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Abstract--This  paper introduces radial basis functions (RBF) into the collocation methods and 
the combined methods for elhptic boundary value problems First, the l~itz-Galerkln method (RGM) 
is chosen using the RBF, and the integration approximation leads to the collocation method of RBF 
for Polsson's equatmn Next, the combinations of RBF with fimte-element method (FEM), finite- 
difference method (FDM), etc., can be easily formulated by following Li [1] and Hu and Li [2,3], but 
more analysis of reverse estimates is explored in this paper. Since the RBFs have the exponential 
convergence rates, and since the collocat]on nodes may be scattered in rather arbitrary fashions m 
various apphcatlons, the RBF may be competitive to orthogonal polynomials for smooth solutions 
Moreover, for singular solutions, we may use some singular functions and RBFs together. Numerical 
examples for smooth and singularity problems are provided to display effectiveness of the methods 
proposed and to support the analysis made. @ 2005 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - R a d i a l  basis functions, Collocation method, Combined method, Elliptic problems, 
Singularity problem, Motz's problem 

1. I N T R O D U C T I O N  

There have been many developments for radial basis functions (RBF) in recent years. The RBF 
can be used for the interpolatory tools for smooth solutions, u E C°c (S ) .  The convergence of 
interpolants to a given continuous function has been discussed in the following works: Kansa [4] 
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provided the surface approximations and partial derivative estimates, Madych [5] established 
several types of error bounds for multiquadric and related interpolators, Wu and Schaback [6] 
focused on local errors of scattered data interpolation by RBF in suitable variational formulation, 
and Yoon [7] regarded the convergence of RBF in an arbitrary Sobolev space. All of those reports 
show exponential convergence rates. Moreover, the applications of RBF have been given as fol- 
lows. Kansa [4,8] presented a series of applications in computational fluid dynamics. Franke and 
Schaback [9] gave some theoretical foundational method for solving partial differential equations 
(PDEs). Wendland [10] derived error estimates for the solution of smooth problems. Cheng et  

al. [11] introduced the h-c  meshless scheme for smooth problems, where numerical experiments 
were also provided. May-Duy and Tran-Cong [12,13] used the radial basis function network 
methods for Poisson's equations. 

We may classify the collocation method as a special kind of spectral method, in which numer- 
ical solutions have high accuracy, but with high instability due to the large condition number. 
Fortunately, in practice, only a few terms of RBF are needed so that the condition number will 
not be very large, and useful numerical computation can be carried out even in double precision. 
Since by using MATHEMATICA, unlimited number of significant digits are available, the spectral 
methods using RBF are more promising. 

In this paper, we consider the collocation method using RBF, simply called radial basis col- 
location method (RBCM). We derive inverse estimates and new error analysis. The collocation 
method is treated as Ritz-Galerkin method involving integration approximation. However, the 
integration quadrature is used in analysis only to satisfy the Vh-elliptic inequality, but not to 
reach the highly exponential convergence rates. More explanations are given in Section 3. The 
advantages of the radial basis collocation method are twofold. 

(1) Source points of radial basis functions and collocation nodes may be scattered in rather 
arbitrary fashions in various applications, in which the solution domain is not confined in 
a rectangle. We need a dense set of collocation nodes in any irregular domain. 

(2) Simplicity of the computed codes. A drawback of the radial basis collocation method is 
the high instability with large condition number. 

This paper is organized as follows. In the next section, the radial basis functions are described, 
and in Section 3, the collocation methods for different boundary conditions and combinations of 
FEM are discussed. In Section 4, the inverse estimates are derived. In the last section, numerical 
experiments including smooth and singularity problems are carried out to display the effectiveness 
of the methods proposed, and to support the analysis made. 

2. R A D I A L  B A S I S  F U N C T I O N S  

For surface fitting on scattered points, using the RBF shows remarkable advantages (see [4,6- 
9,14-17]). Based on the theory of finite-element method (FEM) in Ciarlet [18], the errors of 
numerical solutions for elliptic equations are, basically, those of optimal approximations of ad- 
missible functions to the true solutions. Hence, the RBF can be definitely applied to solving 

elliptic equations. 
Let us describe the RBF. The multiqudrics, the thin-plate splines, and the Gaussian functions 

are defined by (see [11]) 

g~ (x) = (r 2 + c  2)~-3/2, n = 1 ,2 , . . . ,  (2.1) 

 =1,2 . . . .  , i n R <  

g~(x)=  r ~ _ l  n = 1 , 2 , . . ,  i n R  3, 
(2 ~2~ 

g~ (x) = exp { -  r~2"~ (2.3) 
\ 

., = + exp (2.4) \ a 2 ]  , n = l , 2 , . . . ,  
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where 

x = ( x , y ) ,  i n R  2, and x = ( x , y , z ) ,  i n R  a. 

The  radius r,  = {(x - x,) 2 + (y - y,)2}U2 in R 2 and r,  = {(x - x,) 2 + (y - y,)2 + (z - z,)2} 1/2 

in R 3, where (x,, y,) and (x,, y,, z,) are called source points of RBF.  The  constants  c and a are 
shape parameters  to be chosen later. When  parameters  c and a become large, the RBF become 
flat. 

Choose a linear combinat ion of RBF,  

n 

v = Z a,g, (x), (2.5) 

where the coefficients a, are sought by the Ritz-Galerkin method  or the collocation methods.  
Since v in (2.5) cannot  equal to a constant  exactly, we may  add a constant  into (2.5) (see [4,8]) 
to get 

7 2  

v = bl + E a,~, (x) ,  (2.6) 

where 
2, (x)  = g, (x)  - g~ ( ~ ) .  (2.7) 

Moreover, since v in (2.5) cannot  equal to linear function exactly, either we may  also add a linear 
function into (2.5) to get 

n 
a * v = bl + b~x + ~ ,g, ( x ) ,  (2.8) 

where 
g *  (X)  = g , ( x )  - -  ( x 2 - Z * ) g l  (X)-}-  ( X , - - X l ) g 2  (X)  

X 2 - -  X 1 

In general, we may  add a polynomial  of power m (see [6]) to get 

(2.9) 

n m 

v = E a,g, (x) + E b,P, (x), (2.10) 
~=i ~=1 

where Pk(x) = ~,,+t<_k xrY ~. In (2.10), m = 62 k+l in R 2 and m = C3 k+2 in R 3, which denote the 
total  number  of power functions in polynomials with power < k. For curve fitting, the coefficients 
are sought by satisfying 

n m 

~- '~a,g,(x3)+Eb,  P,(x3)=f3 , j = l , 2 , . . . , n ,  (2.11) 
~=I ~=I 

and 

E a 3 P ,  (x3) = 0, ~ -- 1 , 2 , . . . , m .  (2.12) 
9 = 1  

Based on the same ideas, we may  add some singular funcuons ¢ , (x)  for fitting singular surfaces, 
or for solving singular problems of elliptic equations, 

v = ~ a,g, (x) + b,¢, (x), (2.13) 
* = i  *=0 
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where 

fia,g,(x3)÷f-"b,¢,(x3)--f• , 3 = 1 , 2 , . . . , n ,  (2.14) 
~=i z=O 

and 

a 3 ¢ , ( x 3 )  = O, ~ = O, 1 . . . .  , m .  (2.15) 

3=i 

Note that  equation (2.15) may or may not be added into the computation. 
For Motz's problem given in Section 5.2, a benchmark of singularity problems, we may add a 

few leading singular functions as 

¢~(x)=r '+l /2cos(~+2)O , ~ = 0 , 1 , . . . , 5 ,  (2.16) 

where (r, 0) are the polar coordinates with the origin (0,0), r = x / ~  + y2  and tan0  = y/x. In 
Section 5, numerical experiments of Motz's problem are carried out to display the effectiveness 

of the RBCM. 

