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Abstract

In this short article, we recalculate the numerical example in Kř�ižek and Neittaanmäki (1987) for the

Poisson solution u ¼ xrð1� xÞ sin py in the unit square S as r ¼ 7
4. By the finite difference method, an

error analysis for such a problem is given from our previous study by k�k1 ¼ C1h2 þ C2h
5
4, where h is

the meshspacing of the uniform square grids used, and C1 and C2 are two positive constants. Let

� ¼ u� uh, where uh is the finite difference solution, and k�k1 is the discrete H 1 norm. Several tech-

niques are employed to confirm the reduced rate Oðh5
4Þ of convergence, and to give the constants,

C1 ¼ 0:09034 and C2 ¼ 0:002275 for a stripe domain. The better performance for r ¼ 7
4 arises from the

fact that the constant C1 is much large than C2, and the h in computation is not small enough.

AMS(MOS) Subject Classifications: 65N10, 65N30.

Keywords: Numerical verification, reduced convergence rates, superconvergence, singularity, Poisson
equation.

Krizek and Neittaanmaki in [1] considered the Poisson equation on a unit square
domain S ¼ ð0; 1Þ � ð0; 1Þ, and choose the solution

uðx; yÞ ¼ xrð1� xÞ sin py; in S ; ð1Þ

where r > 1
2. The recovered gradient technique is used in a post processing, and

the superconvergence Oðh2Þ can be achieved for u 2 H 3ðSÞ, where h is the maxi-
mal boundary length of the triangles used. The numerical results in [1] for r ¼ 1

and 7
4 also showed the best global superconvergence Oðh2Þ. It seems that for r ¼ 7

4,

the post-processing can give good numerical results even when u =2 H 3ðSÞ, see [1],
p. 228.

For the Poisson equation �Du ¼ f in S and u ¼ 0 on @S, the finite element
method (FEM) is to seek uE

h 2 Vh such that

Z Z
S
ruE

hrv ¼
Z Z

S
fv; 8v 2 Vh ; ð2Þ
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where Vh is a finite collection of piecewise linear functions on S satisfying v ¼ 0 on
@S. Denote S ¼ [ij4ij, where 4ij are small triangles. When 4ij are uniform and
right triangles, the finite difference equations of five nodes are obtained. On the
other hand, the Shortley-Weller difference scheme is also of five nodes, which can
be interpreted as the linear or bilinear FEM using special rules of integrations [4]:
To seek uh 2 Vh such that

cZZ
S
ruhrv ¼

cZZ
S

fv; 8v 2 Vh ; ð3Þ

where cRRS is an approximation of
R R

S . Eqs. (2) and (3) lead to the linear alge-
braic equations

A~x ¼~b; and A~x ¼~b� ; ð4Þ

respectively, where the same matrix A is positive definite and spares, and~x is the

unknown vector consisting of ðuE
h Þij (or ðuhÞij ) at the interior modes ði; jÞ. In (4),

the vector ~b results from
R R

S fv, and is evaluated in the computation [1] by the
seven-point numerical integration formula given in book [2], p.58, which is exact
for all quintic polynomials. Of course, we can also choose the Gaussian rules with
high order on triangles 4ij in Strang and Fix [6]. Hence we may assume that

R R
S

can be evaluated ‘‘almost’’ exactly. Note that only the non-homogeneous terms~b

and~b� in (4) are different. Based on the analysis in [5], both the errors from cRR
Sfv

and the global errors of uh have the same order of h, where h is the maximal
meshspacing of the rectangular grids. Hence we may reasonably choose the
computational schemes in [5] we are familiar with, to investigate numerically the
errors behavior for the example of r ¼ 7

4 in [1].

Since the stiffness matrix in [1] from the linear elements on the uniform and right
triangles is just the finite difference scheme of five nodes, and since the Poisson
solution (1) is exactly the same as that in our recent paper [5], we will use the
Shortley-Weller difference scheme in [5], to recompute the example in [1] and to

report some new discoveries. First, we run our program for r ¼ 2; 74 and
3
2 as the

uniform square grids are chosen. When r ¼ 2, the solution is highly smooth, and

when r ¼ 7
4 and

3
2, u =2 H3ðSÞ, where the case of r ¼ 7

4 was given in [1]. Note that
the numerical experiments for r ¼ 7

6 ; 0:95 and 1
2 using a local refinement of dif-

ference grids near the axis Y have been reported in [5]. The error norms are
defined exactly the same way as in [5], and the results are listed in Tables 1–3. In
[5], we define the discrete H1 norms:

kvk21 ¼ kvk
2

1;S ¼ jvj
2

1;S þ kvk
2

0;S ; ð5Þ

jvj21 ¼ jvj
2

1;S ¼
X

ij

bZZ
(ij

ðrvÞ2ds

" #
; ð6Þ
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Table 1. Errors and condition numbers for r ¼ 2 and the uniform square grids

