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Abstract

For Motz’s problem and the cracked beam problem, the collocation Trefftz method is used to seek their approximate solutions uN ¼PN
i¼0 Dir

iþð1=2Þcosði þ ð1=2ÞÞu; where Di are the expansion coefficients. The high-order Gaussian rules and the central rule are used in the

algorithms, to link the collocation method and the least squares method, and to provide exponential convergence rates of the obtained

solutions. Compared with the solutions in the previous literature, our Motz’s solutions are more accurate and the leading coefficient D0 using

the Gaussian rule with six nodes arrives at 17 significant (decimal) digits. Similarly for the cracked beam problem, the collocation Trefftz

method also provides the highly accurate solutions, and D0 with 17 significant digits by the Gaussian rules. This papers proves that when the

rules of quadrature involved have the relative errors less than three quarters, the solution form the collocation Trefftz method may converge

exponentially. Such an analysis supports the collocation Trefftz method to become theoretically the most accurate method for Motz’s and the

cracked beam problems.
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1. Introduction

Motz’s problem was first discussed by Motz [18] in 1947

for the relaxation method. Since then, many researchers

have selected Motz’s problem as a prototype of singularity

problems for verifying efficiency of numerical methods

[14]. Motz’s problem solves the Laplace equation on the

rectangle S ¼ {ðx; yÞl2 1 , x , 1; 0 , y , 1}

Du ¼
›2u

›x2
þ

›2u

›y2
¼ 0; in S; ð1:1Þ

with the mixed Neumann–Dirichlet boundary conditions,

Fig. 1

ulx,0^y¼0 ¼ 0; ulx¼1 ¼ 500; ð1:2Þ

›u

›y

����
y¼1

¼
›u

›y

����
x.0^y¼0

¼
›u

›x

����
x¼21

¼ 0: ð1:3Þ

Note that there exists a singularity at the origin (0,0) due

to the intersection of the Neumann–Dirichlet boundary

conditions. In fact, the singular solutions of Eqs. (1.1)–(1.3)

are found as

uðr; uÞ ¼
X1
i¼0

dir
iþð1=2Þcos i þ

1

2

� �
u; ð1:4Þ

where di is the true expansion coefficient, and ðr; uÞ are the

polar coordinates with the origin at (0,0) (Fig. 1). Since its

convergence radius, R ¼ 2; is analyzed in Ref. [20], the

series expansions (1.4) are well suited to the entire solution

domain S: Hence, the admissible functions with finite terms

uNðr; uÞ ¼
XN
i¼0

Dir
ðiþð1=2ÞÞcos i þ

1

2

� �
u; ð1:5Þ

where Di the unknown coefficients, are most efficient as

numerical Motz’s solutions. The exponential convergence

rates Oðe2cNÞ can be obtained for Eq. (1.5) with some

positive constant c: When function (1.5) is chosen, Eq. (1.1),

ulx,0^y¼0 and ›u=›ylx.0^y¼0 are satisfied automatically.

Then the coefficients Di are sought by the collocation

equations of the rest boundary conditions in Eqs. (1.2) and

(1.3). This is called the boundary approximation method

(BAM) in Refs. [14,16] or the collocation Trefftz method in

this paper. Under the computation in double precision and

N ¼ 34; the maximal absolute error at x ¼ 1 (e.g. on AB) of
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the Motz’s solution in Ref. [16] reaches up to 5.47 £ 1029.

Also the leading coefficient D0 in Ref. [16] has 12

significant digits. The solutions in Ref. [16] have been

recognized to be the very accurate solutions for Motz’s

problem [5,6,17]. In this paper, to pursue the better leading

coefficient D0; we choose the Gaussian rules of high orders.

Surprisingly, the obtained D0 may have 17 significant digits

by Fortran programs in double precision. Based on the new

results in this paper, we may address that the collocation

Trefftz method (i.e. the BAM) is the highly accurate method

for Motz’s problem, not only in the global solutions but also

in the leading coefficient D0: As for Motz’s problem, the

conformal transformation method of Rosser and Papami-

chael [20] can also yield the most accurate leading

coefficient D0:

The same approaches are applied to the cracked beam

problem, which is another frequently used model for testing

new numerical methods [4–6,19,21]. Its highly accurate

solutions are also provided with the leading D0 having 17

significant digits. The advantage of the cracked beam

problem over Motz’s problem is that half of the expansion

coefficients are zero.

This paper is organized as follows. In Section 2, basic

algorithms of the collocation Trefftz method are provided

for Motz’s problem, and the highly accurate solutions are

obtained in double precision. In Section 3, a new analysis is

made for the quadrature involved. In Section 4, the cracked

beam problem is discussed, and its highly accurate solutions

and the leading coefficient D0 with 17 significant digits are

also reported. In Section 5, some discussions and compari-

sons are made, and in Section 6, concluding remarks are

addressed.

2. Basic algorithms of collocation Trefftz method

Since the expansion (1.5) satisfies the Laplace equation

and boundary conditions at y ¼ 0; the coefficients Di should

be chosen to satisfy the rest of the boundary conditions

ulx¼1 ¼ ulAB ¼ 500; ð2:1Þ

›u

›y

����
y¼1

¼
›u

›n

����
BC
¼ 0;

›u

›n

����
x¼21

¼ 2
›u

›x

����
CD

¼ 0; ð2:2Þ

as best as possible, where un ¼ ›u=›n is the outward normal

derivative to ›S; and AB; BC and CD are shown in Fig. 1.

Hence, the least squares method (LSM) may be designed as

follows. Denote

½u; v� ¼
ð

AB
uv dl þ w2

ð
BC<CD

unvn dl; ð2:3Þ

where w is a positive weight constant, and a good choice of

the weight

w ¼
1

N þ 1
; ð2:4Þ

can be found in Ref. [16]. Denote by VN the collection offinite

dimensional function (1.5). Then, we may seek uN [ VN

such that

½uN ; v� ¼ ðf ; vÞ; ;v [ VN ; ð2:5Þ

where

ðf ; vÞ ¼ 500
ð

AB
v dl: ð2:6Þ

Denote the energy

IðvÞ ¼
ð

AB
ðv 2 500Þ2 dl þ w2

ð
BC<CD

v2
n dl: ð2:7Þ

The solution of Eq. (2.5) can also be expressed by: to seek

uN [ VN such that

IðuNÞ ¼ min
v[VN

IðvÞ: ð2:8Þ

Both Eqs. (2.5) and (2.8) lead to the same linear algebraic

system

A~x ¼ ~b; ð2:9Þ

where ~x [ RNþ1 is the unknown vector consisting of

coefficients Di; i ¼ 0;…;N; and ~b [ RNþ1 is the known

vector resulting from the non-homogeneous Dirichlet con-

dition (2.1), and the associate matrix, A [ RðNþ1Þ£ðNþ1Þ; is

symmetric positive definite, but not sparse. By the Gaussian

elimination without pivoting in Ref. [7], the coefficients Di

(i.e.~x)canbeobtained.Once thecoefficientsDi areknown, the

errors on AB < BC < CD

ku 2 uNkB ¼

�ð
AB

ð500 2 uNÞ
2dl þ w2

ð
BC<CD

ðuNÞ
2
ndl

�1=2

¼
ffiffiffiffiffiffiffi
IðuNÞ

p
ð2:10Þ

are computable, where the notation is

kvkB ¼
ffiffiffiffiffiffi
½v; v�

p
: ð2:11Þ

Suppose that certain rules of integration are adopted to the

integrals in Eq. (2.7). Let AB be divided into small segments

Fig. 1. Motz’s problem.
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ZiZiþ1; i.e. AB ¼
S

i ZiZiþ1: Then the integral is evaluated by

some rules

ð
AB

v2 dl <
~ð

AB
v2 dl ¼

X
i

~ð
ziziþ1

v2 dl: ð2:12Þ

For example, the central and trapezoidal rules are given by

~ð
ZiZiþ1

v2 dl ¼ v2
iþð1=2Þhi; ð2:13Þ

and

~ð
ZiZiþ1

v2 dl ¼
1

2
ðv2

i þ v2
iþ1Þhi; ð2:14Þ

respectively, where hi ¼ ZiZiþ1; vi ¼ vðZiÞ; viþð1=2Þ ¼

vðZiþð1=2ÞÞ and Ziþð1=2Þ ¼ Zi þ Ziþ1=2: Other kinds of

Newton–Cotes and Gaussian rules can also be employed

and will be discussed later. Hence, for the numerical

quadrature, we may seek ~uN [ VN such that

~Ið~uNÞ ¼ min
v[VN

~IðvÞ; ð2:15Þ

where

~IðvÞ ¼
~ð

AB
ðv 2 500Þ2dl þ w2

~ð
BC<CD

v2
n dl: ð2:16Þ

The minimization of ~IðvÞ also leads to a linear system

like Eq. (2.9). This is a direct implementation to the

LSM involving numerical integration, called the normal

method.