3. D E S C R I P T I O N  O F  R A D I A L  B A S I S  C O L L O C A T I O N  M E T H O D  

By following the approaches in [2,3] the RBF are chosen as the admissible functions in the 
Ritz-Galerkin methods. Since the RBFs do not satisfy the partial differential equation and 
the boundary conditions so that  the residuals have to be enforced to zero at collocation points 
both in the solution domain and on its boundary. We obtain the collocation methods of RBF, 
simply denoted by RBCM, and combined methods of RBCM with other numerical methods. The 
optimal error bounds are provided, and the proofs are given in Section 3.1, or can be done by 
following [2,3] straightforward. The crucial inverse estimates for radial basis functions will be 

proven in the next section. 

3.1. Radial  Basis  Col locat ion  M e t h o d  for Various B o u n d a r y  Cond i t i ons  

Consider the Poisson's equation with Robin boundary condition, 

-Au---- \ a x 2 ÷ O y 2 j = f ( x , y ) ,  inS ,  (3.1) 

U, lr~ = ql, on FN, (3.2) 

(u, + ~U)lrR = q2, on FR, (3.3) 

where 13 > fl0 > 0, fl0 is constant, S is a polygon, OS = F = FN U FR, and u ,  is the outer normal 
derivative to OS. Assume Meas (FR) > 0, for guaranteeing the unique solution. We make two 

assumptions. 

(A1) The solutions in S can be expanded as 

o o  

v ---- ~ a,g~(x, y), in S, (3.4) 

where g,(x, y) E C2(S) are RBF, and at are the expansion coefficients. 
(A2) The expansions in (3.4) converge exponentially to the true solutions u, 

u = uL + RL, (3.5) 
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where UL = Y']L=I a~g~(x,y) and RL = E ~ L + I  a~g,(x, y). Then, 

maxlRLI = 0 (A "/~) (3.6) 
S 

where c > 0, L > 1, 0 < £ < 1, and 5 is the radial distance defined as 

sup ~inf~(x-x~)2+(y-y~)2}l /2~,  (3.7) 5 =  
(x,y)es 

where (x,, y~) are the source points of RBF. 

Based on (A1),(A2), we may choose the admissible functions, 

L 

v = Z ~g~ (x, y),  in S, (3.8) 
z = l  

where ~ are unknown coefficients to be sought. Denote by Vh, the finite dimensional collection 
of the admissible functions (3.8) To solve (3.1)-(3.3), the Ritz-Galerkin method can be written 
as follows. To seek solution UL, such that 

b(~L,v) = f (~), Vv e Vh, (3.9) 

where 

b (u, v) = / f s  AuAv + fr u~v, + gf r (u~ + flu) (v~ + /3v) , (3.10) 
N R 

N R 

When we view the collocation method as a Ritz-Galerkin method involving approximation 

quadratures, the radial basis collocation method (RBCM) can be written as follows. To seek 
solution ~2L, such that 

(~L, v) = ] (v), V v e V~, (3.12) 

where 
A A A 

FN FR 

](.)=-ff fa.+/Fql..+J.q,(..+,.), (3.14) 

where f ' f s '  f rN '  and frR denote the approximations of ffs, frN' and frR by some integration 
rules, respectively. We may choose the Newton-Cotes rules or the Legendre-Gauss rules, 

~ff sF = E cq, F(Q~,), Q~, E S, (3.15) 
~2 

} rF  = ~ ~,F(Q,), Q, e r,  (3.16) 

where a~ 3 and a~ are positive weights. Then, we can formulate the collocation equations directly 
at Q~s and Q, as follows. 

v/-%~3(Av÷ f)(Q~3) =0, Q,3 ~S, (3.17) 

~ N  (v~ -- ql)(Q,) = 0, Q~ c FN, (3.18) 

V/a~ (v. + fly - q:) (Q,) = 0, Q~ E FR. (3.19) 
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Equations (3.17)-(3.19) in S O FN U FR are written simply as 

F 2  = b, (3.20) 

where ~ is a vector consisting of 5,, his a known vector, matrix F C R N¢xL, and N~ is the number 

of collocation nodes in S U PN U FR. In this paper, let N~ > L, and we may seek the solutions of 
the entire RBCM by the least squares method (LSM) in Golub and Loan [19]. 

Now, we would like to provide the error estimates fox solution It L in (3.12) by following some 
schemes of the FEM theory, the reader may refer to [18] for more details. Denote the space 

H* = {v ,v  ~ L 2 (S) ,  v e H 1 (S) ,  A v e  L ~ (S)},  (3.21) 

accompanied by the norm 

{ 2 } , (3.22) 

where Ilvll~,s is the Sobolev norm. In order to derive our main theorem, Theorem 3.1 given later, 
the following lemmas are needed. 

LEMMA 3.1. There exist two inequalities 

b(u,,) < cII~ll, × llvllh, 

b(~,~) > C0 II~II~, 
Vv e Vh, (3.23) 

Vv C Vh, (3.24) 

where Co and C are two positive constants independent on L. 

PROOF. From equation (3.10), we have 

b(u,v)< Cliffs (Au)2~/fs (Av)22cC2~F N (Uv)2~j~FN (Vv) 2 

<_ c {llA~llo,s [IAvllo,s + Ilu,.lloxN IIv,,llo,rN 

+ IL~',. + #~']IoTR I1~',. + #~IloxR + II~'lll,s II~lll,s} 

_< c {llAulto~. + H.~ll~o r~ + I1,,~ + #,,Jlo~ r .  + Irull~ s} 'j2 

× {ll~ll~ ~ + I1~11~,~ + IL~ + ~ o ~ .  + llvlt~,~} '~ 
_< c I1~'11. x llvll,, 

where C, and C are generlc constants, and their values may be different in different contexts. 

The first desired result (3.23) is obtained. 

Next, from Green's formula, we have 

£ 1,s = Vv 2 = v A v  + v ,v  
s 

{HAvH0,S -I-ll'Ovll0,i,N + ]['0~, "I- ,vll0,r, R } llVI[l,S -- L #v =, 
J l  R 
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where OS ---- F = FN U FR, and two bounds are used, 

Ilvllo,rN -< c I lv l l l ,s ,  I lvl lo,r~ -<- c I I~l l l ,s • 

Besides, from (3.25), we obtain 

iivll~,. _~ ~ (ivl~. ÷ J~ 9. ~) _~ ~ I~l~v,o. ÷ ~J..~lo,.. ÷ ~lv.. ~.llo,..l iiv,~,.. 
R 

This leads to 

_< c {llavllo,s + 11v.llo,r~ + IIv~ + ~vllo,rR}, Ilvlll,S 

and then, 
2 Ilvll~,s -< c {ll~vllo2 s + 11~llo2,r~ + IIv. + 9vllo,rR} = C b ( v , ~ ) .  (3.26) 

Moreover, from (3.26) and (3.10), we obtain 

1 1 
b(v,v) = ~b(v,v) + -~b(v,v) 

1{ } 
_> Co Ilvll~,s + ~ llZXvll0,s + IIv.llo~,rN + IIv~ + ~vllo2 r~ 

_> Co Ilvll~, 

where Co = min{1/2,  Co}. The second desired result (3.24) is obtained. This completes the proof 
of Lemma 3.1. I 

We make one more assumption. 

(A3) Suppose that,  for v in (3.8) there exists positive constant C, such tha t  

[Ivllk,s -< CLk Ilvllo,s, v E Vh, (3.27) 
Ilvllk,r - CLk  Ilvllo,r, ~ ~ Vh, (3.28) 

IIv~llk,r <-- CLk+I Ilvllo,r, ~ E Vh, (3.29) 

where v is unit outward normal to F. 

The inverse inequalities in (3.27)-(3.29) are crucial to following lemmas and theorem. The 
proof is new to [2,3], and it is deferred to Section 4. 

