method

(as well as BEM) is reduction from the PDE problems in

the whole domain S to the problems on the boundary ›S

only, which greatly saves the CPU time and the computer

storage. The drawback of the collocation Trefftz method

is that the particular solutions must be known and

explicit; this confines the collocation Trefftz method to

some simple equations in simple solution domains. A

compensation for this drawback is to invoke the

combined methods described in Ref. [23], where the

collocation Trefftz method may be used in the sub-

domains with singularities, or in the vast regions for the

CPU saving, while the FEM is chosen for the smooth

subdomains.

7. Let us compare the collocation Trefftz method with

BEM. For the collocation Trefftz method, the compu-

tational algorithms are much simpler, and the explicit

solutions, in particular the explicit leading coefficient d1;

directly computed by the collocation Trefftz method is

more attractive and useful in engineering problems.

More importantly, the collocation Trefftz method may

provide the most accurate solutions, see Ref. [23], which

may be regarded as the true solution, to evaluate errors of

other numerical methods.

8. The interior and exterior boundary conditions and the

corner conditions in this paper can be applied to

the collocation methods using the radial basis functions

or the Sinc functions, etc. because the collocation

Trefftz method can be viewed as a special kind of

boundary collocation methods using the particular

solutions of the equations. A further study of general

collocation methods for biharmonic equation appears

elsewhere.

9. The solution domains of numerical experiments in this

paper are assumed to be a rectangle, and the accuracy of

the numerical solutions is very high. In fact, the

numerical approaches of collocation Trefftz methods in

this paper can be easily applied to a polygonal domain,

and even to a closed domain, see ">Remark 2.1.

However, when the object domain is narrow and

complicated, the computational accuracy may be

worse. Some deteriorated results on narrow domain can

be found in Ref. [12].
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