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Abstract

In this paper, the harmonic functions of Laplace’s equations are derived explicitly for the Dirichlet and the Neumann boundary conditions

on the boundary of a sector. Those harmonic functions are more explicit than those of Volkov [Volkov EA, Block method for solving the

Laplace equation and for constructing conformal mappings. Boca Raton: CRC Press; 1994], and easier to expose the mild singularity at the

domain corners of the Laplace solutions. Moreover, the particular solutions of Poisson’s equation on the polygon is also provided. We also

explore in detail the singularities of the polygons with the boundary angles QZp/2, 3p/2, p and 2p, which often occur in many testing

models.

Besides, the popular singularity models, Motz’s and the cracked beam problems in Lu et al. [Lu TT, Hu HY, Li ZC. Highly accurate

solutions of Motz’s and the cracked beam problems. Eng Anal Bound Elem; 2004, in press], we design two new singularity models, one with

discontinuous singularity, and the other with crack plus mild singularities. The collocation Trefftz method, the Schwarz alternating method,

and their combinations may be chosen to seek the solution with high accuracy, which may be used to test other numerical methods. The

particular solutions of the Laplace equations and their singularities are fundamental to numerical partial differential equations in both

algorithms and error analysis.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper, we derive explicitly the particular solutions

of Laplace’s equation in sectors with the Dirichlet,

Neumann, and their mixed boundary conditions. We

explore those in particular with the boundary angles of

QZp/2, 3p/2, p and 2p, which often occur in Motz’s

problem, the L-shaped and the cracked beam problems.

Although the particular solutions in this paper may be found

in Volkov [11,12], the formulas of the particular solutions

given in this paper are more explicit than those of Volkov

[12], and easier to expose the mild singularity at the domain
0955-7997/$ - see front matter q 2004 Elsevier Ltd. All rights reserved.
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corners of the Laplace solutions. Moreover, new models are

designed for Laplace’s equations including discontinuity,

and the cracked plus mild singularities, rk ln r, and the

Trefftz method using the piecewise particular solutions can

provide highly accurate solutions, which may be used to test

other numerical methods.

When a solution domain can be split into several

subdomains, the local particular solutions in each subdomain

can be found in this paper. Several methods for Laplace’s

equations with highly accurate solutions may be chosen:

(1) the collocation Trefftz methods (i.e. the boundary

approximation method in [5]), (2) the combinations of the

collocation Trefftz and the Schwarz alternating methods, and

(3) other methods such as the block method in [11,12].

This paper is organized as follows. In Section 2, the

particular solutions are derived for Laplace’s equations in
Engineering Analysis with Boundary Elements 29 (2005) 59–75
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Fig. 2. A sectorial domain.
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sectors with the Dirichlet boundary conditions, and their

explicit formulas are provided for special angles Q. In

Section 3, the particular solutions of those involving the

Neumann boundary conditions are discussed. In Section 4,

the particular solutions of Poisson’s equation are provided,

and those are developed for the cases that the boundary

functions of the Dirichlet and the Neumann boundary

conditions are not smooth. Besides, the singularities of the

solutions at the boundary angles QZp/2, 3p/2, p and 2p
are especially analyzed. In Section 5, two new models, one

with discontinuity, and other with crack plus mild

singularities, are designed, and the collocation Trefftz

method are used to provide their very accurate solutions.
2. The harmonic functions

Consider the Laplace equation with the Dirichlet

boundary conditions (see Fig. 1)

Du Z
v2u

vx2
C

v2u

vy2

� �
Z 0; in S* ; (2.1)

u Z g; on vS�; (2.2)

where S* is a polygon. For each angle, we seek the harmonic

solutions in the corresponding sectorial domain (see Fig. 2)

SZ{(r, q), 0!r!R, 0!q!Q}:

Du Z 0; in S:

We suppose that the function g is highly smooth that it

can be expressed by the power series

uj �OA Z gj �OA Z
XN

iZ0

air
i; 0%r%R; q Z 0; (2.3)

uj �OB Z gj �OB Z
XN

iZ0

bir
i; 0%r%R; q Z Q; (2.4)

where bi and ai are known coefficients. In fact, when the

function gj �OB Zg1ðrÞ is highly smooth, it can be expanded

by Taylor’s series:

g1ðrÞ Z
XN

iZ0

gðiÞ
1 ð0Þri

i!
:

Fig. 1. A polygonal domain.
Then biZgðiÞ
1 ð0Þ=i!. Similarly, for gj �OA Zg0ðrÞ; we also

have:

g0ðrÞ Z
XN

iZ0

gðiÞ
0 ð0Þri

i!
:

Hence, for any smooth Dirichlet boundary condition

uZg on vS, we may simply consider the following case in S

(see Fig. 3). In this paper, we also assume that the

corresponding series occurring are also convergent in

the desired domain. Otherwise, we may consider only the

polynomial boundary conditions

uj �OA Z gj �OA Z
XM

iZ0

air
i; 0%r%R; q Z 0; (2.5)

uj �OB Z gj �OB Z
XN

iZ0

bir
i; 0%r%R; q Z Q; (2.6)

where bi and ai are known coefficients. This is the special

case of (2.3) and (2.4), because we may let biZ0 as iON

and aiZ0 as iOM.

Let us consider the mixed type of the Dirichlet–Neumann

boundary conditions in Fig. 4

Du Z 0; in S; u Z gD; on GD;
vu

vn
Z gN; on GN;

(2.7)

where vSZGDgGN and n is the outnormal of vS. There are

four types of mixed boundary conditions on two adjacent
Fig. 3. The Dirichlet boundary conditions.



Fig. 4. A polygon.
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edges of a corner: (1) the D–D type, (2) the N–D type, (3)

the D–N type, and (4) the N–N type.

The harmonic solutions of the D–D type will be derived

in this section, and those of the N–D, D–N and N–N types in

the next section.
2.1. General cases

The general solutions of Laplace’s equation in S

satisfying (2.3) and (2.4) can be split into �u and ug

u Z �u Cug; (2.8)

where the general solutions ug satisfy

Dug Z 0; in S; ug Z 0; q Z 0 and q Z Q; (2.9)

where 0!Q%2p, and the particular solution �u satisfies:

D �u Z 0; in S; (2.10)

�ujqZ0 Z
XN

iZ0

air
i; �ujqZQ Z

XN

iZ0

bir
i: (2.11)

Note that in (2.9) and (2 10), the boundary condition on

[RZ{(r, q)jrZR, 0%q%Q} has not been given yet. Hence,

the general solutions ug and u are not unique.

First for (2.9), the general solutions are fiZrsi sin siq,

fijqZ0Z0 holds automatically, and fijqZQZ0 leads to

sin siQZ0. Hence, siQZip, i.e. siZip/Q. We obtain

the general solutions

ug Z
XN

iZ0

cir
ip=Q sin

ip

Q
q

� �
; (2.12)

where ci are the coefficients to be found.

First, we seek the particular solutions involving mild

singularity rk ln r, kZ1, 2,. The mild singularity is

investigated in this paper, to compare with the rather

strong singularity O(rg), 0!g!1. Consider a complex

variable z, and let zZxCiyZr eiq. The real and imaginary

parts of the complex functions, zp ln z, p2R are harmonic.
We then have

zp ln z Z ðrp cos pq C irp sin pqÞ!ðln r C iqÞ

Z rpfln r cos pq Kq sin pqg

C irpfln r sin pq Cq cos pqg;

where p is a real number. Hence the following functions are

also harmonic:

4p Z 4pðr; qÞ Z rpfln r sin pq Cq cos pqg; (2.13)

jp Z jpðr; qÞ Z rpfln r cos pq Kq sin pqg: (2.14)

When p is a positive integer k, kZ1,2,., we denote:

4k Z 4kðr; qÞ Z rkfln r sin kq Cq cos kqg; (2.15)

jk Z jkðr; qÞ Z rkfln r cos kq Kq sin kqg: (2.16)

Define the functions

Fi Z Fiðr; qÞ

Z

ri sin iq

sin iQ
; if iQskp; k Z 1; 2;.

ðK1Þk

Q
4iðr; qÞ; if iQ Z kp for some k;

8>><
>>:

(2.17)

where iR1 and fi(r, q) is given in (2.15). Hence, we have:

FijqZ0 Z 0; FijqZQ Z ri; crO0; i Z 1; 2;. (2.18)

Choose the particular solutions for (2.10) and (2.11) as

the following form

�u Z
XN

iZ0

Air
i cos iq CB0q C

XN

iZ1

BiFiðr; qÞ; (2.19)

where the coefficients Ai and Bi are to be determined below.