LEMMA 3.2. For the rules (3.15),(3.16) with order r, there exist the bounds, for v C Vh, 

where H denotes the maximM spacing between integration nodes, i.e., collocation points, and L 
denotes the number  of  RBF 

PROOF. Choose the integration rules of order r, 
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where ~ is the interpolant  polynomial of order r on the part i t ion of I" with the maximal  meshspac- 
ing H.  Then, we obtain 

Based on (A3), letting g = (v~) 2 and F = I ' y ,  we have 

r + l  

Ig l r+ l ,F  = (Vu) 2 r + l , r N  ~ C~-~ IVulr+l_~,FN Ivvli,FN 

r-F1 

~=0 

Combining above two inequalities gives the desired result (3.31). Equations (3.30) and (3.32) can 

be similarly derived. | 

LEMMA 3.3. Let Lemmas  3.1 and 3.2 hold. We choose H to satisfy 

H ~ + I L  r+3 = o (1), (3.33) 

then, there exists the uniform Vh-elliptic inequality 

1) 2 ~(v,v) > ell  Ik, Vv e Yh. (3.34) 

PROOf. From (3.24) and Lemma  3.2, we have 

(v, v) >_ b (v, v) - c g ~ + l n  ~+3 ilvli~,s 

_> Co Ilvll~ - CHr+lL~+a Ikvtl~,s 

_> Co 1 - H~+lnr+3  Ilvll~.s + [IAvIl02,s + Ilvvno,rN + Ilv~ + 0,rR 

> c0 ilvll~ 
- 2 

Let C = Co/2, and this completes the proof of Lemma  3.3. l 

We can obtain an impor tan t  theorem as follows. 

T H E O R E M  3.1. Suppose that there exist two inequalities 

& (u, v) < C llulth x llvllh , V v e Vh, (3.35) 

& (v, v) > Co Ilvll2,, V v E Vh, (3.36) 

where Co and C are two positive constants independent on L. Then, when choosing H and L 
as (3.33), the solution of the R B C M  in (3.12) has the error bound, 

II u - ~Lllh = C inf [I u - vii h <_ C {IIRLII2,S + H(RL),I]0,rN + It(RL)vll0,rR}, (3.37) vEVu 

where C / s  a constants independent on L. 

PROOF. Since u is t rue solution, we have b(u, v) = f (v ) .  By using L e m m a  3.2, we can derive 

/~(u,v) _< ] ( v )  + C H r + l n  r+3 v 2 II II~,s, v~ c vh. 
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S i n c e  ~L  is the solution of RBCM, we have 

g(~L,~) = ] ( , ) ,  v v  e yh, 

and then, 
b ( u -  "5L,V) <_ C H " + i L  ~+3 Ilvll~,s, 

Let w = U L  --  V E V h ,  from the above bound, we obtain 

Vv e Vh. 

<_ [lu -v[I h [Iw[lh + CHr+I L ~+3 Hv][21,s 

< II= - vllh Ilwllh + CH~+IL~+a Ilwll~,s- 

This leads to 

Moreover, from (3.33), we have 

IlaL -v l lh  = ]l~llh < 

From triangle inequality, we have 

{Co - C H ~ + I L  r+a} t[wl]2h <_ liu - V][h Ilwllh. 

1 II II < C1 I ]u-v l lh  ( C o - C  x o(1))IlU--Vllh 

I lu-  ~LIIh ~ I1~- Vllh + ql% - vllh ~ C Ilu - Vlih , 

and then, 

II u -  c~Lllh = C inf 
VvC Vh 

II u - vii h ~ c {][RLI[1,s + [[ARLI[o,s + I[(RL).I[o,r~ + ]I(RL)~ll0,pR} • 

This completes the proof of Theorem 3.1. | 

REMARK 3.1. Theorem 3.1 implies that the errors of the solutions for Poisson's equation using 
RBCM are bounded by the truncation errors of RBF multiplied by a constant. From Assump- 
tion (A2), we assure that the errors of solution £t L have exponential convergence. Moreover, 
equation (3.33) has the following relation, 

H L  (1+2/(r+1)) = o (1), (3.38) 

where H and L are given in Lemma 3.2. Then, we take L = N 2, and assume that the radial 
distance 5 defined in (3.7) satisfies the relation 5 ~ O ( 1 / N ) .  Furthermore, we obtain an important 
relation, 

H = o (5(2+4/(r+ l)) ) . (3.39) 

From (3.39), we know how to balance the collocation nodes and the source points of RBF. 

REMARK 3.2. In this paper, the Newton-Cotes rules of integration are chosen for simplicity m 
exposition. From equation (3.39), we need a dense set of integration nodes in order to satisfy 
the Vh-elliptic inequality, and then, to obtain the exponential convergence rates. The solution 
domain may not be confined in rectangles (or boxes for three dimensions). When the collocation 
methods using the radial basis functions are applied to solving PDEs in three dimensions, the 
mmplest central rule may also be used. An integral in a closed region of three dimensions is 
approximated by the value of the integrand at the center of gravity (or roughly at any point) 
of the region times the volume of the region Hence, the integration quadrature is not a severe 
problem in the collocation methods described in this paper. 
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3.2.  C o m b i n a t i o n  of  F E M  and R B C M  

Consider Poisson's equation with the Dirichlet condition, 

- A u  = f (x, y), in S, (3.40) 

u = 0, on F, (3.41) 

where S is a polygon, and F is its boundary. Let S be divided by Fo into two disjoint subregions, $1 
and 32 (i.e., S = $1 U $2 U Fo and $1 N $2 = 0). On the interior boundary Fo, there hold the 
interior continuity conditions, 

u + = u - ,  u + = u  S , onF0,  (3.42) 

Ou U +  where u~ = ~ ,  = u on Fo U $2, and u -  = u on Fo U $1. Assume that the solution u in $2 is 
smoother than u in $1. We choose the finite-element method (FEM) in $1 and the Pdtz-Galerkin 
method in $2, whose discrete forms lead to the CM. Get $1 be partitioned into small triangles: 
A,j, i.e., $1 = U~3 G~j. Denote by h,~ the boundary length of z~j. The /X~ 3 are said to be 
quasiuniform if h/min{h~3 } < C, where h = m a x a ,  c sl {h~3 }, and C is a constant independent 
of h. Then, the admissible functions may be expressed by 

v- =vk, inS1, 
L 

v =  v + =  ~ g ~ ( x , y ) ,  inS2, 
(3.43) 

where G are unknown coefficients, and vk are piecewise Lagrange polynomials of power k in $1 
in the FEM. Assume that (A1),(A2) hold in $2, and g~(x, y) 6 C2($2 U 0S2) are the RBF, so 
that v + E C2($2 U 0S2). Therefore, we may evaluate (3.40) directly from 

(Av + + f )  (Q,j) = 0, for Qij e $2, (3.44) 

at certain collocation nodes Qzj E $2. Note that v in (3.43) is not continuous on the interior 
boundary F0. Hence, to satisfy (3.42), the interior collocation equations are obtained as follows, 

v + (Q,) = v-  (Q,),  for Q, e Fo, (3.45) 

v + (Q,) = v~- (Q~), for Q~ e Fo. (3.46) 

Note that equations (3.44)-(3.46) are straightforward and easy to be formulated. 
Denote by V ° the finite-dimensional collection of (3.43) satisfying vlr = 0, where we simply 

assume g~(x, Y)los2nr = 0. If such a condition does not hold, the corresponding collocation 
equations on 0S2 A F are also needed, and the arguments can be provided similarly. 

The combination of the FEM-RBCM involving integration approximation is given by as follows. 
To seek the approximation solution %t h E Y2, such that 

a* = f ,  (v),  w e v2, (3.47) 

where 

and 

A 

1 0 2 (3.48) 

yl (v) = f / s  fv, (3.49) 
l 
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where V u  = u~-( + Uy3, u~ = -~, uy = -~y, u .  = ~-~, and v is the unit outward normal to 0S2. 

h is the maximal boundary length of A~j or E]¢ 3 in $1, and Pc > 0 is chosen to be suitably large 
but still independent on h. 