Now, we turn to the collocation Trefftz method, which

can be regarded as a certain kind of the LSM involving

specific quadratures. For simplicity in exposition, let us first

consider the central rule (2.13). Divide the boundary AB; BC

and CD into uniform sub-intervals (Fig. 1). Then

h ¼
AB

M
¼

CD

M
¼

CB

2M
: ð2:17Þ

Eqs. (2.1) and (2.2) can be transformed to the boundary

collocation equations

uNðPiÞ ¼ 500; i ¼ 1; 2;…;M; ð2:18Þ

›uN

›x
ðPp

i Þ ¼ 2
›uN

›n
ðPp

i Þ ¼ 0; i ¼ 1; 2;…;M; ð2:19Þ

›uN

›y
ðQ^

i Þ ¼
›uN

›n
ðQ^

i Þ ¼ 0; i ¼ 1; 2;…;M: ð2:20Þ

Let x^i ¼ ^ði 2 ð1=2ÞÞh and yi ¼ ði 2 ð1=2ÞÞh: The nodes

Pi ¼ ð1; yiÞ [ AB; Pp
i ¼ ð21; yiÞ [ CD and Q^

i ¼

ðx^i ; 1Þ [ BC; and their polar coordinates are computed by

Pi ¼ ðri; uiÞ; ri ¼
ffiffiffiffiffiffiffiffi
1 þ yi

p
; ui ¼ cos21 1ffiffiffiffiffiffiffiffi

1 þ y2
i

q
0
B@

1
CA;

Pp
i ¼ ðri; u

p
i Þ; upi ¼ p2 ui;

where 0 , ui , p=2: Besides

Q^
i ¼ ð�ri; u

^
i Þ; �ri ¼

ffiffiffiffiffiffiffiffi
1 þ x2

i

q
;

uþi ¼ sin21 1ffiffiffiffiffiffiffiffi
1 þ x2

i

q
0
B@

1
CA;

where 0 , uþi , p=2 and u2i ¼ p2 uþi
In Eqs. (2.18)–(2.20), there are m ¼ 4M equations, but

N þ 1 unknown coefficients. Usually, select m . N þ 1:

We invoke the standard least squares method in Ref. [7] to

solve the overdetermined system of Eqs. (2.18)–(2.20).

Denote Eqs. (2.18)–(2.20) by

Fi~x ¼ ~bi; i ¼ 1; 2; 3; ð2:21Þ

respectively, where Fi and ~bi are the known matrices and

vectors, respectively. Since Eq. (2.21) results from different

boundary conditions, different weights should also be

assigned. When the weights
ffiffi
h

p
and w

ffiffi
h

p
are applied to

the first and the other two equations in Eq. (2.21), the global

target function becomes

Tð~xÞ ¼ hkF1~x 2 ~b1k
2
þ w2h

X3

i¼2

kFi~x 2 ~bik
2
; ð2:22Þ

where k·k is the Euclidean norm, and w is a suitable weight

constant (Eq. (2.4)). We can easily verify the following

lemma by direct manipulation.

Lemma 2.1. Let the central rule (2.13) be used in Eqs. (2.16)

and (2.21) be the collocation equations (2.18)–(2.20). Then

we have

~Ið~uNÞ ¼ Tð~xÞ; ð2:23Þ

where ~Ið~uNÞ and Tð~xÞ are defined in Eqs. (2.16) and (2.22),

respectively.

Note that the admissible functions and their derivatives

are given by

uN ¼ uNðr; uÞ ¼
XN
l¼0

Dlr
lþð1=2Þcos l þ

1

2

� �
u;

›uN

›x
¼
XN
l¼0

Dl l þ
1

2

� �
rl2ð1=2Þcos l 2

1

2

� �
u;

›uN

›y
¼
XN
l¼0

Dl l þ
1

2

� �
rl2ð1=2Þsin

1

2
2 l

� �
u: ð2:24Þ

Then, Lemma 2.1 enables us to obtain the solutions Di

by solving the following overdetermined system of
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the equations

ffiffi
h

p XN
l¼0

Dlr
lþð1=2Þ
i cos l þ

1

2

� �
ui ¼

ffiffi
h

p
500; 1 # i # M;

ð2:25Þ

w
ffiffi
h

p XN
l¼0

Dl l þ
1

2

� �
ðriÞ

l2ð1=2Þcos l 2
1

2

� �
upi ¼ 0;

upi ¼ p2 ui; 1 # i # M; ð2:26Þ

w
ffiffi
h

p XN
l¼0

Dl i þ
1

2

� �
ð�riÞ

l2ð1=2Þsin
1

2
2 l

� �
u^i ¼ 0;

u2i ¼ p2 uþi ; 1 # i # M; ð2:27Þ

where m ¼ 4M . N þ 1: Denote the overdetermined sys-

tem of Eqs. (2.25)–(2.27) by

F~x ¼ ~bp
; ð2:28Þ

where the associated matrix F [ Rm£ðNþ1Þ; ~bp [ Rm and

~x [ RNþ1: In fact, the entries of F ¼ ðFilÞ are given by

In general, we can rewrite the overdetermined system of

Eqs. (2.25)–(2.27) as

aiðuNðPiÞ2 500Þ ¼ 0; Pi [ AB; ð2:30Þ

wbi

›uN

›x
ðPp

i Þ ¼ 0; Pp
i [ CD; ð2:31Þ

wgi

›uN

›y
ðQiÞ ¼ 0; Qi [ BC; ð2:32Þ

where Pi and Pp
i and Qi are the nodes of integration

rules, and ai; bi and gi are positive weights. Eqs.

(2.30)–(2.32) may come from other quadratures. Take

the Gaussian rules for example. Denote hk ¼ ZkZkþ1: By

using an affine transformation, the interval ½Zk;Zkþ1� can

be converted to ½21; 1�: Hence by this transformation,

x [ ZkZkþ1 is mapped to t [ ½21; 1�; f ðxÞ to f̂ðtÞ; and the

integral on ZkZkþ1 is changed to

ð
ZkZkþ1

f ðxÞdx ¼
hk

2

ð1

21
f̂ðtÞdt: ð2:33Þ

The Gaussian rules with r nodes are given by

ð1

21
f ðtÞdt <

~ð1

21
f ðtÞdt ¼

ð1

21
f̂ðtÞdt ¼

Xr

i¼1

vif ðtiÞ; ð2:34Þ

where the locationsofnodes ti [ ½21; 1�andpositiveweights

vi are provided in textbooks [1]. For Eq. (2.30), a point Pi

located at the jth node of ZkZkþ1 [ AB has the weights ai ¼ffiffiffiffiffiffiffiffi
vjhk=2

p
: The weights bi and gi can be obtained similarly.

When r ¼ 1; the Gaussian rule is just the central rule with

t1 ¼ 0 and v1 ¼ 2: For the Gaussian rules, we have the

following proposition, similar to Lemma 2.1.

Proposition 2.1. Let the Gaussian rules (2.34) be used in

Eq. (2.16), and m $ N þ 1: Then the coefficients D‘ from

the corresponding collocation equations (2.30)–(2.32)

are just the solutions from Eq. (2.15).

Let us consider the computer complexity of this method.

In Eq. (2.29) we may employ the recursive formulas to save

CPU time:

cos lþ
1

2

� �
u¼ 2 cos u cos l2

1

2

� �
u2 cos l2

3

2

� �
u;

rlþð1=2Þ
i ¼ rir

l2ð1=2Þ
i :

ð2:35Þ

To solve the least squares solution of Eq. (2.28) with full

rank F; we may use the QR method by the Householder

orthogonalization with the flops [7, p. 248]

TL ¼ 2mn2
2

2n3

3
; n¼N þ1: ð2:36Þ

On the other hand, the normal equations from Eq. (2.28)

are

A~x¼FTF~x¼FT~bp ¼ ~b; ð2:37Þ

where A is symmetric positive definite. Then the flops for

FTF and the Gaussian elimination of symmetric matrices are

mðn2 þnÞ and ð1=3Þn3; respectively. So the main flops

needed is

TN ¼mn2 þ
1

3
n3
: ð2:38Þ

Fi;l ¼

ffiffi
h

p
rlþð1=2Þ

i cos l þ
1

2

� �
ui; 1 # i # M; 0 # l # N;

w
ffiffi
h

p
l þ

1

2

� �
rl2ð1=2Þ

i2M cos l 2
1

2

� �
upi2M ; M , i # 2M; 0 # l # N;

w
ffiffi
h

p
l þ

1

2

� �
�r
l2ð1=2Þ
i22M sin

1

2
2 l

� �
uþi22M ; 2M , i # 3M; 0 # l # N;

w
ffiffi
h

p
l þ

1

2

� �
�r
l2ð1=2Þ
i23M sin

1

2
2 l

� �
u2i23M ; 3M , i # 4M; 0 # l # N:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð2:29Þ
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In our case, n¼N þ1 and m¼ 4N: Evidently, when

mqn; we have TL # 2TN ; and when m$ n

TL 2TN ¼ðm2nÞn2 $ 0:

Then we conclude the following

Corollary 2.1. The flops needed to solve a least squares

problem (2.28) by the Householder QR method are larger

than, but at most double of those by the normal method

(2.37).

Besides the QR method, the singular value

decomposition (SVD) can also be used to solve the

overdetermined system (2.28). A comparison between

the QR method and the SVD is given in Ref. [3].

In general, the latter uses more flops than the former. So

the SVD is not recommended here.