When qZ0 we have AiZai from the boundary condition in

(2.11), and when qZQ:

A0 CB0Q Z b0; Ai cos iQ CBi Z bi; i Z 1; 2;.

(2.20)

Hence we obtain the coefficients:

B0 Z
b0 Ka0

Q
; Bi Z bi Kai cos iQ; i Z 1; 2;.

(2.21)

Substituting (2.21) into (2.19) gives the particular

solutions:

�u Z
b0 Ka0

Q
qC

XN

iZ0

air
i cos iqC

XN

iZ1

ðbi Kai cos iQÞFiðr;qÞ:

(2.22)
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In Volkov [12], the following form of particular solutions

for (2.10) and (2.11) are given by

�u Za0 C
b0 Ka0

Q
qC

XN

iZ1

ai
�Fiðr;qÞ

XN

iZ1

biFiðr;qÞ; (2.23)

where

�Fi Z �Fiðr;qÞZFiðr;QKqÞ; (2.24)

to satisfy:

�FijqZQ Z0; �FijqZ0 Zri; crO0; i Z1;2;.

First, let us show the equivalence between (2.22) and

(2.23). When Qskp/i, iR1, we have from (2.23):

�u Za0 C
b0 Ka0

Q
qC

XN

iZ1

air
i sin iðQKqÞ

sin iQ
C

XN

iZ1

bi

ri sin iq

sin iQ
:

(2.25)

Since sin i(QKq)Zsin iQ cos iqKsin iq cos iQ, we

obtain from the above equation:

�u Z
b0 Ka0

Q
qC

XN

iZ0

air
i cos iqC

XN

iZ1

ðbi Kai cos iQÞri sin iq

sin iQ
:

(2.26)

This is the very (2.22) for Qskp/i.

When iQZkp for some k, to confirm the equivalence

between (2.22) and (2.23), it suffices to show:

�F Z ri cos iq Kcos iQFi: (2.27)

In fact, we have from (2.24) and (2.17)

�Fðr;qÞZ Fðr;Q KqÞ

Z ri ðK1Þk

Q
ðln r sin iðQ KqÞCðQ KqÞcos iðQ KqÞÞ:

(2.28)

When iQZkp, there exist the equalities:

sin iðQKqÞZsin iQ cos iqKcos iQ sin iq Z ðK1ÞkC1 sin iq;

(2.29)

cos iðQKqÞZcos iQ cos iqCsin iQ sin iq ZðK1Þk cos iq:

(2.30)

Substituting (2.29) and (2.30) into (2.28) gives the

desired result (2.27).

Second, Volkov in [12] also considers the case of

iQskp but iQzkp so that the ratio sin iq/sin iQ becomes

very large. Other basic functions are also introduced in [12]

for the case of 0!jsin iQj!1/2. This is interesting for

theory but not for application. In practical engineering

problems, usually we may assume QZ(K/L)p, 0!K%2L,

and L and K are two integers of relatively prime and in

moderate size. Then we have

min
i

jsin iQj Z min
i

jsin
iK

L
pj Z jsin

p

L
jz

p

L
;

over all positive integers i such that iQ/p is not an integer.

Hence, the ratio

max
i

sin iq

sin iQ

����
����% L

p
;

will not be very large. Consequently, we omit the case of

iQzkp in this paper.

Third, let us compare the formulas of the functions

(2.22), and (2.23) of Volkov. Eq. (2.23) is clearly symmetric

with respect to qZQ/2. In contrast, we may rewrite (2.22) as

�u Z a0 C
b0 Ka0

Q
q C

XN

iZ1

aiðr
i cos iq Kcos iQFiðr; qÞÞ

C
XN

iZ1

biFiðr; qÞ; ð2:31Þ

which is not symmetric, indeed. From the viewpoint of

computation, both (2.22) and (2.23) are effective. However,

Eqs. (2.22) and (2.31) are more explicit. In particular, Eq.

(2.22) displays straightforward the mild singularity. For

instance, when iQZkp and bisai cos iQ, there does exist a

mild singularity of O(ri ln r). More exploration on the mild

singularity is provided in Section 4.3.

Remark 2.1. It is assumed that the series in (2.31) is

convergent. Otherwise, we may consider only the finite

terms in (2.11):

�ujqZ0 Z
XM

iZ0

air
i; �ujqZQ Z

XN

iZ0

bir
i: (2.32)

Hence, the solutions become

�u Z a0 C
b0 Ka0

Q
q C

XM

iZ1

aiðr
i cos iq Kcos iQFiðr; qÞÞ

C
XN

iZ1

biFiðr; qÞ; ð2:33Þ

to replace (2.31). Similarly for all infinite series given

below, it is always assumed that they are convergent.

Otherwise, a suitable modification should be made

correspondingly.
2.2. Formulas for special Q

Based on (2.22) and (2.17), we list the particular

solutions which are often used in application.
(1)
 When QZp:

�u Z
b0 Ka0

p
qC

XN

iZ0

air
i cos iq

C
XN

iZ1

ðK1Þibi Kai

p
4iðr;qÞ: (2.34)
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(2)
 When QZ2p:

�u Z
b0 Ka0

2p
q C

XN

iZ0

air
i cos iq C

XN

iZ1

bi Kai

2p
4iðr; qÞ:

(2.35)
(3)
 When QZp/2:

�u Z
2ðb0 Ka0Þ

p
q C

XN

iZ0

air
i cos iq

C
XN

jZ0

ðK1Þjb2jC1r2jC1 sinð2j C1Þq

C
XN

jZ1

2

p
ððK1Þjb2j Ka2jÞ42jðr; qÞ: (2.36)
(4)
 When QZ3p/2:

�u Z
2ðb0 Ka0Þ

3p
q C

XN

iZ0

air
i cos iq

C
XN

jZ0

ðK1ÞjC1b2jC1r2jC1 sinð2j C1Þq

C
XN

jZ1

2

3p
ððK1Þjb2j Ka2jÞ42jðr; qÞ: (2.37)
Note that the formulas of the particular solutions for QZp

and QZ2p are very close, and so are those for QZp/2 and

QZ3p/2. Except the different angles Q, the only difference is

that the sign (K1)i may change in the series of bi.
(5)
 When QZp/3, 2p/3, 4p/3, 5p/3:

�u Z
b0 Ka0

Q
qC

XN

iZ0

air
i cos iq

C
XN

jZ0

b3jC1 Ka3jC1 cosð3jC1ÞQ

sinð3jC1ÞQ
r3jC1 sinð3jC1Þq

C
XN

jZ0

b3jC2 Ka3jC2 cosð3jC2ÞQ

sinð3jC2ÞQ
r3jC2 sinð3jC2Þq

C
XN

jZ1

1

Q
ðb3j cos 3jQKa3jÞ43jðr;qÞ:
(6)
 When QZp/4, 3p/4, 5p/4, 7p/4:

�u Z
b0 Ka0

Q
qC

XN

iZ0

air
i cos iq

C
XN

jZ0

X3

kZ1

b4jCk Ka4jCk cosð4jCkÞQ

sinð4jCkÞQ
r4jCk sinð4jCkÞq

C
XN

jZ1

1

Q
ðb4j cos 4jQKa4jÞ44jðr;qÞ:
(7)
 When QZ(K/L)p, 0!K!2L, and integers K and L are

relative prime:

�u Z
b0 Ka0

Q
qC

XN

iZ0

air
i cos iq

C
XN

jZ0

XLK1

kZ1

bLjCk KaLjCk cosðLjCkÞQ

sinðLjCkÞQ
rLjCk sinðLjCkÞq

C
XN

jZ1

1

Q
ðbLj cos LjQKaLjÞ4Ljðr;qÞ:
3. Harmonic solutions involving Neumann conditions
3.1. The case of the N–D type

Consider:

Du Z 0; in S;
vu

vn
jqZ0 Z

XN

iZ0

air
i; ujqZQ Z

XN

iZ0

bir
i:

(3.1)

Let uZ �uCug, where the general solutions are given by

ug Z
XN

kZ0

dkrsk cos skq; (3.2)

when skZ(kC1/2)p/Q. The particular solution �u satisfies:

D �u Z 0; in S;
v �u

vn
qZ0 Z

XN

iZ0

air
i; �ujqZQ Z

XN

iZ0

bir
i:

�����
(3.3)

Define the functions

Ji ZJiðr;qÞ

Z

ri cos iq

cos iQ
; if iQs kC

1

2

� �
p; k Z0;1;.