Now, let us establish the linear algebraic equations of combinations (3.47) of FEM-RBCM. 
First, considering the FEM in S1 only, we have 

al (Uh, v) : f l  (v), V v • Vh, (3 50) 

where 

1 0 1 

By means of a traditional procedure of finite element method [18], we obtain the linear algebraic 
equations, 

d l~ l  = 61, (3.52) 

where a~l is merely a vector consisting of v~3, and matrix A1 is nonsymmetric. 
Next, we choose the integration rules (Newton-Cotes rules or Legendre-Gauss rules) in $2. We 

may formulate collocation equations at Q~3 • $2, and Q~ • Fo directly. The collocation equations 
at Q~3, and Q~ are given by 

Pf-P~% (A~ + + f ) ( Q . )  = o, 

V f ~ h  (~ + - ~-) (Q,) = o, 

, 

V 2h 

Q~j • $2, (3.53) 

Q~ • F0, (3.54) 

Q, E r0, (3.55) 

where v2(Q~ ) = (vl~ - vo~)/h, vo~ = v(Q,) ,  and vl~ are the nodal variables in $1 normal to F0. 
Equations (3.53)-(3.55) in $2 U F0 are denoted by 

A2~2 = 62, (3.56) 

where Z2 ls a vector consisting of a-~, vl~, and vo,. vo, and Vl, are the unknowns on the two 
boundary layer nodes in $1 close to Fo. Denote by Me the number of all collocation nodes in $2 
and 0S2, and by NB the number of Vl, and vo,. The matrix A2 E R M°x(L+gu). Therefore, we 
can see 

Pc Pc 

(3.57) 
1 

= 2Y.TA~A2:Y2-  A~62~2 +6.  

Combining (3.52) and (3.57) yields explicitly the following, 

A~ = 6, (3.58) 

A = A1 + A~A2,  6 ~-  61 -]- A~62, (3.59) 

where ~ is a vector consisting of the coefficients 5~ and v~3 in $1 L) Fo. Denote by NE, the number 
of nodes on $1 U F0. Then, vector ~ in (3.58) has NE + L dimensions. When Pc is chosen large 
enough, matrix A E R (L+NE)×(L+N~) in (3.58) is positive definite, nonsymmetric, and sparse 
when WE ~ L. When L + WE is not huge, we may choose the Gaussian elimination without 
pivoting to obtain ~ from (3 58), see [19]. 

Now, we give error bounds for the solution ~2h from (3.47) whose proofs are reported in [2]. 
The combination (3.47) can be described equivalently as follows. To seek IL h E Y2, such that 

a(~h,v)  = / ( v ) ,  Vv • v2, (3.60) 
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A 

~ ( u , v ) = / f s  V u V V + / o U ~ V - + P ¢ / f s 2 A u A v  (3.61) 

+ -h- (~+ - ~ - ) ( ~ +  - v- )  + P c [  ( ~  - ~ ; )  (v~ - ~ ; ) ,  
o J Fo 

/¢.l= I,.o,l 

Denote the space, 

H** = {v, v C L2(S), v e Hi(S1),  v e H1($2), A v e  L2($2), and v Ir = 0}, (3.63) 

accompanied with the norm, 

( 2  2 Pc _ 2  + _ 2 )  1/2 
IIIvlll= Ilvll~.s~+P~llvllz,s,+P~ll~vll~,s~+- KII . ÷ - .  IIo,~o+Pollv~-v.  llo,~o , (3.64) 

where 
[]V[]I {][VI]2 2 }1/2 ([ }1/2 

= 1,s, + Ilvlll,s= Ivh vl ~ ' -=" 1,St -t-[V]I,S 2 , 

and Ilvlll,s~ and [IvltLs2 are Sobolev norms. Obviously, V ° C H**. 
theorem below, and an outline of the proofs is given in Remark 3.3. 

THEOREM 3.2. Suppose that there hold the inequafities, 

a(u,v) <_ cIII~,ILI × [llvlll, 
af t ,  v) >__ Colllvlll ~, 

(3.65) 

We obtain an important 

where Co > 0 and C are two constants independent on h and L. Then, the solution of combina- 

tion (3.47) has the error bound, 

IIl~-~hlll < C inf Illu-vlll.  
- -  vE Vh 

We can obtain the following corollary from Theorem 3.2 (see [2 D. 

COROLLARY 3.1. Let all conditions in Theorem 3.2 hold. Suppose that 

u c H k+l ($1) and u E H k+l (Fo). 

Then, there exists the error bound, 

Illu-~hlll--< c {h ~ I%+1,sl v %  + ILRLIh,s2 

1 IlRLllo,ro + I}(RLLllo,ro) } • +V%~ (h k+1/2 t%+l,ro + 

Also, suppose that the number L in (3.43) is chosen, such that 

IIRLI).,~, = 0 (hk), NR~llO,ro = o (h~+l /~) ,  

Then, the optimM convergence rate is given by, 

I l l u -  ~hllt = o (hk). 

II(RL)~ 0,to = O (hk). (3.71) 

(3.68) 

(3.69) 

(3.70) 

(3.72) 

Vv E V~, (3.66) 

V v ~ V ° ,  (3.67) 
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REMARK 3.3 Let us give an outline of the proofs in [2] for the V°-elliptic inequality (3.67), which 
consists of two steps. Step I for the original equation of (3.61) without integration approximation, 
we need to prove a(v ,v )  >_ Coil[viii 2, Vv E Vh ° Step II for the Newton-Cotes integration rules of 
order r, assume that the inverse inequalities in (A3) hold, then, we obtain 

hL 2 = o (1), H L  (1+2/(r+1)) = o (1), (3.73) 

where h = max~3{h~3} in $1, and H denotes the maximal spacing between integration nodes, 
i.e., collocation nodes, and L denotes the number of RBF in $2. When we take L = N 2, and 
assume that the radial &stance 5 defined m (3.7) satisfies relation 5 ~ O ( 1 / N ) ,  then, we have 
the relations 

h = o ( 5 4 ) ,  H ~-o(5(2+4/(r'bl))) . (3.74) 

From (3.74), we also know how to balance the mesh of FEM and the source points of RBF. 

REMARK 3.4. From those error analyses, we discover that the integratmn quadrature plays a role 
only for satisfying the uniformly V°-elliptic inequalities (3.36) and (3.67), but not for improving 
the accuracy of the solutions. As long as the maximal spacing H between collocation nodes 
is small enough, there always exist the optimal orders of solution errors from the radial basis 
collocation methods and their combinations. 

4. I N V E R S E  E S T I M A T E S  F O R  R A D I A L  B A S I S  F U N C T I O N S  

Although, there exist many papers concerning RBF, only a few of them are related to solutions 
of partial differential equations (see [8,9,16]). In the Ritz-Galerkin method (RGM) [1], orthogonal 
polynomials and particular solutions are chosen, that have been replaced by RBF in Section 3. 

Recently, theoretical framework for the collocation methods has been established by that Hu 
and Li [2,3] which can be easily applied to RBCMs and their combinations, except the crucial 
inverse estimates (3.27)-(3.29) of RBF need to be proven. Note that our results in [2,3] and, 
in this paper, are more comprehensive than those in [9] and [16], because various boundary 
conditions are also involved, and because the combined methods are developed. Below, let us 
explore the inverse estimates (3.27)-(3.29) needed for the RBF. Take the multiquadric functions 
as example, 

L 

QL (x, y) = ao ÷ E a~gz (x, y ) ,  (4.1) 

To approximate function f ( x , y ) ,  the collocation equations are where g , (x , y )  = (r 2 + c2) 1/2. 

given by 
L 

QL (x~, y~) = f~ (x, y),  ~ = 1, 2, . . ,  L, ~ a~ = 0. (4.2) 

Equation (3.27) is essential, because equations (3.28) and (3.29) can be easily derived from 
(or replaced by) (3.27) (see [3]). Hence, we focus on the proof of (3.27) for the multiquadratic 
functions. We have the following lemma. 