Since the condition number of matrix A is nearly

square of that of matrix F [7], using the normal equations

incurs a serious loss of solution accuracy for Motz’s

problem. Some numerical experiments of the normal

method were reported in Lefeber [12], where only four

and five significant digits of Motz’s solutions were

obtained from the computation in double precision.

Hence to obtain the numerical solutions of Motz’s

problem, we always choose the QR method to solve

Eq. (2.28). Such a numerical approach is called the BAM

in Refs. [14,16] and the collocation Trefftz method in this

paper.1 Note that stability analysis of the collocation

Trefftz method has been explored in Ref. [14].

To close this section, we provide numerical experiments

for Motz’s problem. First, for the central rule, errors of the

solutions and condition numbers are listed in Tables 1 and 2,

where 1 ¼ u 2 uN ; M denotes the number of collocation

nodes along AB; and the total number of all

collocation nodes used is 4M: In these tables, DDi ¼

di 2 Di; k1k0;AB ¼ maxAB l1l; and the condition number is

defined by

Cond: ¼
lmaxðF

TFÞ

lminðF
TFÞ

( )1=2

¼
lmaxðAÞ

lminðAÞ

� �1=2

;

where lmaxðAÞ and lminðAÞ are the maximal and minimal

eigenvalues of A; respectively. It can be seen from Table 2

that M should be chosen as M $ N=2 for N ¼ 34:

Tables 1–16 are all computed by means of Fortran

programs in double precision.

Moreover, for the Gaussian rule with six nodes and those

with 1, 2, 4, 6, 8 and 10 nodes, the results are listed in

Tables 3 and 4, respectively, and the best leading

coefficients in Table 5 by the Gaussian rule with six noes

as N ¼ 34 and M ¼ 30: Note that the central rule is the

simplest Gaussian rule with r ¼ 1: When using the Gaussian

rule, there seems no significant effect to reduce the errors

k1kB and k1k1;AB (e.g. from k1kB ¼ 0:839ð28Þ down to

0.428(28), Table 4). From Table 4, however, the Gaussian

rules of high order do improve evidently the accuracy of

leading coefficients. For N ¼ 34; M ¼ 30; and the Gaussian

rule of six nodes, the highly accurate solutions are listed in

Table 5 with the best leading coefficient

D0 ¼ 401:162453745234416: ð2:39Þ

Compared this D0 in Eq. (2.39) with more accurate

values [14,15] using Mathematica, the relative error is less

than the rounding error of double precision!2 Note that D0 in

Eq. (2.39) has 17 significant decimal digits; while the D0

in Refs. [14,16] has only 12 significant digits. This is an

important evolution of Refs. [14,16]. Besides, we also list Di

with significant digits (Sig. digits) in Table 5, which are

obtained from Di with all digits by rounding. The errors of

Sig digits occur only at the last digit at most with a half unit,

compared with the more accurate coefficients in Ref. [15].

Although D28 2 D34 are incorrect, they are indispensable to

reach the global optimal solutions. Hence, the solutions

from this paper are optimal in the global errors,

Table 1

The error norms and condition numbers from the collocation Trefftz method for Motz’s problem by the central rule

N M k1kB k1k1;AB Cond.
DD0

D0

����
���� DD1

D1

����
���� DD2

D2

����
���� DD3

D3

����
����

10 8 0.250(21) 0.149(21) 94.3 0.189(25) 0.491(25) 0.601(25) 0.928(23)

18 12 0.133(23) 0.811(24) 0.193(4) 0.158(27) 0.113(26) 0.290(26) 0.502(26)

26 16 0.973(26) 0.734(26) 0.366(5) 0.216(29) 0.155(28) 0.380(28) 0.202(28)

34 24 0.839(28) 0.459(28) 0.666(6) 0.169(211) 0.121(210) 0.296(210) 0.152(210)

1 Strictly speaking, the description of BAM in Refs. [14,16] does not

involve numerical quadrature; the computed results in Refs. [14,16] are

obtained by the algorithms described in this paper using the central rule.

The BAM involving numerical integration leads to the collocation Trefftz

method. We join the BAM into the Trefftz family recently for easy

communication with others.

2 This seems impossible! In fact, there exist some guard digits in

computer for arithmetic of floating point numbers by noting that there are

18 digits in computer outputs of double precision, and some cancellation of

rounding errors in statistics may also happen in the computation. Hence,

this occasionally excellent results may happen in random, which have been

caught carefully by our computation and provided in Tables 5, 12 and 15.

However, we can see from Table 4 that coefficient D0 has at least 16

significant digits by the Gaussian rule with high order.

T.T. Lu et al. / Engineering Analysis with Boundary Elements 28 (2004) 1387–1403 1391



and the highly accurate leading coefficients are natural

consequences.

3. Error bounds and integration approximation

Define the norm

kvk1 ¼ kvk1;S ¼
ðð

S
ðv2 þ v2

x þ v2
yÞds

� �1=2

:

We cite a lemma from Refs. [14,16].

Lemma 3.1. Let u [ H1ðSÞ be the solution of Motz’s

problem. If the following inverse property holds

kvnk0;AB # KNkvk1; v [ VN ; ð3:1Þ

where

kvnk0;AB ¼
ð

AB
v2
n d‘

� �1=2

:

Then for any w . 0; there exists a constant C independent

of N and u such that

ku 2 uNk1 # C KN þ
1

w

� �
ku 2 uNkB:

Below, new analysis is devoted to the collocation Trefftz

method involving numerical approximation of integration.

Table 2

The error norms and condition numbers from the collocation Trefftz method for Motz’s problem by the central rule as N ¼ 34

M k1kB k1k1;AB Cond.
DD0

D0

����
���� DD1

D1

����
���� DD2

D2

����
���� DD3

D3

����
����

9 0.135(28) 0.496(26) 0.267(8) 0.377(29) 0.266(28) 0.641(28) 0.342(28)

12 0.587(28) 0.713(27) 0.992(6) 0.337(210) 0.239(29) 0.578(29) 0.305(29)

16 0.772(28) 0.189(27) 0.679(6) 0.729(211) 0.520(210) 0.127(29) 0.655(210)

24 0.839(28) 0.459(28) 0.669(6) 0.169(211) 0.121(211) 0.296(210) 0.152(210)

32 0.849(28) 0.462(28) 0.669(6) 0.769(211) 0.550(211) 0.134(210) 0.695(211)

Table 3

The error norms and condition numbers from the collocation Trefftz method for Motz’s problem as N ¼ 34 by the Gaussian rule with six nodes

M k1kB k1k
1;AB Cond.

DD0

D0

����
���� DD1

D1

����
���� DD2

D2

����
���� DD3

D3

����
����

12 0.359(28) 0.721(28) 0.675(6) 0.531(213) 0.646(212) 0.405(211) 0.868(211)

18 0.494(28) 0.629(28) 0.679(6) 0.468(214) 0.211(214) 0.620(213) 0.352(214)

24 0.491(28) 0.530(28) 0.679(6) 0.567(215) 0.324(215) 0.103(214) 0.337(213)

34 0.493(28) 0.520(28) 0.676(6) 0* 0.162(215) 0.124(214) 0.317(213)

36 0.494(28) 0.520(28) 0.679(6) 0.850(215) 0.324(215) 0.103(214) 0.308(213)

* The errors less than computer rounding errors in double precision.

Table 4

The error norms and condition numbers from the collocation Trefftz method for Motz’s problem by different Gaussian rules with r nodes as N ¼ 34

r Nodes M k1kB k1k1;AB Cond.
DD0

D0

����
���� DD1

D1

����
���� DD2

D2

����
���� DD3

D3

����
����

1 24 0.839(28) 0.459(28) 0.606(6) 0.169(211) 0.121(210) 0.296(210) 0.152(210)

2 24 0.854(28) 0.369(28) 0.672(6) 0.708(213) 0.512(212) 0.133(211) 0.106(211)

4 24 0.610(28) 0.540(28) 0.679(6) 0.425(215) 0.535(214) 0.641(213) 0.755(213)

6 30 0.493(28) 0.520(28) 0.676(6) 0* 0.162(215) 0.124(214) 0.317(213)

8 24 0.428(28) 0.519(28) 0.679(6) 0.142(215) 0.648(215) 0.618(215) 0.315(213)

10 20 0.639(28) 0.521(28) 0.679(6) 0.142(215) 0* 0.412(215) 0.308(213)

* The errors less than computer rounding errors in double precision.
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Denote

½u; v� ~B ¼
~ð

AB
uv d‘þ w2

~ð
BC<CD

unvn d‘

( )1=2

; ð3:2Þ

kvk ~B¼
ffiffiffiffiffiffiffiffi
½v;v� ~B

p
¼

~ð
AB

v2 d‘þw2
~ð

BC<CD
v2
n d‘

( )1=2

: ð3:3Þ

The solutions ~uN of Eq. (2.15) will satisfy

ku2 ~uNk ~B¼ min
v[VN

ku2vk ~B¼ min
v[VN

ffiffiffiffiffi
~IðvÞ

q
: ð3:4Þ

For the integration rules involved, we denote

kvk2~B¼ kv̂k2B; ð3:5Þ

where ~v2 are piecewise interpolation polynomials of v2 with

order k along G¼›S: We can prove the following lemma,

similarly from Refs. [14,16].