ðK1ÞkC1

Q
jiðr;qÞ; if iQ Z kC

1

2

� �
p for some k;

8>><
>>:

(3.4)

where ji(r, q) is given in (2.16). Hence:

vJi

vn
qZ0 ZK

vJi

rvq
jqZ0 Z0; JijqZQ Zri; crO0; iZ1;2;.

����
(3.5)

Choose the following particular solutions to (3.3)

�u Z
XN

iZ1

Air
i sin iq CB0 C

XN

iZ1

BiJiðr; qÞ; (3.6)

where Ai and Bi are the coefficients. When qZ0 we have:

XN

iZ0

air
i Z

v �u

vn
qZ0 ZK

XN

iZ1

Aiir
iK1:

�����
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Then:

Ai ZK
aiK1

i
; i Z 1; 2;. (3.7)

Also when qZQ:

XN

iZ1

bir
i Z �ujqZ0 Z

XN

iZ1

Air
i sin iQ CB0 C

XN

iZ1

Bir
i:

This gives:

B0 Zb0; Bi Zbi KAi sin iQ Zbi C
aiK1

i
sin iQ; i Z1;2;.

(3.8)

Hence, we obtain from (3.6) to (3.9) the particular

solutions:

�u ZK
XN

iZ1

aiK1

i
ri sin iqCb0

C
XN

iZ1

bi C
aiK1

i
sin iQ

	 

Jiðr;qÞ: (3.9)

Eq. (3.9) is explicit for computation, in particular for

directly displaying the existence of the mild singularity

O(ri ln r), when iQZ(KC1/2)p and biCðaiK1=iÞsin iQs0.

Below, we also list the useful formulas of the particular

solution for some special Q from (3.9).
(1)
 When QZp/2:

�u ZK
XN

iZ1

aiK1

i
ri sin iq

C
XN

jZ0

2

p
ðK1ÞjC1b2jC1 K

a2j

2j C1

� �
j2jC1ðr; qÞ

C
XN

jZ0

ðK1Þjb2jr
2j cos 2jq:

(3.10)
(2)
 When QZ3p/2:

�u ZK
XN

iZ1

aiK1

i
ri sin iq

C
XN

jZ0

2

3p
ðK1Þjb2jC1 K

a2j

2j C1

� �
j2jC1ðr; qÞ

C
XN

jZ0

ðK1Þjb2jr
2j cos 2jq:

(3.11)
In Volkov [12], there are the different but equivalent

formulas of (3.9). The discussions and comparisons between

(3.9) and Volkov’s are similar as the above.
3.2. The case of the D–N type

Now, we consider the mixed type of the D–N type:

Du Z 0; in S; ujqZ0 Z
XN

iZ0

air
i;

vu

vn
qZQ Z

XN

iZ0

bir
i:

�����
(3.12)

Its solution is just the reflection of the solution of the N-D

type about qZQ/2 with ai and bi switched. But for the

completeness, we also include its derivation here. Let

uZ �uCug. We have the general solutions:

ug Z
XN

kZ0

dkrsk sinðskqÞ; sk Z
k C 1

2

� �
Q

p: (3.13)

The particular solution satisfies:

D �u Z 0; in S; �ujqZ0 Z
XN

iZ0

air
i;

v �u

vn
jqZQ Z

XN

iZ0

bir
i:

(3.14)

Define the functions:

F̂i Z F̂iðr; qÞ

Z

ri sin iq

i cos iQ
; if iQs k C

1

2

� �
p; k Z 1; 2;.

ðK1ÞkC1

iQ
4iðr; qÞ; if iQ Z k C

1

2

� �
p for some k:

8>><
>>:

(3.15)

Hence:

F̂ijqZ0 Z0;
vF̂i

vn
qZQ Z

vF̂i

rvq
qZQ ZriK1; crO0; iZ1;2;.
������

(3.16)

Choose the particular solutions to (3.14):

�uZ
XN

iZ0

Air
i cos iqC

XN

iZ1

BiF̂iðr;qÞ; (3.17)

where Ai and Bi are the coefficients. When qZ0 we have AiZ
ai, and when qZQ

XN

iZ0

bir
i Z

v �u

vn
qZQ ZK

XN

iZ1

Air
iK1isin iQC

XN

iZ1

Bir
iK1:

�����
This gives:

Bi ZbiK1 Ciai sin iQ: (3.18)

Hence we obtain from the particular solutions (3.17):

�uZ
XN

iZ0

air
i cos iqC

XN

iZ1

ðbiK1 Ciai sin iQÞF̂iðr;qÞ: (3.19)
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Below, we also list the useful formulas from (3.19).
(1)
 When QZp/2:

�u Z
XN

iZ0

air
i cos iq

C
XN

jZ0

2

p
ðK1ÞjC1 b2j

2j C1
Ka2jC1

� �
42jC1ðr; qÞ

C
XN

jZ1

ðK1Þj
b2jK1

2j
r2j sin 2jq: ð3:20Þ
(2)
 When QZ3p/2,

�u Z
XN

iZ0

air
i cos iq

C
XN

jZ0

2

3p
ðK1Þj

b2j

2j C1
Ka2jC1

� �
42jC1ðr; qÞ

C
XN

jZ1

ðK1Þj
b2jK1

2j
r2j sin 2jq:

(3.21)
3.3. The case of the N–N type

Consider:

Du Z 0; in S; (3.22)

vu

vn
qZ0 Z

XN

iZ0

air
i;

vu

vn
qZQ Z

XN

iZ0

bir
i:

�����
����� (3.23)

Let uZ �uCug, where ugZ
PN

iZ0 rsi cos siq, siZip/Q.

The particular solution satisfies:

D �u Z 0; in S; (3.24)

v �u

vn
qZ0 Z

XN

iZ0

air
i;

v �u

vn
qZQ Z

XN

iZ0

bir
i:

�����
����� (3.25)

Define the functions:

Ĵi Z Ĵiðr; qÞ

Z

Kri cos iq

i sin iQ
; if iQskp; k Z 1; 2;.

ðK1ÞkC1

iQ
jiðr; qÞ; if iQ Z kp for some k:

8>><
>>:

(3.26)
Hence:

vĴi

vn
qZ0 Z 0;

vĴi

vn
qZQ Z riK1; crO0; i Z 1; 2;.
������

(3.27)

Choose the particular solutions

�u Z
XN

iZ1

Air
i sin iq C

XN

iZ1

BiĴiðr; qÞ; (3.28)

with the coefficients Ai and Bi. When qZ0 we have:

XN

iZ0

air
i Z

v �u

vn
jqZ0 ZK

v �u

rvq
jqZ0 ZK

XN

iZ1

Aiir
iK1:

Then AiZKaiK1/i, iZ1,2,.. Next, when qZQ:

XN

iZ0

bir
i Z

v �u

vn
qZQ Z

v �u

rvq
qZQj

����
Z

XN

iZ0

Air
iK1i cos iQ C

XN

iZ0

Bir
iK1:

This gives:

Bi Z biK1 CaiK1 cos iQ; i Z 1; 2;. (3.29)

Hence we obtain from (3.24) and (3.25) the particular

solutions:

�u ZK
XN

iZ1

aiK1

i
ri sin iq C

XN

iZ1

ðbiK1 CaiK1 cos iQÞĴiðr; qÞ:

(3.30)

From (3.30), we also list the useful formulas for special

angles Q.
(1)
 When QZp:

�u ZK
XN

iZ1

aiK1

i
ri sin iq

C
XN

iZ1

1

ip
ððK1ÞiC1biK1 KaiK1Þjiðr; qÞ: ð3:31Þ
(2)
 When QZ2p:

�u ZK
XN

iZ1

aiK1

i
ri sin iq K

XN

iZ1

1

2ip
ðbiK1 CaiK1Þjiðr; qÞ:

(3.32)
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(3)
 When QZp/2:

�u ZK
XN

iZ1

aiK1

i
ri sin iq C

XN

jZ0

ðK1ÞjC1 b2j

2j C1
r2jC1

!cosð2j C1Þq

C
XN

jZ1

1

jp
ððK1ÞjC1b2jK1 Ka2jK1Þj2jðr; qÞ: ð3:33Þ
(4)
 When QZ3p/2:

�u ZK
XN

iZ1

aiK1

i
ri sin iq C

XN

iZ0

ðK1Þj
b2j

2j C1
r2jC1

!cosð2j C1Þq

C
XN

jZ0

1

3jp
ððK1ÞjC1b2jK1 Ka2jK1Þj2jðr; qÞ: ð3:34Þ
Interestingly, when QZp/2, p, 3p/2 and 2p, for the N–D,

the D–N and the N–N types, the worst singularity of �u is

O(r ln r), and for the D–D type, the worst singularity of �u is

O(q/Q).
4. Extensions and analysis on singularity
4.1. Particular solutions for Poisson’s equations

In this section, we consider the simple case of the Poisson

equation

KD �u Z f ; in S; (4.1)

�ujGD
Z gD;

v �u

vn
GN

Z gN;
�� (4.2)

where vSZGZGDgGN, fZaxiyj, i,jZ0,1,., and a is a

constant. Suppose that iRj without loss of generality.