LEMMA 4.1. Let  f ( x , y )  E S, S be a rectangle, and c >_ 1. There exists A E (0,1) independent 
on f ,  c, and 5 such that, for sufficiently small 5, there exist the bounds, 

Ilf - QLllo,s -< Cexp (c~c 2) A ~/~ Ilfllo,s, (4.3) 

Ill - QLllk,s <- c5c  Ilfl[o,s, (4.4) 

where a = ~2ha/2, eh, and (r are two real constants in the Fourier transform, and C m a constant 

independent  on 5 and a. 

PROOF. Based on Madych [5, Theorem 1, cf. (10), p. 124], there exists a bound, 

(4.5) IIf - QLII0, ,s <- C e x p  ( . c  2) Ilfll0,s, - 2 
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Since S is a bounded domain, we have 

Ill - QLII0,8 -< c Iif - QLII0,~,8 < C e x p  (~c 2) ~c/~ Iif110,8 • (4.6) 

This is the first result (4.3). 
Next, we also obtain from [5, Theorem 4, p. 127], 

Ill - QLIIk,S < C~C IlfIlc~ , (4.7) 

where the norm is defined by [5, el. (6) p. 124], 

II II.,.= (1~1 h°(~)) e~, (4s) 

where hc = v ~  + c 2, and the Fourier transform, 

f (x) = / f s  f (x) exp (-~ (x, ~)) dx. (4.9) 

Since hc _> hi, for c > 1, we have 

II/llch° -< II/11%, , > 1. (4.10) 

Moreover, there is an estimate in [5, p. 124] that, for g(x) = f (cx ) ,  

f 2 Ilgll~ 1 __ Cexp(2Eh~C)II II0,8, (4.11) 

where eh and e are constants. Hence, if c = 1 and g(x) = f ( x ) ,  we have from (4.11) 

f 2  11 [[Ch I ~ Cexp(2eh¢)[tfll2 s (4.12) 

Combining (4.7), (4.10), and (4.12) yields 

[[f --QLllk,s ~ C(~(~I[fllChl <_Cexp(ehCr)~'llfllo,s <_Cl~'llfl]o,s, (4.13) 

where C1 = C exp(ehCr). This is the second result (4.4), and completes the proof of Lemma 4.1. l 

Lemma 4.1 and [5] imply that the approximate solutions have the exponential convergence 
rate O(A "/~) with respect to g, but the derivatives of low order have only polynomial convergence 
rates O(gC). Although (4.4) is very conservative, being the linear convergence rate O(fi), for c _> 1, 
it is used as reasonable assumptions (4.15) leading to the inverse estimates shown below. Suppose 
that there exist the bounds, 

IIf - QLll0,s <-- o (1) I l f l lo , s ,  (4.14) 

Ilf - Qzllk,s  <- c I[fllo,8, k = 1, 2 , . . . ,  (4,15) 

where o(1) << 1, and C is a bounded constant as 5 -~ 0 Denote polynomials f by 

N 
f = fN (x, y) = ~ b, jx 'y 9. (4.16) 

%3=0 

We cite a Lemma from [1,3]. 
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LEMMA 4.2. 
of N, such that 

llfNllk,s --- CN2k ]lfNllo,s • 
Let (4.2) be given. For uniquely determining the polynomials (4.16), we choose 

For the polynomials of order N defined in S, there exists a constant independent 

(4.17) 

N 2 < L <_ ( N +  1) 2, 

and employ more collocation equations 

(N+I) 2 

E a, = 0, 
z = l  

QL (x,,y,) = f~, ~ = 1 , 2 , . . . , ( N +  1) 2 , 

(4.18) 

(4.19) 

where the first L collocation equations are the same as in (4.2). Hence, the errors of the solu- 
tions and their derivatives would not decrease, and Lemma 4.1 also holds. Then, we may still 
assume (4.14) and (4.15), and prove the following theorem. 

THEOREM 4.1. Let (4.14) and (4.15) hold for fN satis~ing (4.16) and (4.19), where S is a 
rectangle. Then, there exists the bound, 

IlQnnk,s <- CLk []Qnllo,s. (4.20) 

PROOF. From the triangle inequality, we have 

IlQLl[k,s --- IlfNllk,s + IIQL - fgllk,s" (4.21) 

From Lemma 4.2 and (4.15), 

IlQLllk,s <- CN2k IIfNIIo,s + C IIfNIIo,s <- CN2k IlfNIIo,s . (4.22) 

Similarly, from (4.14) we have 

[IfNIIo,s <- IIQLI]0,s + IIQL - fNllo,s <--- IIqLII0,s + o(1)IIfNllo,s. (4.23) 

This leads to 
1 1 

IlfNII0,s -< ( 1 -  o(1))ItQLII0,s --- ~ IIQLII0,s. (4.24) 

Since X < v ~ ,  from (4.18), combining (4.22) and (4.24) yields 

IIQLIIk,s < CN2k [IQL[[o,s < CLk IIQLIto,s (4.25) 
This is the desired result (4.25), and it completes the proof of Theorem 4.1. | 

For polynomials, the inverse estimates (4 17) are proved in [1,3], and the similar inverse esti- 
mates (4.20) hold for RBF, based on the approximation properties. Theorem 4.1 enables us to 
extend the combined methods and collocation methods in [2,3] to those using the RBF. Simi- 
lar arguments may be used for the collocation methods and their combinations using the Sinc 
functions [20], or the fundamental functions. 

REMARK 4.1. Equation (4.14) implies the approximation f ~ QL, having small relative er- 
rors. Note that the bound of (4.15) can also be derived from [10]. In fact, we have from [10, 
Theorem 5.3], 

]If - QLllk,s <- Chm-k Ilfllm,S, m > k, (4.26) 

where h = 5. Choosing m = 2k, we obtain from (4 17), 

IIfN -- QLIIk,s <-- Chk IIfNLI2k,s <-- ChkN4k IITNIIo,s <-- Cx [IfNIIo,s, (4.27) 

provided that h can be chosen so small that hkN 4k <_ C1. This also leads to assumption (4.15). 
For c > 1, we may choose small h, such that (h/c)kN 4k < C. 

REMARK 4.2. By following [3], the solution domain can be extended to a polygon. Let us 
briefly describe the arguments in [3]. A polygon can be decomposed to finite parallelograms with 
overlaps. A parallelogram may be transformed to a rectangle by linear transformations. Then, 
equation (4.20) also holds for the polygonal domain 
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5. N U M E R I C A L  E X P E R I M E N T S  

First, we carry out a computational procedure for smooth problems to support the theoretical 
analysis in Section 3. In Sections 5.2 and 5.3, we carry out two methods for solving Motz's 
problem. Numerical experiments of combinations of FEM and RBCM will be reported elsewhere. 

5.1. Radial Basis Collocation Methods with Various Boundary Conditions 

Consider Poisson's equation, 

- A u  = - \ Ox 2 + Oy 2 ] = f (x, y) , in S, (5.1) 

where S = {(x, y) I 0 < x < 1, 0 < y < 1}, with the mixed type of different boundary conditions, 

u L~=o= o, ~ b~o-- o, (5.2) 

Uv Ix--1 = gN,  

Uu -~ OZU [ y = l - -  gR, 

where a > 0, (e.g., a = 2). The exact solution is chosen to be exactly the same as in [11] 

u = sin ( ~ )  sin ( ~ - )  sin ( ~ - )  sin ( ~ - ~ ) .  (5,3) 

Then, the functions f ,  g~r and gR are given explicitly. 
The admissible functions are chosen as follows, 

L 

v = E d~g, (x, y ) ,  in S, (5.4) 
~=1 

where d, are unknown coefficients to be determined, and g,(x, y) are the RBF. First, we choose 
the inverse multiquadric radial basis functions (IMQRB) 

1 
g~ (x, y) = ~ ,  (5.5) 

where c is a shape parameter constant, r~ - V/(X x~) 2 + (y - y~)2 and (x~,y~) are the source 
points which should also be chosen as the collocation nodes. Suitable additional functions may 
be added into (5.4), such as some polynomials or singular functions if necessary. Next, we may 
choose the Gaussian radial basis functions (GRB), 

(5.6) g ~ ( x , y ) = e x p \  c 2 ] .  