Lemma 3.2. The solutions ~uN obtained by the collocation

Trefftz methods with integral approximation satisfy

½u 2 ~uN ; v� ~B ¼ 0; ;v [ VN ; ð3:6Þ

and

kv 2 ~uNk ~B # ku 2 vk ~B; ;v [ VN : ð3:7Þ

Table 5

The leading coefficients Di from the collocation Trefftz method for Motz’s problem by the Gaussian rule with six nodes as N ¼ 34 and M ¼ 30

i All digits Significant digits Number of significant digits

0 401.162453745234416 401.16245374523442 17

1 87.6559201950879299 87.6559201950879 15

2 17.2379150794467897 17.2379150794468 15

3 28.0712152596987790 28.07121525970 12

4 1.44027271702238968 1.44027271702 12

5 0.331054885920006037 0.33105488592 12

6 0.275437344507860671 0.27543734451 11

7 20.869329945041107943(21) 20.869329945(21) 9

8 0.336048784027428854(21) 0.336048784(21) 9

9 0.153843744594011413(21) 0.153843745(21) 9

10 0.730230164737157971(22) 0.7302302(22) 7

11 20.318411361654662899(22) 20.3184114(22) 7

12 0.122064586154974736(22) 0.1220646(22) 7

13 0.530965295822850803(23) 0.530965(23) 6

14 0.271512022889081647(23) 0.271512(23) 6

15 20.120045043773287966(23) 20.12005(23) 5

16 0.505389241414919585(24) 0.5054(24) 4

17 0.231662561135488172(24) 0.2317(24) 4

18 0.115348467265589439(24) 0.11535(24) 5

19 20.529323807785491411(25) 20.529(25) 3

20 0.228975882995988624(25) 0.229(25) 3

21 0.106239406374917051(25) 0.106(25) 3

22 0.530725263258556923(26) 0.531(26) 3

23 20.245074785537844696(26) 20.25(26) 2

24 0.108644983229739802(26) 0.11(26) 2

25 0.510347415146524412(27) 0.5(27) 1

26 0.254050384217598898(27) 0.3(27) 1

27 20.110464929421918792(27) 20.1(27) 1

28 0.493426255784041972(28) / 0

29 0.232829745036186828(28) / 0

30 0.115208023942516515(28) / 0

31 20.345561696019388690(29) / 0

32 0.153086899837533823(29) / 0

33 0.722770554189099639(210) / 0

34 0.352933005315648864(210) / 0

Table 6

The errors and condition numbers from the collocation Trefftz method by

the central rule for the cracked beam problem with uN ; where w ¼

1=ðN þ 1Þ

N þ 1 ku 2 uN kB ku 2 uN k1;BC Cond.

12 0.174(21) 0.192(21) 118

20 0.103(23) 0.143(23) 0.242(4)

28 0.780(26) 0.126(25) 0.457(5)

36 0.697(28) 0.123(27) 0.828(6)

44 0.655(210) 0.128(2) 0.148(8)

T.T. Lu et al. / Engineering Analysis with Boundary Elements 28 (2004) 1387–1403 1393



Next, let us examine the errors from integration rules.

Suppose that the rules are chosen to have the following

relative errors for v and u 2 v; where v [ VN

ð
AB

2
~ð

AB

 !
v2 d‘

�����
�����ð

AB
v2 d‘

# b ,
3

4;
ð3:8Þ

ð
BC

2
~ð

BC

 !
v2
n d‘

�����
�����ð

BC
v2
n d‘

# b ,
3

4
; ð3:9Þ

ð
CD

2
~ð

CD

 !
v2
n d‘

�����
�����ð

CD
v2
n d‘

# b ,
3

4
; ð3:10Þ

where b is a constant. Then we have the following

proposition.

Proposition 3.1. For those rules of quadrature satisfying

Eqs. (3.8)–(3.10), the following bound holds

kvkB 2 kvk ~B
kvkB

�����
����� # a ,

1

2
; v [ VN ; ð3:11Þ

where a ¼ 1 2
ffiffiffiffiffiffiffi
1 2 b

p
is a constant.

Proof. We have from the assumptions

lkvk2B 2 kvk2~Bl
kvk2B

#

ð
AB

2
~ð

AB

 !
v2 d‘þ

ð
BC<CD

2
~ð

BC<CD

 !
v2
n d‘

�����
�����ð

AB
v2 d‘þ

ð
BC<CD

v2
n d‘

# b:

ð3:12Þ

We obtain

12b#
kvk2~B
kvk2B

# 1þb:

The above equation gives

ffiffiffiffiffiffiffi
12b

p
#

kvk ~B
kvkB

#
ffiffiffiffiffiffiffi
1þb

p
: ð3:13Þ

Next, we have from Eqs. (3.12) and (3.13)

lkvkB 2 kvk ~Bl
kvkB

#
b

kvkB þ kvk ~B
kvkB #

b

1þ
kvk ~B
kvkB

#
b

1þ
ffiffiffiffiffiffiffi
12b

p ¼ 12
ffiffiffiffiffiffiffi
12b

p
¼ a,

1

2
: ð3:14Þ

This completes the proof of Proposition 3.1. A

Table 7

The coefficients from the collocation Trefftz method by the central rule for

the cracked beam problem with uN as N ¼ 43

i D̂i i D̂i

0 540.565122713627 22 0.741136835680306(212)

1 2167.041350909274 23 0.417873188876248(211)

2 0.198198742457744(213) 24 20.121996855522588(27)

3 20.219185365289299(213) 25 20.143269204396301(26)

4 22.21801471698044 26 0.853944744811233(212)

5 21.68233110389621 27 0.392784692715081(211)

6 20.214659464703740(214) 28 20.519522874909708(29)

7 0.975152635890286(214) 29 20.716697851376144(28)

8 20.722712676630922(22) 30 0.562441620804752(212)

9 20.419620077504757(21) 31 0.210052519224617(211)

10 0.158368581564262(213) 32 20.226112209663434(210)

11 0.977095083882188(213) 33 20.361688092767140(29)

12 20.349003797729518(23) 34 0.209940550959741(212)

13 20.154580008052455(22) 35 0.631754175553925(212)

14 0.893242771123692(213) 36 20.907100573484872(212)

15 0.733457764014275(212) 37 20.166314437291397(210)

16 20.824172461669611(25) 38 0.411725887639002(213)

17 20.649512698211018(24) 39 0.988154926645705(213)

18 0.356068309179608(212) 40 20.230535024761913(213)

19 0.244904048630545(211) 41 20.493264784148099(212)

20 20.317915391408544(26) 42 0.328644957534978(214)

21 20.296970610620140(25) 43 0.621165127407370(214)

Table 8

The errors and condition numbers from the collocation Trefftz method by

the central rule for the cracked beam problem with upN , where w ¼

1=ðN þ 1Þ

N þ 1 ku 2 upN kB ku 2 upN k1;BC Cond.

12 0.181(21) 0.143(21) 14.7

20 0.108(23) 0.860(24) 179

28 0.835(26) 0.673(26) 0.241(4)

36 0.731(28) 0.593(28) 0.340(5)

44 0.689(210) 0.563(210) 0.492(6)

Table 9

The coefficients from the collocation Trefftz method by the central rule for

the cracked beam problem with upN as N ¼ 43

i D̂i i D̂i

0 540.565122713627 21 20.296970704226108(25)

1 2167.041350909274 24 20.122002935723549(27)

4 22.21801471698038 25 20.143270030434461(26)

5 21.68233110389617 28 20.519982420026741(29)

8 20.722712676632975(22) 29 20.716735060983968(28)

9 20.419620077505017(21) 32 20.228004937465962(210)

12 20.349003797758166(23) 33 20.361766490834198(29)

13 20.154580008066482(22) 36 2 .0946724588701563(212)

16 20.824172478281220(25) 37 20.166363445310374(210)

17 20.649512703568597(24) 40 20.263335130630466(213)

20 20.317915829660462(26) 41 20.492957376797978(212)
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Take the central rule in Eqs. (2.12) and (2.13) for

example. We have from Ref. [1]

ð
AB

2
ð

AB

� �
f d‘ ¼

h2

24
f 00ðjÞ; ð3:15Þ

where f ¼ v2 or f ¼ ðu 2 vÞ2; and j [ AB: Since f 00 ¼

2{ðv0Þ2 þ vv00} for f ¼ v2; the requirements of quadrature

errors in Proposition 3.1 imply that

1

4

ð
AB

v2 d‘ #
~ð

AB
v2 d‘ #

7

4

ð
AB

v2 d‘; ð3:16Þ

or equivalently

h2

12
lððv0Þ2 þ vv00ÞðjÞl #

3

4

ð
AB

v2 d‘: ð3:17Þ

Next, we give a new lemma.