Case I. For 0%j%1:

�u ZKa
xiC2yj

ði C1Þði C2Þ
:

Case II. For 2%j%3:

�u ZKa
xiC2yj

ði C1Þði C2Þ
K

xiC4yjK2jðj K1Þ

ði C4Þði C3Þði C2Þði C1Þ

� �
:

Case III. For 2k%j%2kC1, kZ1,2,.

�u ZKa
xiC2yj

ði C1Þði C2Þ
K

a

ði C1Þði C2Þ

!
Xk

[Z1

ðK1Þ[bi;j;[x
iC2C2[yjK2[;
where the coefficients:

bi;j;[ Z
Y[

mZ1

ðj K2mÞðj K2m K1Þ

ði C2 C2mÞði C1 C2mÞ
:

Besides, Cheng et al. [3] gives a different approach for

deriving the particular solution for the same function f. The

particular solution is given as follow

�u Z

XInt
jC2

2

� �

kZ1

aðK1ÞkC1 i!j!xiC2kyjK2kC2

ðiC2kÞ!ðjK2kC2Þ!
; for iRj;

XInt
iC2

2

� �

kZ1

aðK1ÞkC1 i!j!xiK2kC2yjC2k

ðiK2kC2Þ!ðjC2kÞ!
; for i!j;

8>>>>>>>>>><
>>>>>>>>>>:

where Int[s] means the integer part of s. By the above

arguments and principle of superposition, we can obtain the

particular solutions �u for:

KD �u Z f Z
XM

iZ0

XN

jZ0

aijx
iyj: (4.3)

To find the solution of (4.1) and (4.2), it suffices to seek

�vZuK �u to satisfy (4.1) and (4.2):

D�v Z0; in S; (4.4)

�v ZgD K �u; on GD; (4.5)

v�v

vn
ZgN K

v �u

vn
; on GN:

Hence, it is reduced to the Laplace equation with the

Dirichlet–Neumann conditions, which solutions have been

provided in Sections 2 and 3.
4.2. Extensions to not smooth functions of gD and gN

In this subsection, we consider that the functions gD and

gN are not smooth. First, consider the D–D type

D �u Z 0; in S; �ujqZ0 Z arq; �ujqZQ Z brp; (4.6)

where p and q are real. For the Laplace solutions u2H1(S),

where Hk(S) is the Sobolev space, the boundary functions of

the Dirichlet and the Neumann conditions satisfy

gD2H1/2(GD) and gN2HK1/2(GN) (see Babuska [1]).

Hence we assume p,qOK1/2 in (4.6).

Hence p and q are not confined to be positive integers (cf.

Sections 2 and 3). When pQ, qQsGkp. The particular

solutions are given by:

�u Z brp sin pq

sin pQ
Carq sin qðQ KqÞ

sin qQ
: (4.7)

For simplicity, here we only give one term on the right

hand side of the Dirichlet condition (4.6). For more terms,



Fig. 5. The popular domains in testing models with QZip/2, iZ1–4.
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the particular solutions can be obtained easily by linear

superposition as done in Sections 2 and 3. Since the

solutions O(rp ln r) for p2(K1/2,1) are of strong singularity,

we use the formulas in symmetric form of (2.23) as those in

Volkov [12].

Suppose that pQZGmp and qQZG[p, where m and [
are positive integers. The particular solutions are given by:

�u Z
b

Q

4pðr; qÞ

cos pQ
C

a

Q

4qðr;Q KqÞ

cos qQ

Z
ðK1Þmb

Q
4pðr; qÞC

ðK1Þ[a

Q
4qðr;Q KqÞ: (4.8)

When pQsGmp and qQsG[p, the particular solutions

can be easily obtained. Moreover, the function 4q(r, QKq) is

defined in (2.13), and may be further simplified (see Sections

2 and 3).

Next, consider the N–D type

D �u Z 0; in S;
v �u

vn
qZ0 Z arq; �ujqKQ Z brp;j (4.9)

where real number pOK1/2 and qOK3/2. For pQ,

ðqC1ÞQsGðkC1=2Þp; the particular solutions are:

�u Z brp cos pq

cos pQ
C

a

q C1
rqC1 sinðq C1ÞðQ KqÞ

cosðq C1ÞQ
: (4.10)

For pQZGðmC1=2Þp, ðqC1ÞQZGð[C1=2Þp, m and [
are positive integers, the particular solutions

�u ZK
b

Q

jpðr; qÞ

sin pQ
K

a

ðq C1ÞQ

4qC1ðr;Q KqÞ

sinðq C1ÞQ

ZK
GðK1Þmb

Q
jpðr; qÞK

GðK1Þ[a

ðq C1ÞQ
4qðr;Q KqÞ; (4.11)

where jp(r, q) is defined in (2.14). The particular solutions of

the D–N type can be obtained from those of the N–D type by

4ZQKq.

Finally, we consider the N–N type

D �u Z 0; in S;
v �u

vn
qZ0 Z arq;

v �u

vn
qZQ Z brp;j

���� (4.12)

where real p,qOK3/2. When (pC1)Q and (qC1)QsGkp,

kZ0,1,., the particular solutions are:

�u ZK
b

p C1
rpC1 cosðp C1Þq

sinðp C1ÞQ

C
a

q C1
rqC1 cosðq C1ÞðQ KqÞ

sinðq C1ÞQ
: (4.13)
When (pC1)QZGmp, (qC1)QZG[p, m, [Z1,2,.,

the particular solutions are:

�u ZK
b

ðp C1ÞQ

jpC1ðr; qÞ

cosðp C1ÞQ
C

a

ðq C1ÞQ

jqC1ðr;Q KqÞ

cosðq C1ÞQ

ZK
ðK1Þmb

ðp C1ÞQ
jpC1ðr; qÞK

ðK1Þ[a

ðq C1ÞQ
jqC1 ðr;Q KqÞ:

ð4:14Þ

Of course, we may derive the particular solutions for

QZp/2, 3p/2, 2p and 2p by following Sections 2 and 3.
4.3. Regularity and singularity of the solutions of QZp/2,

3p/2, p, 2p

From the analysis in Sections 2 and 3, when gD and gN are

highly smooth on vS, the solutions u inside of S may also be

smooth for QZp/2, p. However, the solution u near the

corners may have the mild singularities O(rk ln r), kZ1,2,.
in addition to the strong singularities. Since the singularity

analysis on general solutions can be found in textbooks (cf. Li

[5]), we focus on the analysis for the particular solution �u. In

particular, we consider when QZip/2, iZ1–4 which exist in

Motz’s and cracked beam problems [9], and the L-shaped

domain problems and the general cracked domains in Fig. 5

(see [5,9]).
4.3.1. For the Case of QZp/2

First, consider a simple case of the D–D type as QZp/2

D �u Z 0; in S; �u Z a0 Ca1r Ca2r2;

q Z 0; �u Z b0 Cb1r Cb2r2; q Z Q;

(4.15)

where ai and bi are constants. Only the quadratic polynomials

in the Dirichlet conditions are chosen, because the resulted

singularities are strongest among all mild singularity.



Table 1

The singularities for the particular solutions of the Dirichlet–Neumann

conditions assigned by quadratic polynomials when QZp/2

Types Conditions Singularity of �u Not in Hk(S)

D–D b0sa0 O(q/Q) ;H1(S)

b2Ca2s0 O(r2 ln r) ;H3(S)

N–N b1Ka1s0 O(r2 ln r) ;H3(S)

N–D b1Ca0s0 O(r ln r) ;H2(S)

a2s0 O(r3 ln r) ;H4(S)
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We then obtain from (2.36):

�u Z a0 C
b0 Ka0

Q
q Cb1r sin q

K
b2 Ca2

Q
42ðr; qÞCa1r cos q Ca2r2 cos 2q: (4.16)

In (4.16), when b0sa0, the function q;H1(S), called the

discontinuity singularity. Moreover, when b2Ca2s0, the

function r2 ln r;H3(S), called a mild singularity, compared

with the crack singularity

u Z O r1=2
� �

;H2ðSÞ;

in the cracked beam problem. Interestingly, the case of b2C
a2s0 implies uxxCuyyZb2Ca2s0 against the Laplace

equation. Note that the case of b1 or a1 has no effect on

singularities because r sin qZy and r cos qZx. In Section 5,

Model II of crack plus mild singularities will be designed on

the rectangles with QZp/2.