N ;Na;Nb 4,5,3 8,10,6 16,20,12 32,40,24

k�k0 0.187(-2) 0.423(-3) 0.103(-3) 0.254(-4)

k�k1 0.144(-1) 0.362(-2) 0.905(-3) 0.226(-3)

maxij j�ijj 0.559(-2) 0.141(-2) 0.352(-3) 0.882(-4)

maxij jð�xÞiþ1
2;j
j 0.269(-1) 0.703(-2) 0.179(-2) 0.452(-3)

maxij jð�yÞi;jþ1
2
j 0.193(-1) 0.523(-2) 0.134(-2) 0.336(-3)

Av 0.203(-2) 0.426(-3) 0.972(-4) 0.232(-4)
Avx 0.154(-1) 0.345(-2) 0.814(-3) 0.198(-3)
Avy 0.689(-2) 0.159(-2) 0.386(-3) 0.948(-4)
�1 0.395(-2) 0.538(-3) 0.688(-4) 0.864(-5)
�2 0.559(-2) 0.995(-3) 0.135(-3) 0.172(-4)

maxj j�1jj 0.995(-3) 0.124(-3) 0.155(-4) 0.194(-5)

maxj jð�xÞ1
2;j
j 0.205(-1) 0.513(-2) 0.128(-2) 0.321(-3)

ConðAÞ 22.0 110 495 0.185(4)

Table 2. Errors and condition numbers for r ¼ 7
4 and the uniform square grids

N ;Na;Nb 4,5,3 8,10,6 16,20,12 32,40,24

k�k0 0.186(-2) 0.416(-3) 0.994(-4) 0.243(-4)

k�k1 0.137(-1) 0.346(-2) 0.869(-3) 0.218(-3)

maxij j�ijj 0.486(-2) 0.123(-2) 0.305(-3) 0.748(-4)

maxij jð�xÞiþ1
2;j
j 0.262(-1) 0.705(-2) 0.183(-2) 0.468(-3)

maxij jð�yÞi;jþ1
2
j 0.186(-1) 0.507(-2) 0.128(-2) 0.318(-3)

Av 0.197(-2) 0.386(-3) 0.848(-4) 0.196(-4)
Avx 0.147(-1) 0.356(-2) 0.798(-3) 0.200(-3)
Avy 0.602(-2) 0.136(-2) 0.318(-3) 0.755(-4)
�1 0.344(-2) 0.472(-3) 0.596(-4) 0.741(-5)
�2 0.487(-2) 0.872(-3) 0.117(-3) 0.146(-4)

maxj j�1jj 0.583(-3) 0.152(-3) 0.160(-4) 0.194(-5)

maxj jð�xÞ1
2;j
j 0.169(-1) 0.345(-2) 0.317(-3) 0.258(-3)

ConðAÞ 22.0 110 459 0.185(4)

Table 3. Errors and condition numbers for r ¼ 3
2 and the uniform square grids

N ;Na;Nb 4,5,3 8,10,6 16,20,12 32,40,24

k�k0 0.187(-2) 0.446(-3) 0.113(-3) 0.307(-4)

k�k1 0.118(-1) 0.305(-2) 0.807(-3) 0.243(-3)

maxij j�ijj 0.350(-2) 0.989(-3) 0.255(-3) 0.664(-4)

maxij jð�xÞiþ1
2;j
j 0.213(-1) 0.609(-2) 0.256(-2) 0.235(-2)

maxij jð�yÞi;jþ1
2
j 0.151(-1) 0.396(-2) 0.932(-3) 0.203(-3)

Av 0.149(-2) 0.303(-3) 0.736(-4) 0.214(-4)
Avx 0.118(-1) 0.289(-2) 0.784(-3) 0.222(-3)
Avy 0.417(-2) 0.899(-3) 0.206(-3) 0.513(-4)
�1 0.350(-2) 0.518(-3) 0.119(-3) 0.450(-4)
�2 0.315(-2) 0.873(-3) 0.131(-3) 0.510(-4)

maxj j�1jj 0.343(-3) 0.275(-3) 0.119(-3) 0.450(-4)

maxj jð�xÞ1
2;j
j 0.787(-2) 0.940(-3) 0.256(-2) 0.235(-2)

ConðAÞ 22.0 110 459 0.185(4)
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kvk20 ¼ kvk
2

0;S ¼
X

ij

bZZ
(ij

v2ds

" #
; ð7Þ

where bRR(ij
v2ds is the integration quadrature approximation of

RR
(ij

v2ds, and

(ij ¼ fðx; yÞ
���xi � x � xiþ1; yj � y � yjþ1g.