Lemma 3.3. Suppose that the rules of integrations in

Eq. (2.16) are chosen to satisfy the bound (3.11). Then, the

norms k·kB and k·k ~B defined in Eqs. (2.11) and (3.3) are

equivalent to each other

C1kvkB # kvk ~B # C2kvkB; v [ VN ; ð3:18Þ

where C1 and C2 are two positive constants independent of v

and N:

Proof. We have from Eq. (3.11)

kvkB 2 kvk ~B # akvkB;

and then

kvkB #
1

1 2 a
kvk ~B: ð3:19Þ

Also from Eq. (3.11)

kvk ~B 2 kvkB # akvkB;

and then

kvk ~B # ð1 þ aÞkvkB: ð3:20Þ

Hence, the desired result (3.18) follows from Eqs. (3.19) and

(3.20). This completes the proof of Lemma 3.3. A

Accordingly, we have a new, important theorem.

Theorem 3.1. Let the condition (3.1) hold, and the rules of

integrations involved in Eq. (2.16) satisfy Eq. (3.11) for v

and u 2 v; ;v [ VN : Then

ku 2 ~uNk1 # inf
v[VN

{ku 2 vk1 þ CðKN þ 1=wÞku 2 vkB};

ð3:21Þ

where C is a bounded constant independent of u; v and N:

Moreover

ku 2 ~uNk1 # kRNk1 þ CðKN þ 1=wÞkRNkB; ð3:22Þ

where

RN ¼
X1

i¼Nþ1

dir
iþð1=2Þcos i þ

1

2

� �
u; ð3:23Þ

and di are the true expansion coefficients.

Table 10

The error norms and condition numbers from the collocation Trefftz method for the cracked beam problem as N ¼ 43 by the Gaussian rule with eight nodes

M ku 2 upN kB ku 2 upN k1;BC Cond. DD̂0

D̂0

�����
����� DD̂1

D̂1

�����
����� DD̂4

D̂4

�����
����� DD̂5

D̂5

�����
�����

16 0.317(210) 0.579(210) 0.447(6) 0.421(215) 0.340(215) 0.340(214) 0.647(214)

24 0.319(210) 0.527(210) 0.447(6) 0* 0.510(215) 0.701(214) 0.103(213)

32 0.319(210) 0.526(210) 0.447(6) 0.841(215) 0.340(215) 0.541(214) 0.594(214)

40 0.319(210) 0.526(210) 0.447(6) 0.631(215) 0* 0.801(215) 0.792(214)

* The errors less than computer rounding errors in double precision.

Table 11

The error norms and condition numbers from the collocation Trefftz method for the cracked beam problem by different Gaussian rules with r nodes as N ¼ 43

r M ku 2 up
N kB ku 2 upN k1;BC Cond. DD̂0

D̂0

�����
����� DD̂1

D̂1

�����
����� DD̂4

D̂4

�����
����� DD̂5

D̂5

�����
�����

1 24 0.614(210) 0.102(29) 0.434(6) 0.294(214) 0.715(214) 0.177(212) 0.175(212)

2 24 0.623(210) 0.602(20) 0.446(6) 0.210(215) 0.187(214) 0.617(213) 0.523(213)

4 24 0.448(210) 0.519(210) 0.446(6) 0.210(215) 0.119(214) 0.921(214) 0.462(214)

6 24 0.367(210) 0.576(210) 0.447(6) 0.210(215) 0* 0.661(214) 0.726(214)

8 24 0.319(210) 0.527(210) 0.447(6) 0* 0.510(215) 0.701(214) 0.103(213)

12 24 0.261(210) 0.524(210) 0.447(6) 0.210(215) 0.340(215) 0.741(214) 0.488(214)

* The errors less than computer rounding errors in double precision.
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Proof. From Refs. [14,16], we have

kvk1 # CðKN þ 1=wÞkvkB; ;v [ VN : ð3:24Þ

The constant C in this paper is used as a generic, bounded

constant; their values may be different in different contexts.

Let h ¼ v 2 ~uN ; then h [ VN if v [ VN : In view of

Eq. (3.24) and the norm equivalence (3.18)

ku 2 ~uNk1 # ku 2 vk1 þ khk1

# ku 2 vk1 þ CðKN þ 1=wÞkhkB

# ku 2 vk1 þ
C

C1

ðKN þ 1=wÞkhk ~B: ð3:25Þ

From the orthogonal property (3.6) we obtain

khk2~B ¼ ½h;h� ~B ¼ ½v 2 u;h� ~B # ku 2 vk ~Bkhk ~B: ð3:26Þ

The above bound and the norm equivalence for u 2 v

leads to

khk ~B # ku 2 vk ~B # Cku 2 vkB: ð3:27Þ

Combining Eqs. (3.25) and (3.27) gives the first desired

result (3.21).

Next, the solution (1.4) with the true coefficients di can be

split into

u ¼ ~uN þ RN ; ð3:28Þ

where

�uN ¼
XN
i¼0

dir
iþð1=2Þcos i þ

1

2

� �
u; ð3:29Þ

and the remainder RN is given by Eq. (3.23). Then let v ¼

�uN in Eq. (3.21) we obtain

ku 2 ~uNk1 # ku 2 �uNk1 þ CðKN þ 1=wÞku 2 �uNkB

# kRNk1 þ CðKN þ 1=wÞkRNkB: ð3:30Þ

Table 12

The leading coefficients from the collocation Trefftz method for the

cracked beam problem by the Gaussian rule with eight nodes as N ¼ 43

and M ¼ 24:

i D̂i

0 540.565122713627488338

1 2167.041350909274314063

4 22.21801471698042096392

5 21.68233110389623896630

8 20.722712676629304936332(22)

9 20.419620077504989710815(21)

12 20.349003797752273547863(23)

13 20.154580008073283248042(22)

16 20.824172472675852766202(25)

17 20.649512707503007010942(24)

20 20.317915648270962735950(26)

21 20.296970804065775927138(25)

24 20.122000024043979050718(27)

25 20.143271318148128170607(26)

28 20.519737845303284863567(29)

29 20.716825117065194526952(28)

32 20.226916180319381751640(210)

33 20.362109309069568822496(29)

36 20.922553631817261539388(212)

37 20.167027744142682193722(210)

40 20.242365241977693826580(213)

41 20.498065701032834816745(212)

Table 13

The leading coefficients ai from Table 12 by Eq. (5.5) for a ¼ 1=2 and b ¼ :0125 in the scaled cracked beam problem

i All digits Significant digits Number of significant digits

0 0.191118631971872093844 0.19111863197187209 17

1 20.118116071966509542102 20.1181160719665095 16

4 20.125469859771873346044(21) 20.12546985977187(21) 14

5 20.190334037082572939126(21) 20.19033403708257(21) 14

8 20.654124844152399417298(23) 20.65412484415(23) 11

9 20.759593477954055400214(22) 20.759593477954(22) 12

12 20.505411485799405575323(23) 20.5054114858(23) 10

13 20.447711526684630486267(22) 20.447711527(22) 9

16 20.190964676787037826271(23) 20.19096468(23) 8

17 20.300990359104527302470(22) 20.3009904(22) 7

20 20.117860105316055165819(23) 20.117860(23) 6

21 20.220190546979016346305(22) 20.220191(22) 6

24 20.723660418005184549999(24) 20.7237(24) 4

25 20.169966822206286320533(22) 20.1700(22) 4

28 20.493263780013297154056(24) 20.49(24) 2

29 20.136062389932649135602(22) 20.136(22) 3

32 20.344572276541308970127(24) 20.3(24) 1

33 20.109972615269026243248(22) 20.1(22) 1

36 20.224143667286699527393(24) / 0

37 20.811621347953916006009(23) / 0

40 20.942161102160732748267(25) / 0

41 20.387232200462756144532(23) / 0
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This is the second bound (3.22) as desired, which completes

the proof of Theorem 3.1. A

Even for the simplest central rule, the relative errors of its

approximate integrals has no difficult to be less than three

quarters. So the conditions (3.8)–(3.11) can be satisfied

easily. Hence, the solutions ~uN may still have the

exponential convergence rates. More explanation will be

given in Section 5. This is a significant difference from the

traditional role of integration in the finite element analysis.

Besides, from Theorem 3.1, there is not much difference

between lower-order and higher-order quadratures. How-

ever, for the accuracy of the leading coefficient D0; the high-

order rules, such as the Gaussian quadratures with six and

eight nodes, may raise its accuracy, based on Tables 3 and 4.

Note that the new analysis of quadratures in this section

provides a theoretical foundation for the high accuracy of

the collocation Trefftz method.

4. The cracked beam problem

As a variant of Motz’s problem, the cracked beam

problem is discussed here. Its highly accurate solution can

be sought similarly by the collocation Trefftz method (e.g.

the BAM in Refs. [14,16]). Not only its highly accurate

solutions are obtained in this paper, but also the highly

accurate leading coefficient in double precision can be

achieved by the Gaussian rule. Half of its expansion

coefficients are zero, which is supported by a posterior

analysis. Hence, as a singularity model, the cracked beam

problem given in this section seems to be superior to Motz’s

problem in Sections 2 and 3.