Next, consider the N–D type:

D �u Z 0; in S;
v �u

vn
Z a0 Ca1r Ca2r2;

q Z 0; �u Z b0 Cb1r Cb2r2; q Z Q:

(4.17)

From (3.10) we obtain:

�u Z b0 K
b1 Ca0

Q
j1ðr; qÞKb2r2 cos 2q

Ka0r sin q K
a1

2
r2 sin 2q

K
a2

3
r3 sin 3q C

1

Q
j3ðr; qÞ

� �
: (4.18)

From (4.18), when b1Ca0s0 which results from:

a0 Z
v �u

vn
ZK

v �u

vy
sK

v �u

vr
ZKb1; (4.19)

there exists a mild singularity O(r ln r), and when a2s0,

there exists O(r3 ln r). Interestingly, b0, b2 and a1 do not

cause any singularity in the N–D type, since r2 cos 2qZ(x2K
y2) and r sin 2qZ2xy.

The conclusion for the D–N type can be drawn similarly.

Below we only consider the N–N type:

D �u Z 0; in S;
v �u

vn
Z a0 Ca1r Ca2r2;

q Z 0;
v �u

vn
Z b0 Cb1r Cb2r2; q Z Q:

(4.20)

From (3.33) we obtain:

�u ZKb0r cos q C
b1 Ka1

2Q
j2ðr; qÞC

b2

3
r3 cos 3q

Ka0r sin q K
a1

2
r2 sin 2q K

a2

3
r3 sin 3q: (4.21)
Only b1Ka1s0 resulting from �uxy s �uyx will cause the

singularity O(r2 ln r).

We summarize the singularities at the corner with QZp/2

in Table 1. The discontinuity b0sa0 in the D–D type is the

strongest. The next strongest singularity occurs in the N–D

type of b1Ca0s0 and the N–N type of b1sa1.
4.3.2. For the case of QZp

Next, we consider the D–D type of (4.15) with QZp.

From (2.34) we obtain:

�u Z a0 C
b0 Ka0

Q
q Ca1r cos q Ca2r2 cos 2q

K
b1 Ca1

Q
41ðr; qÞC

b2 Ka2

Q
42ðr; qÞ: (4.22)

When b0sa0 the solution of O(q/Q) is discontinuity at

origin O, and when b2sa2, the solutions of O(r2 ln r) are

obtained. Note that the case of b1sKa1, will also cause

the singularity of O(r ln r). In fact, the case of b1sKa1,

implies the existing of a piecewise x-function because rZx at

qZ0 but rZKx at qZp.

Consider the N–N type of (4.20) with QZp. From (3.31)

for QZp

�u ZKa0r sin q K
a1

2
r2 sin 2q K

a2

3
r3 sin 3q

C
b0 Ka0

Q
41ðr; qÞK

b1 Ca1

2Q
42ðr; qÞ

C
b2 Ka2

3Q
43ðr; qÞ: (4.23)

When b0sa0, b1sKa1, and b2sa2, there exist the

solutions with uZO(q/Q), O(r ln r) and O(r3 ln r),

respectively.

Consider the N–D type of (4.17) with QZp, which

appears in Motz’s and the cracked beam problems in [9]. The

general solutions are

ug Z
XL

iZ0

dir
iC1=2 cos i C

1

2

� �
q;

and the particular solutions are obtained from (3.9)

�u Z
X2

kZ0

ðK1Þkbkrk cos kq K
X3

kZ1

akK1

k
rk sin kq: (4.24)



Table 2

The singularities for the general and the particular solutions for the
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Interestingly, the singularity results only from the general

solutions of O(r1/2), but not from bis0 and ais0.

Dirichlet–Neumann conditions assigned by quadratic polynomials when

QZp

Types Conditions Singularity of �u Singularity of ug

D–D b0sa0 O(q/Q) /

b1Ca1s0 O(r ln r) /

b2sa2 O(r2 ln r) /

N–N b0sa0 O(r ln r) /

b1Ca1s0 O(r2 ln r) /

b2sa2 O(r3 ln r) /

N–D / / O(r1/2)

Table 3

The singularities for the general and the particular solutions for the

Dirichlet–Neumann conditions assigned by quadratic polynomials when

QZ3p/2
4.3.3. For the case of QZ3p/2

The boundary angle QZ3p/2 exists in a typical concave

polygon, such as the L-shaped domains in Fig. 5. First, we

consider the D–D type of (4.15) with QZ3p/2. The solution

is uZ �uCug, where

ug Z
XL

iZ1

dir
ð2=3Þi sin

2i

3

� �
q;

and the particular solutions from (2.37) are:

�u Z a0 C
b0 Ka0

Q
q Kb1r sin q

K
b2 Ca2

Q
42ðr; qÞCa1r cos q Ca2r2 cos 2q: (4.25)

Compared the above function with that of QZp/2 in

(4.16), only the sign in front of the term b1r sin q is different.

Note that when d1s0, ug ZOðr2=3Þ;H2ðSÞ is the next

strongest singularity to that of O(q/Q).

Consider the N–N type of (4.20) with QZ3p/2. The

general solutions are

ug Z
XL

iZ0

dir
ð2=3Þi cos

2i

3

� �
q;

and the particular solutions (3.34) give:

�u Z b0r cos q C
b1 Ka1

2Q
j2ðr; qÞK

b2

3
r3 cos 3q

Ka0r sin q K
a1

2
r2 sin 2q K

a2

3
r3 sin 3q: (4.26)

Compared (4.26) with (4.21), only the signs in front of

b0r cos Q and (b2/3)r3 cos 3q are different.

Finally, consider the N–D type of (4.17) with QZ3p/2.

The general solutions are ugZ
PL

iZ0 dir
si cosðsiqÞ where

siZ(2/3)iC(1/3). The particular solutions of (3.11) give:

�u Z b0 C
b1 Ka0

Q
j1ðr; qÞKb2r2 cos 2q

Ka0r sin q K
a1

2
r2 sin 2q

K
a2

3
r3 sin 3q C

1

Q
j3ðr; qÞ

� �
: (4.27)

The strongest singularity of u is O(r1/3).
Types Conditions Singularity of �u Singularity of ug

D–D b0sa0 O(q/Q) O(r2/3)

b2Ca2s0 O(r2 ln r) O(r2/3)

N–N b1Ka1s0 O(r2 ln r) O(r2/3)

N–D b1sa0 O(r ln r) O(r1/3)

a2s0 O(r3 ln r) O(r1/3)
4.3.4. For the case of QZ2p

The boundary angle QZ2p occurs for the domains with

an inside crack in Fig. 5. First, we consider the D–D type of

(4.15) with QZ2p. The general solutions are given by

ugZ
PL

iZ1 dir
i=2 sin i=2ð Þq, and the particular solutions
from (2.35) are:

�u Za0 C
b0 Ka0

Q
qC

X2

kZ1

akrk cos kqC
X2

kZ1

bk Kak

Q
4kðr;qÞ:

(4.28)

When b0sa0 the singularity O(q/Q) is the strongest. The

next strongest singularity results from ugZO(r1/2). Also

when bisai, iZ1,2, the mild singularities O(r1 ln r) occur.

Consider the N–N type of (4.20) with QZ2p. The general

solutions are ugZ
PL

iZ0 dir
1=2 cos i=2ð Þq, where d0 is an

arbitrary constant, and the particular solutions from (3.32) give:

�u ZK
X3

kZ1

akK1 CbkK1

kQ
jkðr; qÞK

X3

kZ1

akK1

k
rk sin kq:

(4.29)

Consider the N–D type of (4.17) with QZ2p,

ugZ
PL

iZ0 dir
si cosðsiqÞ, where siZi/2C1/4. The particular

solutions from (3.9) are:

�u Z
X2

kZ0

bkrk cos kq K
X3

kZ1

akK1

k
rk sin kq: (4.30)

Tables 2–4 list the overviews of the singularities of

particular solutions for QZ3p/2, p, 2p.