In Section 2, we address that the number of collocation nodes may be larger than the number 
of terms of RBF, also see Remark 3 1. Let L be the number of RBF, by choosing L = N 2. We 
use the collocation equations (3 17)-(3.19) on the uniform interior and boundary nodes. The 
distribution of source points in this paper is chosen to be uniform for easy test, but it may, of 
course, be chosen rather arbitrarily. Then, 5 = O(1/N), where N denotes the number of source 
points in one direction. The error norms, by using IMQRB with shape parameter c = 2.0, are 
listed in Table 1, where the collocation nodes are also chosen to be uniform and the total number 
is 196. From Table 1, we can see the following asymptotic relations, 

- vll0,~,s = o ( (0 ,22)N) ,  I1~ (5.7) 

I1~ -vLL0,s = o ((0 24) N) , (5.8) 

l l ~ -  vll~,~ = o ( ( 0 . 2 0 ) N )  (5.9) 
\ / 
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Table 1 The error norms and condition number by the  IMQRB collocation method 
with ~arameter c = 2 0 

L = N 2 72 92 112 132 

Hu--v]lo,oo,s 9 3 0 ( - 3 )  5.92(--5) 432( - -6 )  1.10(--6) 

Ilu - vLlo,s 1 60 ( - 3 )  1.51 ( - 5 )  8 19 ( - 7 )  3.10 ( -7 )  

I I ~ -  vll l ,s  2 2 8 ( - 2 )  1 .32( -4)  5 2 2 ( - 6 )  1 .67( -6 )  

Cond (d)  1.02 (7) 2 28 (8) 1 21 (9) 2.01 (9) 
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Equations (5.7)-(5.9) indicate tha t  the numerical solutions have the exponential convergence 
rates. The profiles of exact solutions are shown in Figure 1, and the approximate solutions and 
errors in Figures 2 and 3. In Table 1, the errors in the Sobolev norm and the infinite norm can 
be achieved in the order of 10 -6, when the number of RBF is given by L = 112. Moreover, the 

shape parameter  c of RBF can also be chosen larger, e .g,  c = 2.5 or 3.0. It  seems that  those 
numerical results are better  than those in [11]. 

5.2. A d d i n g  M e t h o d  o f  S i n g u l a r  F u n c t i o n s  

Consider Motz 's  problem, 

where S = {(x,y)  I - 1  
conditions, 

02u 02u 
A u  = ~x  2 + --Oy 2 = 0, in S, (5.10) 

< x < 1, 0 < y < 1}, with the mixed type of Dirichlet-Neumann 

u x = 0 ,  o n x = - i  A 0 < y _ < l ,  

u = 500, on x = 1 A 0 <_ y _< 1, 

uy = 0, on y = 1 /X --1 < x < 1, (5.11) 

u = 0 ,  o n y = 0  A - - l < x < 0 ,  

u y = 0 ,  o n y = 0  A 0 < x < l .  

The origin (0, 0) is a singular point, since the solution behaviour u = O(r 1/2) as r -~ 0 due to 
the intersection of the Dirichlet and Neumann conditions. The exact solution is given in [1], and 

the leading six coefficients are 

do = 401.1624, 

dl = 87.6559, 

d2 = 17.2379, 

d3 = -8.0712,  

d4 = 1.44027, 

d5 = 0.33105. 

The profiles of the exact solution are shown in Figure 4. 
Because of singularity, some singular functions may be added into the RBF. The admissible 

functions are chosen as 

L M 

v = (x,y) + Z dn n (r, 0), inS, (5.12) 
~=1 n=O 

where ~ and dn are unknown coefficients to be determined, and g~(x, y) are the RBF. In (5.12), 
~o~(r, 0) = r n+l cos(n + 1/2)0, and equation (2.15) is not used to impose the admissible functions 
in computation.  We choose IMQRB and GRB. Let the distribution of source points also be 
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Figure 1. The exact solut]on and derivatives for smoothness problem 
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A p p ~ o ~ r ~ o n  
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Figure 2 The profiles of solution and derivatives by IMQRB collocation method 
with L = 112 and c --- 2.0. 
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Figure 3. The profiles of the errors by IMQRB collocation method with L = 112 and 
c = 2 0  



Ra&al Basis Collocat]on Methods 

Exact U 

309 

600. 

500 - , 
400 - 
300. 

200, ~ 4  100. 
O- "" 1" 

O5 

0 

0 -1 

(a) 

Figure 4. The exact solution and derivatives for Motz's problem 

uniform in computation, and use collocation equations (3.17)-(a.19) on uniform interior and 
boundary collocation nodes. The error norms are listed m Tables 2 and 3, for IMQRB (c = 2.0) 
and GRB (e = 2.0), respectively. L denotes the number of RBF, L = N 2, and M denotes the 
number of singular functions. The coupling techniques for L and M may refer to [1,2]. From 
Table 2, we can see the following asymptotic relations, 

ll~ - VlLo,~,s = o ((o.2s)  N) , (5.1a) 

I1~, - Vllo,s = o ((o.29) N) , (5.14) 

ItU --  VH1,S = 0 ((0.33)N) . (5.15) 

Also, from Table 3, we can see for GRB, 

Ilu- vllo,~,s = o ((o.3o) N) , (5.16) 

Hu - Vllo, s = O ((0.31)N) , (5.17) 

IlU --  VIIi, S -~ 0 ( ( 0 . 3 6 ) N ) .  (5.18) 

Equations (5.13)-(5.18) indicate that the numerical solutions obtained also have the exponential 
convergence rates, which verify the error bounds obtained. The profiles of approximate solutions 
and their errors for Motz's problem are shown in Figures 5 and 6. 

5.3. S u b t r a c t i n g  M e t h o d  o f  S ingular  F u n c t i o n s  

We also consider Motz's problem. First, choose purely the radial basis functions (RBF), 

L 
= ~ a~9~ (x, y). (5.19) 

2 = 1  

The Motz's solutions are known as 

(1) 
(~, o) = F_, d~r'+~/~ oos i + o, (5.20) 
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where the coefficients can also be obtained from 

j0 (1) d~ = -2r-(~+1/2) u(r ,  0)cos i +  0d0. (5.21) 
7r 

Usually, the solutions from the collocation method using (5.19) are poor only near the origin due 
to the singularity. Hence, choosing r > 1/2, we may evaluate the approximate coefficients d~ 
from (5.21) very well, and obtain the singular solutions, 

M 

@=/__. , cos ~+ O. 
z=O 

We may subtract the singular part (5.22) from u, and then, obtain a rather smooth problem for 
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Table 2 The error norms and condition number by the IMQRB collocation method 
adding singular functions with parameter c = 2.0. 

L = N  2, M 

I1~ - vl]0,:¢,8 

I lu-vl l l , s  
& 

dl 

& 
& 

Cond (A) 

42, 2 

11 34 

3.00 

12.0 

423 8219 

95 9485 

12 7307 

2 58 (3) 

62, 3 

1.07 

2 85 (--1) 

1 68 

403 9276 

111 1686 

26 5319 

-12.2469 

8.60 (5) 

82, 4 

7 46 ( -2)  

1 27 ( -2)  

1 03 ( -1 )  

401.0821 

89 9612 

8 6550 

--10 7710 

1.8867 

5 38 (8) 

102, 5 

5.50 ( -3)  

1.7o ( -3)  

1.45 (-2)  

401 1446 

87.7384 

16 5567 

-3.4625 

-3.1864 

- 0  8645 

3 21 (9) 

Table 3 The error norms and con&tion number by the GRB collocation method 
addln singular functions with parameter c = 2 0. 