Table 14

The error norms and condition numbers from the collocation Trefftz method directly for the traditional cracked beam problem in Fig. 3Fig. 3. The traditional

cracked beam problem in Ŝ: by different Gaussian rules with different nodes as N ¼ 43:

r M kw 2 wp
N kB kw 2 wp

N k1;BC Cond. DD̂0

D̂0

�����
����� DD̂1

D̂1

�����
����� DD̂4

D̂4

�����
����� DD̂5

D̂5

�����
�����

1 24 0.180(213) 0.159(213) 0.191(10) 0.203(214) 0.493(214) 0.142(212) 0.140(212)

2 24 0.160(213) 0.141(213) 0.191(10) 0* 0.141(214) 0.684(213) 0.483(213)

4 24 0.116(213) 0.141(213) 0.187(10) 0.102(214) 0.940(215) 0.124(213) 0.140(213)

6 24 0.955(214) 0.144(213) 0.186(10) 0* 0.117(215) 0.111(214) 0.729(215)

8 24 0.833(214) 0.143(213) 0.185(10) 0.290(215) 0.235(215) 0.166(214) 0.365(214)

12 24 0.680(214) 0.143(213) 0.185(10) 0.145(215) 0.117(215) 0.138(215) 0.419(214)

* The errors less than computer rounding errors in double precision.

Table 15

The leading coefficients ai from the collocation Trefftz method directly from the traditional cracked beam problem in Fig. 3 by the Gaussian rule with six nodes

as N ¼ 43 and M ¼ 24

i All digits Significant digits Number of significant digits

0 0.191118631971872093844 0.19111863197187209 17

1 20.118116071966509458835 20.1181160719665095 16

4 20.125469859771874230753(21) 20.125469859771874(21) 15

5 20.190334037082570510513(21) 20.190334037082571(21) 15

8 20.654124844153439167181(23) 20.65412484415(23) 11

9 20.759593477953802304059(22) 20.759593477954(22) 12

12 20.505411485758066030688(23) 20.5054114858(23) 10

13 20.447711526664487571153(22) 20.447711527(22) 9

16 20.190964673066832069321(23) 20.1909647(23) 7

17 20.300990357223324123126(22) 20.3009904(22) 7

20 20.117859936451135464920(23) 20.11786(23) 5

21 20.220190469161906385645(22) 20.22019(22) 5

24 20.723620522995536540750(24) 20.724(24) 3

25 20.169965180428740376094(22) 20.1700(22) 4

28 20.492760129615704093459(24) 20.49(24) 2

29 20.136043628609274110108(22) 20.136(22) 3

32 20.341170517533278386583(24) 20.3(24) 1

33 20.109855994151387601453(22) 20.1(22) 1

36 20.212639663103781256836(24) / 0

37 20.807933182726571115506(23) / 0

40 20.789995944027442427633(25) / 0

41 20.382605289154327110005(23) / 0
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When the boundary conditions on AB and on BC in Fig. 1

are exchanged as (Fig. 2)

ulBC ¼ 500; ulOD ¼ 0; unlOA ¼ 0; unlAB<CD ¼ 0; ð4:1Þ

this Laplace boundary value problem gives the cracked

beam problem. Its original model in Refs. [4–6,19,21] was

defined on the domain

Ŝ ¼ {ðx; yÞl2 1
2
# x # 1

2
; 0 # y # 1

2
}

in Fig. 3. However, two models in S and Ŝ have the same

nature. In fact, their solutions can be scaled from one to the

other, which will be explained in Section 5. Since function

(1.4) is also the solutions of the cracked beam problem, we

choose

uNðr; uÞ ¼
XN
i¼0

D̂ir
iþð1=2Þcos i þ

1

2

� �
u; ð4:2Þ

where the notations D̂i with a hat on its head are used to

distinguish with those Di of Motz’s problem in Section 2.

We also use VN as the finite collection of function (4.2).

Since uN satisfies the Laplace equation in S and the

boundary conditions on OD < OA already, the coeffi-

cients D̂i should be chosen to satisfy the rest boundary

conditions as best as possible. Define the error norm on

AB < BC < CD :

ku 2 vkB ¼
ð

BC
ðv 2 500Þ2 þ w2

ð
AB<CD

v2
n

� �1=2

;

w ¼
1

N þ 1
:

ð4:3Þ

The solution uN can be obtained by

ku 2 uNk ~B ¼ inf
v[VN

ku 2 vk ~B; ð4:4Þ

where

kvk ~B ¼
~ð

BC
v2 þ w2

~ð
AB<CD

v2
n

( )1=2

: ð4:5Þ

We first employ the central rule with a uniform distributed

points Pi on AB < BC < CD:We may require
ffiffi
h

p
v ¼

ffiffi
h

p
500

at Pi [ BC and
ffiffi
h

p
wun ¼ 0 at Pi [ AB < CD: Let the

number 4M of all collocation nodes Pi be larger than N þ 1;

then we obtain an overdetermined system of linear algebraic

equations F~x ¼ ~b;where F is a matrix of 4M £ ðN þ 1Þ; and ~x

is the unknown vector consisting of ~Di: We employ the LSM

in Section 2 to solve it. The errors, condition numbers and the

leading coefficients are given in Tables 6 and 7. It is

interesting from Table 7 to note that D̂4‘þ2 < D̂4‘þ3 < 0:3

Hence, we may simply seek a solution of the following

simplified forms

up
N ¼

XL
‘¼0

X1

k¼0

D̂4‘þkr4‘þkþð1=2Þcos 4‘þ k þ
1

2

� �
u; ð4:6Þ

where N ¼ 4L þ 1: Denote by Vp
N the finite collection of

functions in Eq. (4.6). Hence another collocation Trefftz

method can be formulated as in Section 2: to seek the solution

up
N [ Vp

N such that

ku 2 up
Nk ~B ¼ inf

v[Vp
N

ku 2 vk ~B; ð4:7Þ

where kvk ~B is defined in Eq. (4.5). Its results are given in

Tables 8 and 9. From Tables 6 and 8, we have observed the

asymptotes:

ku 2 uNkB ¼ Oð0:553NÞ; ku 2 uNk1;BC

¼ Oð0:564NÞ; Cond: ¼ Oð1:42NÞ; ð4:8Þ

Table 16

Comparisons of the error norms and condition numbers from Table 11 by Eq. (5.9) and directly from the traditional cracked beam problem in Fig. 3 as N ¼ 43

and M ¼ 24

r Nodes From Table 11 by Eq. (5.9) Direct computation

ðb=500Þ·ku 2 upN kB ðb=500Þ·ku 2 upN k1;BC Cond. kw 2 wp
N kB kw 2 wp

N k1;BC Cond.

1 0.154(214) 0.255(214) 0.434(6) 0.180(213) 0.159(213) 0.191(10)

2 0.156(214) 0.151(214) 0.446(6) 0.160(213) 0.141(213) 0.191(10)

4 0.112(214) 0.130(214) 0.446(6) 0.116(213) 0.141(213) 0.187(10)

6 0.918(215) 0.144(214) 0.447(6) 0.955(214) 0.144(213) 0.186(10)

8 0.798(215) 0.132(214) 0.447(6) 0.833(214) 0.143(213) 0.185(10)

12 0.653(215) 0.131(214) 0.447(6) 0.680(214) 0.143(213) 0.185(10)

Fig. 2. The cracked beam problem.

3 This fact has been double checked under Mathmatica system using high

working digits and more expansion terms. In fact, u400 has been obtained in

Ref. [22], which clearly shows that D̂4‘þ2 < D̂4‘þ3 < 0:
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ku 2 up
NkB ¼ Oð0:558NÞ; ku 2 up

Nk1;BC ¼ Oð0:558NÞ;

Cond: ¼ Oð1:39NÞ: ð4:9Þ

Note that the convergence rates and the condition

numbers in Eq. (4.9) are close to those in Eq. (4.8), but

only half coefficients of uN in Eq. (4.2) are needed. Hence, for

the computational purpose, the solution (4.6) with Tables 8

and 9 may better be chosen. From this point of view, the

cracked beam using Eq. (4.6) may serve as a better testing

model of singularity problems than Motz’s problem.

Compared with the more accurate solutions from CTM

[22] using Mathematica with more working digits, the

leading coefficients D̂0 and D̂1 in Table 9 have 15 significant

digits.

The analysis in Section 3 can be similarly applied to the

collocation Trefftz method for the cracked beam problem.

To confirm the admissible functions as Eq. (4.6), we only

prove the following proposition.

Proposition 4.1. Let the errors 1N ¼ u 2 up
N ; N ¼ 4L þ 1

and

kð1NÞnk0;BC # KNk1Nk1;S; ð4:10Þ

where the constant KNð$ 1Þ may be unbounded as N !1:

Suppose

KN þ
1

w

� �
k1NkB ! 0; as N !1: ð4:11Þ

Then the solution of the cracked beam problem can be

expressed by

u ¼
X1
‘¼0

X1

k¼0

D̂4‘þkr4‘þkþð1=2Þcos 4‘þ k þ
1

2

� �
u: ð4:12Þ

Proof. From the bounds similar to Lemma 3.1, we have

k1Nk1;S ¼ ku 2 up
Nk1;S # C KN þ

1

w

� �
k1NkB; ð4:13Þ

where C is a bounded constant independent of N: From

Eqs. (4.11) and (4.13), {1N} is a bounded sequence. Based

on the Kandrasov or Rellich theorem [2], any bounded

sequence in the space H1ðSÞ contains a subsequence that

converges in H0ðSÞ: Then there must exist a subsequence

{1þN } in H0ðSÞ such that limN!1 1þN ¼ �1: Since {1þN } are

bounded in H1ðSÞ; the convergent limit �1 [ H1ðSÞ: This

implies that

lim
N!1

uþ
N ¼ lim

N!1
ðu 2 1NÞ ¼ u 2 �1 ¼ �u [ H1ðSÞ:

Moreover, since KN $ 1 and w ¼ 1=ðN þ 1Þ; we conclude

that k�u 2 500k0;BC ¼ 0 and k�unk0;AB<CD ¼ 0: Hence, �u must

be the unique solution of the cracked beam problem.