Among all cases of QZp/2, 3p/2, p, 2p, the strongest

singularity is still O(q/Q), and the next strong one O(r1/4)

results from the N–D type of QZ2p. Based on the analysis

for the harmonic functions on the polygonal domains,

we understand completely the regularity and singularity of

Laplace’s solutions. Therefore, we may deliberately design

the brand-new models of different kinds of singularities.

In this paper, we consider the test models on the simplest



Table 4

The singularities for the general and the particular solutions for the

Dirichlet–Neumann conditions assigned by quadratic polynomials when

QZ2p

Types Conditions Singularity of �u Singularity of

ug

D–D b0sa0 O(q/Q) O(r1/2)

b1sa1 O(r ln r) O(r1/2)

b2sa2 O(r2 ln r) O(r1/2)

N–N b0Ca0s0 O(r ln r) O(r1/2)

b1Ca1s0 O(r2 ln r) O(r1/2)

b2Ca2s0 O(r3 ln r) O(r1/2)

N–D / / O(r1/4)
Fig. 7. Model II.
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rectangular domain in Fig. 5, and employ the particular

solutions in Section 4.3.1. Of course, we may also design

other testing models on the L-shaped and the inside

cracked domains as shown in Fig. 5, by means of results in

Sections 4.3.2–4.3.4.
5. New models of singularities for Laplace’s equation
5.1. Two models

The singularity models play an important role in studying

numerical methods, because one may compare their

performance for the same models. Two popular models,

Motz’s and the cracked beam problems, have been explored

in Lu et al [9]. In this paper, we propose a new discontinuity

model, called Model I (see Fig. 6)

Du Z 0; in S; u Z 0; on �OD;

u Z 500; on �OAg �AB;
vu

vn
Z 0; on �BC g �CD;

(5.1)

where SZ{(x,y)jK1!x!1, 0!y!1}.

Note that Models I is different from the Motz’s problem

only on the boundary condition on �OA; where the Dirichlet

condition uZ500 is used to replace the Neumann condition

vu/vnZ0. The solution u at the origin is discontinuous,

having much stronger singularity than that of Motz’s
Fig. 6. Model I.
problem. We have the solution expansion from (4.22)

v Z
500ðp KqÞ

p
C

XL

iZ1

cir
i sin iq; (5.2)

where ci are the unknown coefficients to be sought. Since the

function (5.2) also satisfies the boundary conditions on �DO

and �OA already, then ci can be found to satisfy the rest

boundary conditions on vS as best as possible. We

will choose the collocation Trefftz method described in

Section 5.2 to solve it.

Consider the following model of the crack plus mild

singularities of rk ln r, kZ1,2, which are developed from

Motz’s problem, called Model II (see Fig. 7):

Du Z 0; in S; u Z 0; on �OD;

u Z 500; on �AB;
vu

vn
Z 0; on �OAg �CD;

u Z 125ðKx2 C2x C3Þ; on �BC :

(5.3)

Since the function on �BC is expressed by

u Z 500ðx C1ÞK125ðx C1Þ2

Z 500 K125ðx K1Þ2; on �BC ; (5.4)

we obtain the solutions at the corners B and C

v1 Z �v1 C
XM

iZ1

air
2i sin 2if; in S1;

v2 Z �v2 C
XM

iZ1

bix
2iC1 sinð2i C1Þh; in S2;

(5.5)

where the coefficients ai and bi are unknowns, (r, f) and (x,

h) are the polar coordinates at corners B and C, respectively,

and S1 and S2 are the subdomains (see Fig. 8):

S1 Z ðr;fÞj0%r%r1; 0%f%
p

2

n o
;

S2 Z ðx; hÞj0%x%x1; 0%h%
p

2

n o
:



Fig. 9. Partition for the collocation Trefftz method.

Fig. 8. Partition of the rectangle.
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The functions �v1 and �v2 can be found by following the

particular solutions in Section 4.3

�v1 Z500K125r2 cos2fC
125

Q
r2ðlnrsin2fCfcos2fÞ;

�v2 ZK125x2 cos2hC500xcoshK
500

Q
xðlnxsinhChcoshÞ:

ð5:6Þ

where QZp/2.

Let SZS0gS1gS2 shown in Fig. 8. Hence, the piecewise

admissible functions are given by:

v Z

v0 Z
XL

iZ0

dir
iCð1=2Þ cos i C

1

2

� �
q; in S0;

v1 Z �v1 C
XM

iZ1

air
2i sin 2if; in S1;

v2 Z �v2 C
XN

iZ0

bix
2iC1 sinð2i C1Þh; in S2:

8>>>>>>>>><
>>>>>>>>>:

(5.7)

Note that the solutions at corners B and C have the mild

singularities, O(r2 ln r) and O(x ln x), respectively.
5.2. The Trefftz method

Based on the above analysis, we have found the local

particular solutions near all the corners of S. If there exist the

singularities, e.g. the discontinuity as O(q/Q), the angular

singularity as O(rp), 0!p!1, and the mild singularity as

O(rk ln r), kZ1,2,., we may split S by a interface G0 into

finite sub-polygons Si, e.g. SZgN
iZ0Si: In each Si, there exists

only one singularity point at one exterior corner (see Fig. 9).

We denote simply

v Z vi Z �vi C
XNi

kZ0

cðiÞk HðiÞ
k ; in Si; (5.8)

where �vi are the particular solutions, HðiÞ
k are the known

functions satisfying the Laplace equation, and cðiÞk are

the unknown coefficients. Inside S0 in Fig. 9, the smooth
solutions can be expressed by

u Z
XN

iZ0

air
i cos iq C

XN

iZ1

bir
i sin iq;

where ai and bi are coefficients.

Suppose that the piecewise admissible functions (5.8)

satisfy (4.1) in Si and the exterior Dirichlet–Neumann

conditions. Then the coefficients ck ZcðiÞk may be sought by

satisfying the interior continuity conditions:

uC Z uK;
vuC

vn
Z

vuK

vn
; on G0: (5.9)

Define the errors on G0

kvkB Z

ð
G0

ðvC KvKÞ2d[ Cw2

ð
G0

vvC

vn
K

vvK

vn

� �2

d[

8><
>:

9>=
>;

1=2

;

(5.10)

where w is a suitable weight. For Model II, we choose wZ
min{1/LC1, 1/2M, 1/2NC1} (see [5]). Then the coefficients

~ck Z ~cðiÞk are found by

Ið ~ckÞ Z min
ck

IðckÞ; (5.11)

where:

IðckÞ Z kvk2
B

Z

ð
G0

ðvC KvKÞ2d[ Cw2

ð
G0

vvC

vn
K

vvK

vn

� �2

d[: (5.12)

Eq. (5.11) is called the Trefftz method. When the integrals

in (5.12) involve numerical quadrature, we denote

ÎðckÞZ
Ð̂
G0

ðvCKvKÞ2d[Cw2
Ð̂
G0

vvC

vn
K

vvK

vn

� �2

d[; (5.13)



Table 6

The coefficients from the collocation Trefftz method by the central rule for

Model I with uL as LZ44

i ĉ1 i ĉ1

1 0.43214219667770(2) 23 0.16489962791699(K5)

2 0.31260955885527(2) 24 K0.79051314384074(K6)

3 0.18038119234387(2) 25 0.37931215697053(K6)

4 K0.50111963888576(1) 26 0.18240663865146(K6)

5 0.25247674269181(1) 27 0.87840710016997(K7)

6 0.79217647609612 28 K0.42329123575021(K7)

7 0.31101912715291 29 0.20396909210300(K7)

8 K0.15593842689060 30 0.98583773313965(K8)

9 0.64666484264955(K1)31 0.47728167326695(K8)

10 0.31023130031003(K1)32 K0.23016373178046(K8)

11 0.14574593153069(K1)33 0.10945497384787(K8)

12 K0.64753673008044(K2)34 0.53140684243878(K9)

13 0.30355950425750(K2)35 0.25906239084496(K9)

14 0.13875866526055(K2)36 K0.12253369539977(K9)

15 0.64253903347776(K3)37 0.52906242779061(K10)

16 K0.30356334877807(K3)38 0.25805735672319(K10)

17 0.14229592607503(K3)39 0.12740674743505(K10)

18 0.67458107151949(K4)40 K0.56229016798380(K1 1)

19 0.32016503381154(K4)41 0.16282561223942(K11)

20 K0.15178192325529(K4)42 0.79889831908072(K12)

21 0.72347424374442(K5)43 0.40231053525172(K12)

22 0.34495750578571(K5)44 K0.15531526257412(K12)
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where
Ð^

G0
is evaluated by some rules. The collocation Trefftz

method is to seek the coefficients ĉkZĉðiÞk by:

ÎðĉkÞZmin
ck

ÎðckÞ: (5.14)

The detailed algorithms and error analysis are also

provided in Lu et al. [9]. The exponential convergence

rates can be achieved if all corner singularities are taken into

account.