L = N 2, M 42, 2 62, 3 82, 4 102, 5 

I lu-vl lo ,~,s  807 732( -1 )  9.40(-2) 590 ( -3 )  

II~ - vllo,s 1 86 1 95 ( - 1 )  1 39 ( - 2 )  1 60 ( - 3 )  

I1~- vlll,s 813 107 145(--1) 1.78(-2) 

do 416 4048 403 6369 401.0648 401 1865 

,il 72.9120 103.3334 88.9340 87 3105 

d2 16 4691 45 5082 24.7180 17.2233 

d3 / --19.0671 -11 6812 -13.7762 

/ / --1 7538 7 8214 

gs / / / -0.4210 

Con& (A) 7.16 (3) 2.73 (8) 1 36 (9) 5.79 (9) 
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= u - @, w i t h  t he  fol lowing equa t ions ,  

A t  = 0, in S, 

u ~ = - @ 2 ,  o n x = - I  A 0 ~ y _ < l ,  

= 5 0 0 - -  @, on x = 1 A 0 <_ y _< 1, 

f i y = - - @ y ,  o n y = l  A - - l < x < l ,  

= 0, on  y = 0 A --1 < x < 0, 

f l y = 0 ,  o n y = 0  A 0 < x _ < l .  

(5.23) 

(5.24) 

Again ,  we use t he  rad ia l  basis co l loca t ion  m e t h o d  in Sec t ion  3 to  seek t h e  r a t h e r  s m o o t h  prob-  

l em (5.23),(5 24). We add  s ingular  pa r t  @ to  the  s m o o t h  pa r t  ~ to  o b t a i n  a b e t t e r  a p p r o x i m a t i o n  

to  u. R e p e a t  t he  eva lua t ion  (5.21) of coefficients d,, and  then ,  s u b t r a c t  @ of (5.22) again.  T h e  

above  i t e r a t i o n  repea t s  unt i l  a convergen t  so lu t ion  is ob ta ined .  

T h e  er ror  no rms  are  l is ted in Tables  4 and  5 for I M Q R B  (c --  2.0) and  G R B  (c -- 2.0), 

respect ively .  We choose r = 1 to  eva lua te  t he  a p p r o x i m a t e  coefficients dn, n = 0, 1 , . . . ,  5. T h e  

t e r m i n a t i o n  of  i t e r a t ions  occurs  when  t h e  abso lu te  error  becomes  less t h a n  10 - 6  , and t h e  n u m b e r  

of  i t e r a t i on  needed  is a b o u t  10. F r o m  Table  4, we can  also observe  the  e x p o n e n t i a l  convergence  
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Approximation V 
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0 -1 
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Figure 5 The profiles of solution and derivatives by GRB collocation method adding 
singular functions with L = 8 2, M ~ 4, and c = 2 0. 
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0- 

-1 

, 

08 ' 1 ~  ' " " 1 
06 ~ 05 

Y 04 02 ' 05 0 X 

0 -1 

(c)  

F i g u r e  6 T h e  prof i les  of er rors  by  G R B  co l loca t ion  m e t h o d  a d d i n g  s i n g u l a r  func t ions  
wzth L = 82 , M  = 4, and  c = 2.0. 
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Table 4. The error norms and condition number by the 
subtract ing singular functions with parameter  c = 2 0 

IMQI=tB collocation method 

L = N 2, M 42, 2 62, 3 82, 4 102, 5 

I1~ - (~ + ~ ) l l o , ~ , s  6 99 6.10( -1 )  7 4 0 ( - 2 )  7 0 0 ( - 3 )  

II~ - (~ + ~) l lo ,s  2.24 2,64(--1) 8 90(--3) 1 40(--3) 

I1~ - (~ + @)lh,s 7.82 1.45 1.11(--1) 1 63( -2)  

do 399.8414 401 0809 401.1633 401 1627 

dl 86 0459 87.6951 87.6526 87.6556 

d2 18.0743 17.0752 17.2360 17 2378 

d3 / 7 8863 --8 0718 --8 0714 

d4 / / 1.4386 1 4403 

d5 / / / 0.3310 

Cond.(A)  1.14(3) 4.21(5) 6.16(8) 3.21(9) 

Num of lter. 10 10 9 9 

Table 5 The error norms and condition number by the GRB collocation method 
subtracting singular functions with parameter  c ---- 2 0. 

L = N  2, M 42, 2 62 , 3 82 , 4 102 , 5 

II ~ - (~ + ~)llo,~,s 5 24 5 99(-1) 1.01(-1) 1.18(-2) 
2.69(-1) 2 10(-2)  2 10(-3)  1 62 

II~ - ( ~ + ~ ) t h , s  6.14 1 48 1.64(-1) 1 87( -2)  

d0 399.7470 401 0842 401 1625 401.1617 

J1 87 2125 87 7272 87 6501 87.6571 

d2 17.7888 17 1083 17.2329 17.2373 

da / -7.8454 -8.0616 -8.0708 

d4 / / 1.4393 1.4403 

d5 / / / 0.3310 

Cond.(A) 6 06(3) 1 89(8) 1.01(9) 2 70(10) 

10 11 10 Num of ~ter. 

Appr~mmatmn ~oar u + ~ w 

0 -1 

(a). 

Fagure 7 The profiles of solution and denvatwes by GRB collocation method sub- 
t ractmg singular functions with L = 82, M = 4, and c = 2.0 
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A~ma~on  (~t~er u + ~ W)_X 
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Figure 7 (cont.) 

U ('~er u + ~a r  w) 

015  
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Figure 8. The profiles of the errors by GRB collocation method subtracting singular 
functions with L = 82, M = 4, and c -- 2 0 
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Also, from Table 5, 
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Figure 8 (cont) 

I1~- (~ + ~)llo,~,s = 0 ((0.34)N), 

Hu - (~2 + w)l[o,s = O ( (0 .30)N)  , 

I1~- (~ + ~)lll,s = 0 ((0.33)N). 

(5.25) 

(~.26) 

(5.27) 

II u - (u + w)llo,~,s = O ((0.39)N) , 

II u -  (u + w)ll0,s = O ((0.34)N) , 

I[ u -  (u+w)[ l l , s  = O ((0.38)N).  

(5.2s) 

(5.29) 

(5.30) 

The exponential convergence rates, equations (5.25)-(5.30), also support the theoretical analysis 
made. The profiles of the approximate solutions and their errors are shown in Figures 7 and 8. 
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Table 6 The error norms and condglon number by the IMQRB collocation method 
adding smgular functions with L = 82 and M = 4 

c I1~ - ~110,~,s 

10 

12 

14 

IL~-vLt0,s II~-vlll,s Cond (A) 

6 71(--2) 1.96(-2) 1.17(-1) 2.34(6) 

7 93(-2) 2.16(--2) 1 39(-1) 5 56(6) 

9 36(-2) 2 12(-2) 1 44(-1) 1 66(7) 

1 94(-2) 1.6 9 36(--2) 

18 

1.37(-1) 

20 

5.49(7) 

8 59(-2) 1.63(-2) 1.21(-1) 1 94(8) 

7 46(-2) 1.27(-2) 1 03(-1) 1 70(9) 

6 29(-2) 9 70(--3) 8 74(--2) 8 27(8) 22 

7 60(--3) 7 60(--2) 

6.81(-2) 

2 4 5 25(--2) 

2 6 4 38(--2) 6 10(-3) 

2 8 3 65(-2) 5 20(-3) 6 28(-2) 

3 0 3 30(-2) 4 80(--3) 5 96(--2) 

Table 7 The error norms and con&tlon number by the IMQI=tB 
subtracting singular functions with L = 82 and M = 4 

1 83(9) 

1 92(9) 

3.35(9) 

2 01(9) 

collocation method 

e 

1.0 

12 

14 

16 

1.8 

20 

22 

2.4 

26 

28 

3.0 

I1" - (u + ~)ll0,oo,s 

5 28(-2) 

8 02(-2) 

9 78(-2)  

I1~'- (~ + ~)llo,s 

8.70(-3) 

9 80( -3 )  

1 03(-2) 

1 01(-2) 

I1~- (~ + ~ ) lh , s  

9 19(--2) 

1,14(-1) 

1.27(-1) 

9.63(-2) 1.27(-1) 

8 66(-2) 9 60(-3) 1 20(-1) 

7.40(-2) 8 90(-3) 1.11(-1) 