Obviously, the entire sequence up
N also converges to �uð¼ uÞ

based on ku 2 up
NkB ! 0 as N !1 from Eqs. (4.11) and

(4.13). This competes the proof of Proposition 4.1. A

When w ¼ 1=ðN þ 1Þ; the empirical exponential con-

vergent rates in Eq. (4.9) guarantee Eq. (4.11). The analysis

of Proposition 4.1 is made, based on the a posteriori

numerical results, so we call it a posteriori analysis.

Proposition 4.1 implies that ~D4‘þ2 ¼ ~D4‘þ3 ¼ 0; ;‘ $ 0:

We also note that condition (4.11) is stronger than that

k1NkB ! 0 as N !1:

Next, we pursue better accuracy of the leading coefficient

D̂0 by using the Gaussian rules. Denote by M the collocation

number along AB; and then 4M is the total number of

collocation nodes. First, we choose the Gaussian rule of

eight nodes, and set the positions of collocation nodes as

required, then its solutions and condition numbers by the

collocation Trefftz method are listed in Table 10. Moreover,

for the Gaussian rules with 1, 2, 4, 6, 8 and 12 nodes, their

solution errors and condition numbers are listed in Table 11.

The errors ku 2 up
NkB decrease nearly a half, from

0.614(210) with r ¼ 1 down to 0.319(210) with r ¼ 8:

For N ¼ 43 and M ¼ 24; the leading coefficients ~D4‘þk;

k ¼ 0; 1 obtained by the Gaussian rule of eight nodes are

reported in Table 12. Compared with the more accurate

results in Ref. [22], the relative errors of

D̂0 ¼ 540:565122713627488338;

from Table 12 has 17 significant digits, and D̂1 has 16

significant digits.

5. Discussions and comparisons

Let us consider the cracked beam problem on a scaled

domain, Ŝ ¼ {ðj;hÞl2 a , j , a; 0 , h , a}; where the

parameter satisfies 0 , a # 1: The scaled cracked beam

problem is described by the Laplace equation Dw ¼ 0 on Ŝ

satisfying the following boundary conditions

wðj; aÞ ¼ b; 2a , j , a; ð5:1Þ

wðj; 0Þ ¼ 0; 2a , j , 0;
›w

›n
ðj; 0Þ ¼ 0;

0 , j , a;

ð5:2Þ

Fig. 3. The traditional cracked beam problem in Ŝ.
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›w

›n
ð^a;hÞ ¼ 0; 0 , h , a; ð5:3Þ

where b is a constant, and n is the outward normal to ›Ŝ:

Here, another Cartesian coordinate system ðj;hÞ is chosen.

For Fig. 2, a ¼ 1 and b ¼ 500; and for Fig. 3 from the

traditional model [4–6,19,21], a ¼ 1=2 and b ¼ 0:125: The

Laplace solution satisfying Eqs. (5.1)–(5.3) can also be

expressed by

wðj;hÞ ¼
X1
i¼0

air
iþð1=2Þcos i þ

1

2

� �
u; ð5:4Þ

where ai are the coefficients, ðr; uÞ are the polar coordinates

at the origin o; and r ¼
ffiffiffiffiffiffiffiffiffiffi
j2 þ h2

p
: There exist the relations

for the coefficients of D̂i in Table 12 and ai :

ai ¼
b

500
a2ðiþð1=2ÞÞD̂i: ð5:5Þ

Now, let us prove Eq. (5.5). Under the affine transform-

ation T : ðx; yÞ! ðj;hÞ; where j ¼ ax and h ¼ ay; domain S

is converted to Ŝ; and the boundary conditions (4.1) are

transformed to

uðj; aÞ ¼ b; 2a , j , a; ð5:6Þ

uðj; 0Þ ¼ 0; 2a , j , 0;
›u

›n
ðj; 0Þ ¼ 0;

0 , j , a;

ð5:7Þ

›u

›n
ð^a;hÞ ¼ 0; 0 , h , a: ð5:8Þ

Comparing Eq. (5.6) with ulBC ¼ 500 in Eq. (4.1), we

find the relations between w and u;

w ¼
b

500
u: ð5:9Þ

This gives

X1
i¼0

air
iþð1=2Þcos i þ

1

2

� �
u ¼

b

500

X1
i¼0

D̂ir
iþð1=2Þcos i þ

1

2

� �
u:

ð5:10Þ

Since r ¼
ffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; we have r ¼ r=a: Eq. (5.10) is

reduced to

X1
i¼0

ai2
b

500
a2ðiþð1=2ÞÞD̂i

� �
riþð1=2Þcos iþ

1

2

� �
u¼0: ð5:11Þ

Since functions {riþð1=2Þcosði þ ð1=2ÞÞu} are linearly

independent, we obtain

ai 2
b

500
a2ðiþð1=2ÞÞD̂i ¼ 0; ð5:12Þ

which is the desired equation (5.5).

By means of Eq. (5.5), the coefficients ai can be obtained

for a ¼ 1=2 and b ¼ 0:125; which are listed in Table 13. Our

leading coefficients

a0 ¼ 0:19111863197187209;

a1 ¼ 20:1181160719665095;

ð5:13Þ

from Table 13 have 17 and 16 significant digits, respect-

ively, compared with the more accurate values:

a0 ¼ 0:19111863197187208906830;

a1 ¼ 20:11811607196650946846348:

ð5:14Þ

Eq. (5.14) possessing 23 significant digits are cited

from Ref. [22] by the same collocation Trefftz method but

using higher working digits under Mathematica. Besides,

the significant digits of other coefficients are also provided

in Table 13, compared with more accurate ai in Ref. [22].

We have also completed the direct computation for the

traditional cracked beam problem in Fig. 3. The errors,

condition numbers and the leading coefficients are listed in

Tables 14–16. Interestingly, in Table 15, the same a0 and

a1 as Eq. (5.13) are obtained. Let us compare two

approaches: (1) from Table 12 by Eq. (5.5), (2) direct

computation from Fig. 3. The global errors from Table 11

are 10 times smaller than those from direct computation

(Table 16). On the other hand, the leading coefficients a4

and a5 from direct computation are slightly better than those

in Table 13. We note that the condition number from the

direct computation is huge, and the ratio of condition

numbers between these two approaches is

Cond:lDirect

Cond:lFrom Table 11

¼
0:186ð10Þ

0:447ð6Þ
¼ 416:

Hence, the approach from Table 12 seems to be superior.

In Ref. [5], the integrated singular basis method (ISBFM)

and the integral method are used to seek the solutions of the

traditional cracked beam problem, and their leading

coefficients are listed in Table 17 with the number of

significant digits. Evidently, the leading coefficients in

Tables 13 and 15 have more significant digits than those in

Table 17.

In this paper, the same S is chosen for both Motz’s and

the cracked beam problems, in order to unify the theoretical

frame work and to do comparisons. Let us look at the

coefficients in Tables 5 and 12. The coefficients Di decease

monotonically in magnitude as i !1; but D̂‘ do not.

However, each of D̂4‘ and D̂4‘þ1 does decrease mono-

tonically. We have carefully checked the coefficients from

Tables 5, 12 and Refs. [15,22] to find the following

empirical asymptotes

Di # C0 £ 2:042i
; D̂4‘ # C1 £ 2:0524‘

; D̂4‘þ1

# C2 £ 2:0124‘21
; ð5:15Þ
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where C0; C1 and C2 are positive constants. Hence, we may

assume the true coefficients di in Eq. (1.4) also satisfy the

same asymptotes

di # Cð2 þ eÞ2i
; ð5:16Þ

where e is a small positive constant. Rewrite Eq. (1.4) as the

sum of

�uN ¼
XN
i¼0

dir
iþð1=2Þcos i þ

1

2

� �
u; ð5:17Þ

and the remainder

RN ¼
X1

i¼Nþ1

dir
iþð1=2Þcos i þ

1

2

� �
u: ð5:18Þ

Below, we show the following exponential convergence

ku 2 �uNk1;S ¼ kRNk1;S # C3

ffiffi
2

p

2

 !N

; ð5:19Þ

where C3 is a constant independent of N:

Denote a half-disk domain SR ¼ {ðr; uÞl0 # r # R; 0 #

u # p}: Then S , S ffiffi
2

p : We have

kRNk
2
1;S # kRNk

2
1;S ffi2p ð5:20Þ

¼
ðp

0

ð ffiffi
2

p

0

›RN

›r

� �2

þ
1

r2

›RN

›u

� �2

þR2
N

� �
r dr du; ð5:21Þ

where

›RN

›r
¼

X1
i¼Nþ1

di i þ
1

2

� �
ri2ð1=2Þcos i þ

1

2

� �
u; ð5:22Þ

1

r

RN

›u
¼ 2

X1
i¼Nþ1

di i þ
1

2

� �
ri2ð1=2Þsin i þ

1

2

� �
u: ð5:23Þ

By using the orthogonality of trigonometric functions,

we obtain

I1 ¼
ðp

0

ðR

0

›RN

›r

� �2

r dr du

¼
p

4
R

X1
i¼Nþ1

i þ
1

2

� �
R2id2

i ; ð5:24Þ

I2 ¼
ðp

0

ðR

0

1

r2

›RN

›u

� �2

r dr du

¼
p

4
R

X1
i¼Nþ1

i þ
1

2

� �
R2id2

i ; ð5:25Þ

I3 ¼
ðp

0

ðR

0
R2

Nr dr du ¼
p

4

X1
i¼Nþ1

1

i þ 3
2

R2iþ3d2
i

#
pR3

4

X1
i¼Nþ1

i þ
1

2

� �
R2id2

i : ð5:26Þ

Then, we have

kRNk
2
1;S # ðI1 þ I2 þ I3ÞlR¼ ffiffi

2
p

#
ffiffi
2

p
p

X1
i¼Nþ1

i þ
1

2

� � ffiffi
2

p 2i
d2

i : ð5:27Þ

Under Eq. (5.16), we have

kRNk
2
1;S # C

X1
i¼Nþ1

i þ
1

2

� � ffiffi
2

p

2 þ e

 !2i

: ð5:28Þ

From calculus, for d ¼
ffiffi
2

p
=ð2 þ eÞ , 1

X1
i¼Nþ1

i þ
1

2

� �
d2i # C1Nd2N # C3

ffiffi
2

p

2

 !2N

; ð5:29Þ

where C3 is a constant independent of N: Combining

Eqs. (5.28) and (5.29) gives the desired result (5.19).

Under Eq. (5.16), the exponential convergence rates

in the infinite norm k·k1;1 and k·kB can be proven similarly

ku 2 �uNk1;1 ¼ kRNk1;1 # C4

ffiffi
2

p

2

 !N

; ð5:30Þ

ku 2 �uNkB ¼ kRNkB # C5

ffiffi
2

p

2

 !N

; ð5:31Þ

where C4 and C5 are also positive constants. Then from Eqs.

(3.7), (3.18) and (5.31) we have

ku2 ~uNkB#Cku2 �uNkB#CkRNkB#CC5

ffiffi
2

p

2

 !N

; ð5:32Þ

and from Theorem 3.1

ku 2 �uNk1 # C

ffiffi
2

p

2

 !N

: ð5:33Þ

Table 17

The leading coefficients ai cited from Georgiou, Boudouvis and Poullikkas

(1997) [5] directly from the traditional cracked beam problem in Fig. 3

i ISBFM Number of

significant

Integrated method Num of

significant

0 0.191118631972 12 0.191118631972 12

1 20.1181160720 10 20.118116071967 12

4 20.1254698598(21) 10 20.1254698598(21) 10

5 20.1903340371(21) 10 20.1903340371(21) 10

8 20.6541248(23) 7 20.654125(23) 6

9 20.75959348(22) 8 20.7595935(22) 7

12 20.505411(23) 6 20.5054(23) 4

13 20.4477115(22) 7 20.44771(22) 5

16 20.190964(23) 5 20.19(23) 2

17 20.300990(22) 6 20.301(22) 3

20 20.1179(23) 4 NA /

21 20.22019(22) 5 NA /

24 20.72(24) 2 NA /

In the table ‘NA’ denotes ‘not available’.
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For the cracked beam in Fig. 2, the same exponential

convergence rates hold as Eqs. (5.19), (5.30) and (5.31). The

numerical rates Oð0:56NÞ in Eqs. (4.8) and (4.9) are

coincident with the a posteriori estimates Oð0:707NÞ: For

the traditional scaled cracked beam in Fig. 3, the coefficients

in Table 13 have

ai # C
2

2 þ e

� �i

: ð5:34Þ

By noting that r #
ffiffi
2

p
; the same exponential convergence

rates as Eqs. (5.19), (5.30) and (5.31) can also be obtained.

For the Laplace equations on sectors of disks, half-disks

and disks, the exponential convergence rates of

the expansion solutions are proven theoretically in

Ref. [23, p. 41]. The proof for the exponential rates on the

rectangular domains in S and Ŝ is given in this section by the

a posteriori analysis, where the assumption (5.16) is purely

based on numerical observation of the obtained results. For

the rigorous proof of exponential convergence rates on S

without Eq. (5.16) needs to be further explored.

6. Concluding remarks

To close this paper, let us make a few remarks.

1. Computational algorithms of the collocation Trefftz

method are provided in Section 2. The overdetermined

system (2.28) is recommended in computation since its

algorithm is simple and easy, which is, indeed, just the

collocation method at the boundary nodes, based on

Proposition 2.1. The remarkable advantage of Eq. (2.28)

is that the condition numbers of the associated matrix can

be dramatically reduced, compared to Eq. (2.37) of the

normal equation.

2. Different quadratures, such as the central and Gaussian

rules, are investigated for the LSM. Theorem 3.1 reveals

that different integration rules do not make much

differences in the global errors over the entire domain

S: However, the rules used may affect significantly the

accuracy of the leading coefficient, based on numerical

experiments in this paper.

3. The quadrature is used to link the collocation method and

the LSM. However, from our error analysis, the accuracy

of a quadrature may be very rough, in the sense that its

relative errors are less than three quarters! This feature is

significantly different from the traditional integral

approximation in error analysis, e.g. the FEM analysis,

where the integration errors should be chosen to balance

the optimal errors of the solutions. Based on the analysis

in Section 3, the solutions of Motz’s and the cracked

beam problems solved by the collocation Trefftz method

have the exponential convergence rates. Note that

Theorem 3.1 and Proposition 3.1 are new, which provide

a theoretical foundation for high accuracy of the

collocation Trefftz method (e.g. the BAM). This is also

a justification for the collocation Trefftz method to

become the most accurate method for Motz’s and the

cracked beam problems. Besides, the collocation

methods both in S and on ›S are explored in Ref. [8].

4. The numerical results in Section 2 are better than those in

Refs. [14,16]. The Gaussian rule with six nodes are used

to raise the accuracy of the leading coefficient to

D0 ¼ 401:162453745234416 ð6:1Þ

by the collocation Trefftz method. Compared with the

more accurate value of D0 in Refs. [14,15], this D0 has

exactly 17 significant digits, which error happens to

coincide with the rounding errors of double precision.

Note that coefficient D0 in Ref. [16] has only 12

significant digits. This new discovery will change the

evaluation of the BAM (i.e. the collocation Trefftz

method) given in Ref. [14]. Based on the numerical

results in Ref. [16] using the central rule, it is pointed out

in Ref. [14, p. 133] that “BAM may produce the best

global solutions”, but “the conformal transformation

method is the highly accurate method for leading

coefficients”. Now we may address that for Motz’s

problem, the collocation Trefftz method (i.e. the BAM)

by the Gaussian rule of high order is a highly accurate

method, not only for the global solutions but also for the

leading coefficient D0:

5. The new numerical results by the collocation Trefftz

method in Section 4 provide a highly accurate solution

for the cracked beam problem. The Gaussian rules of

high order are used to raise the accuracy of the leading

coefficient to

D̂0 ¼ 540:56512271362749; ð6:2Þ

which also has 17 significant digits. For the traditional

cracked beam problems in Fig. 3, coefficients

a0 ¼ 0:19111863197187209 and a1

¼ 20:1181160719665095 ð6:3Þ

from Table 13 have 17 and 16 significant digits,

respectively. Thus the collocation Trefftz method using

the Gaussian rule of high order is also a highly accurate

method for the cracked beam problem, not only for the

global solutions but also for the leading coefficient ~D0:

6. Motz’s and the cracked beam problems are linked and

compared by considering the same domain S: The

traditional crack model in Refs. [4–6,19,21] is formu-

lated as a special case of the scaled cracked beam

problem in this paper, whose solutions can be obtained

straightforward by Eq. (5.5). Besides, numerical exper-

iments from the approaches by Table 12 using Eq. (5.5)

and by direct computation for Fig. 3 have been reported.

The former seems to be superior due to its smaller

condition numbers. Motz’s and the cracked beam

problems are regarded as the Laplace equations on S

with two different boundary conditions along the edges.
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Hence, different boundary conditions on ›S may have

different impacts on the singular behavior of the Laplace

solutions in S: These computational results will appear

later.

7. There was a special issue on the Trefftz methods, i.e.

Advanced in Engineering Software, vol. 24, 1995. Some

overviews can be found in Refs. [9,11,24]. In Refs. [9,

11], the Trefftz methods are classified into the indirect

and direct methods. The collocation Trefftz in this paper

is just the indirect Trefftz method. We use the same

terminology, the Trefftz collocation method, as in

Ref. [13]. The direct Trefftz method is analogous to the

boundary element method except the fundamental

functions are replaced by the singular function in the

trial space. We report in this paper the new compu-

tational results and the new analysis of the indirect

Trefftz method. In some extent, we have filled up the gap

existing before between excellent computation and

theoretical analysis of this method [10].
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