5.3. Numerical experiments

First, consider Model I with discontinuity solutions. We

divide �AB by NNP uniform sections, and use the central rule

for numerical integration. Based on our trial computation,

choose NNPZL, and carry out the collocation Trefftz

method. The error norms, condition numbers (Cond.) of the

associated matrix, and the leading coefficient ĉ1 are listed in

Table 5, and the computed coefficients in Table 6. From

Table 5, we can see:

kekB Z Oðð0:56ÞLÞ; Cond: Z Oðð1:43ÞLÞ: (5.15)

The coefficient ĉ1 has 12 significant digits, if we compare

the data in the last two rows in Table 5. From Table 6, the

declining behavior of coefficients ĉ1 is like that in Motz’s

problem, and the errors kekB in Table 5 decline by a factor

about 0.1 by increasing four terms of series sin iq (see [9]).

The function ûZ500ðpKqÞ=p in (5.2) satisfies û;
H1ðSÞ but û2H1=2ðSÞ only. This causes a dilemma for the

error analysis of the Trefftz method for Model I. In fact, let

wZuK û. We obtain from (5.1):

Dw Z 0; in S; w Z 0; on �AD;

w Z 500 K û; on �AB;

vw

vn
ZK

vû

vn
; on �BC g �CD:

(5.16)

So the solution w is a smooth solution. Hence, we may

also achieve the exponential convergence rates by the

collocation Trefftz method for Model I (see [9]).
Table 5

The error norms, condition numbers and the leading coefficient from the

collocation Trefftz method for Model I with discontinuity solutions

L NNP k3kB Cond. ĉ1

4 4 8.00 7.21 388.19237952022

8 8 0.374 39.4 431.70665114799

12 12 0.310(K1) 189 432.14376500110

16 16 0.262(K2) 865 432.14136607970

20 20 0.240(K3) 0.385(4) 432.14228064373

24 24 0.226(K4) 0.168(5) 432.14218726860

28 28 0.219(K5) 0.725(5) 432.14219772889

32 32 0.217(K6) 0.309(6) 432.14219655948

36 36 0.218(K7) 0.131(7) 432.14219669083

40 40 0.221(K8) 0.553(7) 432.14219667602

44 44 0.227(K9) 0.230(8) 432.14219667770

48 48 0.234(K10) 0.892(8) 432.14219667751
Next for Model II, we should choose the partition in Fig. 8,

and use the piecewise particular solutions (5.7). Both the

central rule and the Gaussian rule of six nodes are employed

to compute the integrals in (5.13). Denote by NNP the

partition number of �AE and �ED. In computation, we choose

NNP as the multiple of six. The errors, condition numbers

and the leading coefficients ĉ0 are listed in Tables 7 and 8. For

two integration rules, the errors and Cond. are slightly

different, with the empirical rates:

kekB Z Oðð0:55ÞLÞ; Cond: Z Oðð1:27ÞLÞ: (5.17)

Compared with (5.15), the condition numbers are

significant smaller, while the errors retain the same high

accuracy. The better performance in accuracy is also a

development from the observation [5], based on the

numerical data in [6].

Note that k3kB in (5.17) displays the exponential

convergence rates. It is proved in [9] that when the uniformly

Vh elliptic inequality as well as the bilinear inequality is

satisfied, the errors from the collocation Trefftz method are,

basically (i.e. with a constant factor), the optimal truncation

errors in (5.7), which have the exponential convergence rates

for the harmonic functions on a sectorial domain, see Volkov

[12], p. 41.

From Tables 7 and 8 the leading coefficient

d̂0 Z 491:49398551255; (5.18)

has 14 significant digits. When LZ24, coefficient d̂0 has 9

and 12 significant digits from Tables 7 and 8, respectively.

This implies that the Gaussian rule with six nodes provides

better leading coefficients, the same conclusion made in [9].



Table 8

The error norms, condition numbers and the leading coefficient from the collocation Trefftz method for Model II by the Gaussian rule of six nodes

L N M NNP k3kB Cond. d̂0 jd̂0 K d̂0j%Z48

6 3 3 6 0.527 5.12 491.50984946552893

12 6 6 12 0.959(K2) 17.0 491.49399162427318 0.00001172067

18 9 9 18 0.152(K3) 67.5 491.49398552412674 0.00000157423

24 12 12 24 0.454(K5) 278 491.49398551269798 0.00000014547

30 15 15 30 0.995(K7) 1.15(4) 491.49398551252898 0.00000002353

36 18 18 36 0.361(K8) 0.481(4) 491.49398551255371 0.00000000120

42 21 21 42 0.859(K10) 0.202(5) 491.49398551255291 0.00000000040

48 24 24 48 0.392(K11) 0.861(5) 491.49398551255251 0.00000000000

Table 7

The error norms, condition numbers and the leading coefficient from the collocation Trefftz method for Model II by the central rule

L N M NNP k3kB Cond. d̂0

6 3 3 6 0.485 5.14 491.50375447935164

12 6 6 12 0.990(K2) 17.8 491.49403292439115

18 9 9 18 0.141(K3) 71.3 491.49398597288712

24 12 12 24 0.489(K5) 294 491.49398548887837

30 15 15 30 0.916(K7) 0.122(4) 491.49398551220833

36 18 18 36 0.371(K8) 0.514(4) 491.49398551257605

42 21 21 42 0.767(K10) 0.216(5) 491.49398551255416

48 24 24 48 0.354(K11) 0.916(5) 491.49398551255229
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Hence, we list in Tables 9a and 9b the computed coefficients

from the Gaussian rule with six nodes only. Besides, the

leading coefficients â1 and b̂0 have 15 and 16 significant

digits, given by:

â1 ZK197:843688202747; b̂0 ZK108:3167742382339:

(5.19)
Table 9a

The coefficients di from the collocation Trefftz method by the Gaussian rule

with six nodes for Model II with LZ42, MZ21 and NZ21

i d̂i
i d̂i

0 0.49149398551255(3) 22 0.28296876209014(K3)

1 0.20065238223118(2) 23 0.17445041211420(K3)

2 K0.31336492129090(2) 24 K0.30575467669084(K3)

3 0.84502739982599(1) 25 0.19077594908752(K3)

4 0.15443903862693(2) 26 K0.50780058124318(K4)

5 K0.52203007093797(1) 27 K0.31978418070731(K4)

6 0.10853377508385(1) 28 0.55851059563915(K4)

7 0.45247368697120) 29 K0.35445135492159(K4)

8 K0.71447060802058) 30 0.95349846596053(K5)

9 0.34620015754709) 31 0.60578683131418(K5)

10 K0.75107200195077(K1) 32 K0.10476743650533(K4)

11 K0.39753375330083(K1) 33 0.66984928968357(K5)

12 0.82736452629329(K1) 34 K0.17784188813767(K5)

13 K0.45334765014809(K1) 35 K0.10897146397864(K5)

14 0.11220412185256(K1) 36 0.18351999362232(K5)

15 0.63615937532872(K2) 37 K0.11574049991123(K5)

16 K0.11139219730940(K1) 38 0.27828600655526(K6)

17 0.65343214462257(K2) 39 0.13463498937738(K6)

18 K0.16594741652122(K2) 40 K0.21339700669832(K6)

19 K0.99468983459638(K3) 41 0.12852559004887(K6)

20 0.17769148561836(K2) 42 K0.22265448089398(K7)

21 K0.10807339151966(K2)
Moreover, we can see from jd̂0K d̂0j%Z48 in Table 8

that the leading coefficient d̂0 also has the exponential

convergence rates,

Dd0 Z jd̂0 Kd0j Z Oðð0:56ÞLÞ:

Remark 6.1. In Tang [10], a number of singularity

models for Laplace’s equations on rectangle S with the
Table 9b

The coefficients ai and bi from the collocation Trefftz method by the

Gaussian rule with six nodes for Model II with LZ42, MZ21 and NZ21

i âi i b̂i

1 K0.19784368820275(3) 0 K0.10831677423823(3)

2 K0.31926930057149(1) 1 0.29780407286597(2)

3 0.64293346822787(1) 2 0.12655253431819(2)

4 0.75030546466542 3 K0.14499389726714(1)