6.16(-2) 8 20(-3)  1 00(--1) 

5.06(-2) 7 50(-3)  9 06(-2)  

4 13(-2)  6 80(-3)  8 20(-2)  

3 36(-2)  6.20(-3) 7 48(-2)  

2.73(--2) 5.70(--3) 6 89(--2) 

Cond. (A) 

1 35(6) 

2 97(6) 

7.81(6) 

2 32(7) 

7 35(7) 

1 95(8) 

3.18(8) 

4 75(8) 

5 59(8) 

9.11(8) 

1.11(9) 
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The  adding method  of singular  solutions was repor ted  in [21], and the  sub t r ac tmg  method  of 

singular  solut ions m [22]. (See also [1],) 

5.4. C o m p a r i s o n s  a n d  C o n c l u s i o n s  

1. To solve Poisson's  problem, this  paper  provides the theoret ical  f ramework of RBCM and its 

combinat ions  wi th  other  methods  to cover various numerical  methods  of RBF.  This  paper  is also 

an impor t an t  development  of R B F  from the approximat ion  theory  of smooth  functions to  the  

solutions of par t ia l  differential  equations.  The  RBCM is a fairly new and efficient tool  for solving 

PDEs,  in which the solutions in terms of R B F  and singular  functions are added  if necessary. 

2. From Table 1, we can observe the  exponent ia l  convergence ra tes  for smooth  problems,  which 

may  be compet i t ive  to or thogonal  polynomials.  On the other  hand,  from Tables 2-5, we can find 

t ha t  there  also exist  the  exponent ia l  convergence rates  for s ingular i ty  problems,  when applying 

some singular  functions. F rom these tables,  the  following asympto t ic  relat ions are also observed, 

Ilu-vllk,s=o(~ N) =o(~ ~) , k = O, 1, 
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Figure 9 (cont) 

where 0 < ~ < 1. 
For Motz's problem, we find that the approximate solutions by RBCM adding method of singu- 

lar solutions in Section 5.2 have much better convergence rates than those by RBCM subtracting 
method for the singular solutions in Section 5.3. On the contrary, the leading coefficients of sin- 
gular functions, dn' n =- 0, 1 , . . . ,  5, obtained by RBCM subtracting method are more accurate 
than those by RBCM adding method. We also observe that the IMQRB is superior to the GRB, 
in both accuracy and stability. 

3. From the numerical results, we see that the RBF have large condition number which 
implies high instability. That is the drawback of the radial basis collocation method. In practical 
computation, since only a few terms of RBF are needed, such drawback is not serious. In spite 
of this drawback, the RBCM is still a competitive method for PDEs due to high accuracy and a 
very low computational cost. 

4. From Tables 6 and 7 and Figure 9, we can see that there exists convergence by increasing 
parameter c from 1.0 to 3.0. The following asymptotic relations are also observed, 

- v l l k , s  = o k = o,  1,  

w h e r e 0 < A < l .  
5. All of numerical experiments indicate that the RBCM have exponential convergence rates 

where 0 < A < 1. From the viewpoint of accuracy, the errors tend to zero as c /6  -~ c~ (i.e., 

L --+ cc and c ~ c~). However, from the viewpoint of stability, we can not increase L too much 
due to large condition number. Also, we cannot increase c too much due to the flatness of RBF, 
causing the ill-conditioned F in (3.20). It seems that accuracy and instability are twins. Such a 
statement is also called the uncer ta in ty  princzple in [23]. Either one goes for a small error and 
gets a bad sensitivity, or one wants a stable algorithm and has to take a comparably large error. 
In real computation, we should keep some balance between them. In summary, Theorem 3.1 and 
the numerical examples display that the errors of the solutions of Poisson's equation by RBCM 
have the same exponential convergence rates as those of surface fitting of RBF. 

R E F E R E N C E S  

1 z c .  L1, Combined Methods for EU~ptzc Equatzons wzth Szngulamtzes, Interfaces and Infinzt~es, Kluwer Aca- 
demm Pubhshers, Boston, MA, (1998). 



320 H - Y  HU etal 

2 H Y Hu and Z.C. Ll, Combination of collocation and finite element methods for Poisson's equations, 
Techmcal Report, Department of Apphed Mathematics, National Sun Yat-sen University, (Submitted). 

3. H.Y Hu and Z.C Li, Collocation methods for Poisson's equations, Techmcal Report, Department of Applied 
Mathematics, Natlonal Sun Yat-sen University, (Submitted). 

4. E.J. Kansa, Multlqudrics--A scattered data apprommation scheme with apphcations to computational flmd- 
dynamms, I: Surface apprommations and partial derivatives, Computers Math Apphc 19 (8/9), 127-145, 
(1992). 

5. W R Madych, Miscellaneous error bounds for multlquadrm and related mterpolatory, Computers Math. 
Applic. 24 (12), 121-138, (1992) 

6. Z Wu and R. Schaback, Local error estimates for radial basra function interpolation of scattered data, IMA 
J of Numer. Anal. 13, 13-27, (1993). 

7. J. Yoon, Local error estimates for radial basra function mterpolatlon of scattered data, J Approx. Theory 
112 (1), 1-15, (2001). 

8. E J Kansa, Multlqudrms--A scattered data approximation scheme with apphcations to computational fluid- 
dynamics, II' Solutions to parabohc, hyperbolic and elhptm partial differential equations, Computers Math. 
Appl~c 19 (8/9), 147-161, (1992). 

9. R. Franke and R. Schaback, Solving partial differential equations by collocation using radial functmns, Applzed 
Mathematics and Computatzon 93, 73-82, (1998) 

10. H. Wendland, Meshless Galerkin methods using radml basis functions, Math. Comp. 68 (228), 1521-1531, 
(1999). 

11. A H -D. Cheng, M.A. Golberg, E.J. Kansa and G Zammlto, Exponential convergence and H - c  multiqudrics 
collocation method for partial differentml equations, Numer. Methods Partial Dzfferent~al Equations 19 (5), 
571-594, (2003). 

12. N Mai-Duy and T. Tran-Cong, Numerical solutmn of differential equations using multiquadrlc radml basra 
function networks, Neural Networks 14, 185-199, (2001) 

13 N. Mal-Duy and T. Tran-Cong, Mesh-free radml basra function network methods with domain decomposition 
for apprommation of functmns and numermal solution of Pomson's equations, Engmeemng Analyszs wzth 
Boundary Elements 26, 133-156, (2002). 

14. R L Hardy, Multiquadric equations of topography and other irregular surfaces, J. of Geophysical Research 
76, 1905-1915, (1971). 

15. R. Franke, Scattered data interpolation tests of some methods, Math. Comp. 38, 181-200, (1982). 
16 M Golberg, Recent developments in the numerical evaluation of partml solutions in the boundary element 

methods, Applzed Mathematzcs and Computatwn 75, 91-101, (1996). 
17. W.R Madych and S.A Nelson, Multivariate interpolatmn and conditionally positive defimte functions, II, 

Math Comp. 54, 211-230, (1990). 
18. P.G Ciarlet, Basic error estimates for elliptm problems, In F~n~te Element Methods (Part I), (Edited by P.G. 

Ciarlet and J.L. Lmns), pp. 17-352, North-Holland, (1991). 
19. G H Golub and C F Loan, Matmx Computatwns, Second Edition, Chapters 3, 4, and 12, The Johns Hopkins 

University Press, Baltimore, MD, (1989). 
20 F. Strenger, Numemcal Methods Based on Smc and Analytic Functzons, Sprmger-Verlag, Berlin, (1993). 
21 G.J Fix, S Gulati and G I Wakoff, On the use of singular functmns with finite element approximations, 

J Comp. Phys 13, 209-238, (1973) 
22 N M Wigley, On a method to subtract off a singularity at a corner for the Dmchlet or Neumann problem, 

Math Comp. 23, 395-401, (1968). 
23 R Schaback, Error estimates and condltmn numbers for radml basra function interpolation, Advances ~n 

Computational Mathematics 3, 251-264, (1995) 