Let uh be the solution of the Shortley-Weller difference approximation for the
Poisson equation. Denote �x ¼ ux � ðuhÞx and �y ¼ uy � ðuhÞy , where ux ¼ @u

@x and
uy ¼ @u

@y. Also define the average norms in [5]:

Av ¼ 1

Num

X
ij

�ði; jÞj j; Avx ¼
1

Num

X
ij

�xðiþ
1

2
; jÞ

����
���� ; ð8Þ

Avy ¼
1

Num

X
ij

�yði; jþ
1

2
Þ

����
���� ;

�1 ¼ max
i;j
j�1;jj; j�2N�1;jj; j�i;1j; j�i;N�1j
� �

; �2 ¼ max
i;j
j�2;jj; j�2N�2;jj; j�i;2j; j�i;N�2j
� �

;

where �ði; jÞ ¼ �i;j ¼ �ðih; ; jhÞ, h is the meshspacing of the uniform rectangular
grids used in the finite difference method, and Num is the total number of the
errors related. Besides, ConðAÞ denotes the condition number of the associated
matrix A.

Looking at Tables 1–3, the ratios of k�k1 in the last two columns are given by

0:905ð�3Þ
0:226ð�3Þ ¼ 4:00 ¼ 22 ¼ Oðh2Þ; as r ¼ 2; ð9Þ

0:869ð�3Þ
0:218ð�3Þ ¼ 3:986 ¼ 21:995 ¼ Oðh2�dÞ; 0 < d << 1; as r ¼ 7

4
; ð10Þ

0:807ð�3Þ
0:243ð�3Þ ¼ 3:32 ¼ 21:73 ¼ Oðh5

3Þ; as r ¼ 3

2
:

Numerically, we can see

k�k1;Avx ¼ Oðh2Þ; as r ¼ 2; ð11Þ

k�k1;Avx ¼ Oðh2�dÞ; 0 < d << 1; as r ¼ 7

4
; ð12Þ

k�k1;Avx ¼ Oðh5
3Þ; as r ¼ 3

2
: ð13Þ

Equations (12) and (13) are not coincident with the theoretical predictions

Oðhr�1
2Þ for the uniform rectangular grids in [5]:
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k�k1 ¼ Oðh5
4Þ; as r ¼ 7

4
; ð14Þ

k�k1 ¼ OðhÞ; as r ¼ 3

2
: ð15Þ

Note that Eq. (12) is very similar to the results for Example 5.2 in [1].

From Tables 1–3, we may see numerically that the real deficit of the convergence

order occurs for r ¼ 3
2 but not for r ¼ 7

4, see (12) and (13) which are so different

because u 2 H2ðSÞ stands for r ¼ 3
2 but not for r ¼ 7

4. All data in Tables 1–4 have
been obtained by Fortran programs in double precision. Note that the norm

equivalence between k�k1 and kuI � uhk1;S can be found in [4], p. 395, where uI

and uh are the interpolant solution of the true solution u and the FEM (or FDM)
solution uh, respectively. Hence, although Tables 1–3 are carried out for the

superconvergence of k�k1 and Avx (the average nodal derivatives), the conclusions

may be drawn similarly for the global superconvergence in [1].

From [5] the reduced convergence rates by the Shortley-Weller difference
approximation for the Poisson solution (1) can be obtained as

k�k1 � C1h2 þ C2hr�1
2; as

1

2
< r < 2 ^ r 6¼ 1; ð16Þ

where C1 and C2 are positive constants. When C1 >> C2 and h is not small, the

computed results may not show the desired order Oðh5
4Þ. The order Oðh5

4Þ can only
be observed numerically, if the special model on a stripe domain is designed to
enforce constant C2, and if the h is small enough, see also [3].

Now let us show (16). Let S ¼ S0 [ SC in A5 (see [5, p. 207]), where
SC ¼ fðx; yÞj0 < x < a < 1; 0 < y < 1g and S0 ¼ fðx; yÞja < x < 1; 0 < y < 1g are
the singular and the smooth subdomains, respectively. Since the solution in S0 is
smooth enough to have u 2 H3ðS0Þ, we obtain the superconvergence rate Oðh2Þ
from [5]. Moreover, from Theorem 4.1 [5, p. 211] we have all errors from S0 and SC

Table 4. Errors and condition numbers for r ¼ 7
4 and the uniform square grids on the stripe domain S�

N ;Na 32,4 64,8 128,16 256,32 512,64 768,96

k�k0 0.324(-5) 0.116(-5) 0.392(-6) 0128(-6) 0.409(-7) 0.208(-7)

k�k1 0.118(-3) 0.347(-4) 0.107(-4) 0.355(-5) 0.127(-5) 0.720(-6)

maxij j�ijj 0.184(-4) 0.653(-5) 0.221(-5) 0.730(-6) 0.236(-6) 0.121(-6)

maxij jð�xÞiþ1
2;j
j 0.572(-3) 0.166(-3) 0.577(-4) 0.447(-4) 0.292(-4) 0.221(-4)

maxij jð�yÞi;jþ1
2
j 0.574(-4) 0.204(-4) 0.693(-5) 0.229(-5) 0.743(-6) 0.381(-6)

Av 0.950(-5) 0.301(-5) 0.955(-6) 0.302(-6) 0.947(-7) 0.479(-7)
Avx 0.295(-3) 0.847(-4) 0.266(-4) 0.807(-5) 0.245(-7) 0.122(-5)
Avy 0.286(-4) 0.923(-5) 0.296(-5) 0.940(-6) 0.296(-6) 0.150(-6)
�1 0.184(-4) 0.592(-5) 0.178(-5) 0.527(-6) 0.156(-6) 0.762(-7)
�2 0.159(-4) 0.653(-5) 0.212(-5) 0.644(-6) 0.172(-6) 0.943(-7)

maxj j�1jj 0.184(-4) 0.592(-5) 0.178(-5) 0.727(-6) 0.156(-6) 0.762(-7)

maxj jð�xÞ1
2;j
j 0.212(-3) 0.292(-4) 0.577(-4) 0.447(-4) 0.292(-4) 0.221(-4)

ConðAÞ 12.0 50.2 202 812 3249 7311
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k�k1 ¼ k�k1;S0 þ k�k1;SC
¼ Oðh2Þ þ OðhrÞ; ð17Þ

where r ¼ ðp þ 1Þl ¼ ðp þ 1Þðr� 1
2Þ and r 6¼ 1. When the uniform square girds

are used (i.e., p ¼ 0), Eq. (17) leads to

k�k1 ¼ Oðh2Þ þ Oðhr�1
2Þ; if

1

2
< r < 2 ^ r 6¼ 1: ð18Þ

This is (16). In fact, we merge two terms of the right hand side of (16) into one
majority term in Theorem 4.1 in [5, p. 211] as h! 0.

Now, let us consider the stripe domain

S� ¼ fðx; yÞ
���0 < x <

1

8
; 0 < y < 1g; ð19Þ

and choose uðx; yÞ ¼ xrð18� xÞ sin py as the solution of the Poisson equation with

the homogeneous Dirichlet boundary condition. When the uniform square grids

are used, the errors are evaluated for the case of r ¼ 7
4 only, and listed in Table 4,

where N and Na are the division numbers along axes Y and X , respectively. Then
h ¼ 1

N ¼ 1
8Na

. For S�, the reduced convergence rates (16) remain the same. From

Table 4, we see the ratios of k�k1 between N and 2N :

0:118ð�3Þ
0:347ð�4Þ ¼ 3:40 ¼ 21:77; as N ¼ 32: ð20Þ

Obviously, the above ratios clearly illustrate a deficit of convergence rates for
r ¼ 7

4.

Suppose that errors k�k1 for r ¼ 7
4 satisfy (16),

k�k1 ¼ C1h2 þ C2h
5
4; ð21Þ

where h ¼ 1
N. Table 4 has provided their values at N ¼ 32; 64; :::; 512 already.

Based on these data, the order Oðh5
4Þ in (21) can be confirmed by the Richardson

interpolation by excluding the smooth part Oðh2Þ. Moreover, the constants C1

and C2 can be obtained from least squares method:

C1 ¼ 0:9034ð�1Þ; C2 ¼ 0:2275ð�2Þ; ð22Þ

based on the known values of k�k1 in Table 4 again. Then Eq. (21) is written as

k�k1 ¼ 0:09034� h2 þ 0:002275� h1:25: ð23Þ

The detailed numerical results are omitted.

In summary, the numerical verification on the reduced convergence rate Oðh5
4Þ is

more difficult than that on Oðh1
2Þ in [3], which has been observed numerically
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when N ¼ 768. In this short article, not only is the stripe domain,

S� ¼ fðx; yÞ; 0 < x < 1
8 ; 0 < y < 1g, chosen, to enlarge the constant C2 of h

5
4 in

(16), but also the Richardson interpolation is employed to exclude the smooth

part Oðh2Þ, and to display clearly Oðh5
4Þ. This is an accelerating process on con-

vergence of the errors to the singular part of the solution uh. Without this tech-

nique, the verification computation for Oðh5
4Þ is exhausted even if a huge computer

is available. Moreover, by the least squares method, constants C1 and C2 are

obtained, and the real errors k�k1 of the solution on S� for r ¼ 5
4 are governed by

(23). Note that the constant in front of h
5
4 is much smaller than that of h2, even for

the stripe S�.

Acknowledgements
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