5 K0.60862066562632 4 K0.10047797333552(1)

6 K0.92423658976556(K1) 5 0.15330929917106

7 0.93708777642456(K1) 6 0.14978794259931

8 0.15521001580253(K1) 7 K0.24773993470475(K1)

9 K0.15878893208957(K1) 8 K0.24629343903207(K1)

10 K0.27632100592619(K2) 9 0.42813849810836(K2)

11 0.29306574648338(K2) 10 0.44706691928972(K2)

12 0.52625553145008(K3) 11 K0.80216072455720(K3)

13 K0.56856704278497(K3) 12 K0.85704781612190(K3)

14 K0.10419605918837(K3) 13 0.15720069031688(K3)

15 0.11420949850474(K3) 14 0.17078652690669(K3)

16 0.20936766448185(K4) 15 K0.31858002906200(K4)

17 K0.23074560887560(K4) 16 K0.34434427308903(K4)

18 K0.38768970065648(K5) 17 0.65258826319999(K5)

19 0.42150857308363(K5) 18 0.63676400596069(K5)

20 0.47049774548533(K6) 19 K0.12273737750039(K5)

21 K0.49013499517408(K6) 20 0.76595590808321(K6)

21 0.14902151022334(K6)



Table 10

The error norms, condition numbers and the leading coefficient from the collocation Trefftz method by the central rule for Model II by ignoring the mild

singularities at the corners B and C

L NNP k3kB Cond. d̂
�
0 jd̂

�
0 Kd0̂j

6 6 13.7 5.99 492.34847235119

12 12 3.58 82.8 491.51252765213 0.185(K1)

18 18 1.71 636 491.50221240460

24 24 0.863 0.720(4) 491.49869961824 0.471(K2)

30 30 0.583 0.513(5) 491.49694490581

36 36 0.350 0.556(6) 491.49602070057

42 42 0.262 0.385(7) 491.49546168905

48 48 0.177 0.429(8) 491.49510320203 0.112(K2)

Table 11

The coefficients d̂
�
i from the collocation Trefftz method by the central rule

for Model II with LZ42 by ignoring the mild singularities at corners B

and C

i d̂
�
i

i d̂
�
i

0 0.49149546168905(3) 22 K0.38732308021276(K2)

1 0.20061741631796(2) 23 0.15222922823156(K1)

2 K0.31332682690943(2) 24 K0.18537659186308(K1)

3 0.84476705355138(1) 25 0.13164570233705(K1)

4 0.15444654497322(2) 26 K0.36127640611058(K2)

5 K0.52197549909606(1) 27 0.13507935540894(K1)

6 0.10843997742414(1) 28 K0.15269033237590(K1)

7 0.45314965063084 29 0.97379816592412(K2)

8 K0.71469113400049 30 K0.14839402178926(K2)

9 0.34610701298805 31 0.64905517111838(K2)

10 K0.74935909769621(K1)32 K0.70035779273999(K2)

11 K0.39632984998754(K1)33 0.41042351379424(K2)

12 0.82256535112322(K1)34 K0.25528371216394(K3)

13 K0.44645267648607(K1)35 0.15575280684639(K2)

14 0.10533093384599(K1)36 K0.16258709839073(K2)

15 0.88658956518358(K2)37 0.89428271787672(K3)

16 K0.14897241354148(K1)38 0.24127768058350(K5)

17 0.10194437974102(K1)39 0.14814295972461(K3)

18 K0.40342227174215(K2)40 K0.15230483989584(K3)

19 0.77421337052198(K2)41 0.80339732143722(K4)

20 K0.98722765968634(K2)42 0.31972123443789(K5)

21 0.84599449662161(K2)
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Dirichlet–Neumann boundary conditions are computed. The

uniform admissible functions

v Z
XL

iZ0

dir
iCð1=2Þ cos i C

1

2

� �
q; in S; (5.20)

are chosen. When there is only one singularity at the origin,

the very highly accurate solutions can be obtained by the

collocation Trefftz method, and the exponential convergence

rates are verified numerically. However, if there exists a mild

singularity of O(rk ln r), kZ1,2 at corners, the accuracy of the

numerical solutions is reduced significantly, and only the

polynomial convergences rates can be observed. From Tang

[10] we conclude that the divisions of S into three

subdomains and the use of the piecewise admissible functions

as (5.7) are absolutely necessary to achieve the highly

accurate solutions by the collocation Trefftz method, and to

retain the exponential convergence rates.

Now, we ignore the mild singularity at the corners B and

C, choose the uniform functions (5.20) only in the entire

domain, and carry out the collocation Trefftz method for

Model II. The computed results are list in Table 10, and the

leading coefficients in Table 11. From Table 10 we can see

kekB Z OðLK2Þ; Cond: Z Oðð1:42ÞLÞ; (5.21)

by noting the ratio from the data in Table 10:

ðk3kBÞLZ24

ðk3kBÞLZ48

Z
0:863

0:177
Z 4:88 Z 22:28:

The convergence rate O(LK2) is polynomial and slow;

while the condition numbers significantly larger than those in

(5.17). In Babuska and Guo [2], for the mild singularity

O(rk ln r), the polynomial convergence rates

k3k1;S Z OðLK2kÞ; (5.22)

are proved for the p-version FEM. Since there is a mild

singularity O(x ln h) at corner C in Model II, the convergence

rate O(LK2) coincides with (5.22) very well. Interestingly,

although the slow convergence rates occur, the leading

coefficients, d̂
�
0 and d̂

�
1 , still have five and four significant

digits. This implies that the solutions near the origin may not

be influenced strongly by the mild singularity at the far away

corners. However, the convergence rates for d̂
�
0 is also
polynomial

Dd̂
�
0 Z OðLK2Þ; (5.23)

by comparing d̂
�
0 in Table 10 with d̂0 in (5.18)

jd̂0 K d̂
�
0 jLZ24

jd̂0 K d̂
�
0 jLZ48

Z
0:471ðK2Þ

0:112ðK2Þ
Z 4:21 Z 22:07:
6. Concluding remarks

To close this paper, let us give a few remarks.
1.
 The particular solutions of Poisson’s and Laplace’s

equations on a sector with the Dirichlet, the Neumann

boundary conditions, and their mixed types are derived in

detail. Although these solutions can be found in Volkov



Fig. 10. Overlapped subdomains of S.
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[11,12]. The solution formulas of harmonic functions

given in this paper are more explicit, and easier to expose

the mild singularity at the domain corners than those in

[12]. A number of useful particular solutions for the

rectangular, the L-shaped and the cracked domains are

derived. Obviously, the analysis in this paper is also more

comprehensive and complete than that in [5,7]. Choosing

a set of good basis functions, in particular those

representing singularities, is essential for the collocation

Trefftz method. Hence, the analysis of the particular

solutions in this paper will promote the collocation Trefftz

method to a high capacity to solve the Poisson and

Laplace equations on a polygon.
2.
 The particular solutions can exhibit a clear view of

regularity and singularity. In this paper, we provide the

particular solutions on special angles, QZip/2, QZ(2iK
1)p/4, iZ1–4. Those solution behavior is important for

the choices of numerical methods, because different

numerical methods need different regularities of the true

solution. Take linear finite element method and the finite

difference method as examples. If u2H2(S), the optimal

convergence rate can be obtained, where Hk(S) is the

Sobolev space (cf. Ciarlet [4]). If u2H3(S), the super-

convergence of FDM may be achieved, see Li et al. [8].

Moreover, the existence of singularity may suggest that

whether the refinement of elements is employed or not,

and where this refinement should take place. When multi-

singularities occur, the division of S should also be

considered, and combinations of numerical treatments

must be used. In summary, the particular solutions in this

paper are imperative for numerical methods, not only for

the collocation Trefftz method, but also to other methods,

such as the combined method in [5] and the Schwarz

alternating method.
3.
 Two new singularity models are designed, to include the

discontinuity, and the crack plus the mild singularities of

O(rk ln r), kZ1,2. The high accurate solutions of

exponential convergence rates are also provided by the

collocation Trefftz method, which can be regarded as the

‘true’ solution for testing other numerical methods. By

using piecewise particular solutions in subdomains, not

only can the condition numbers be reduced significantly,

but also the high accuracy of the solutions may be

achieved as well. This is a new discovery, compared with

[5]. Moreover, the Gaussian rule with high order may raise

the accuracy of the leading coefficients; this is also

coincident with [9].
4.
 Highly accurate collocation Trefftz method in [9] can be

extended to the complicated problems by using the

piecewise particular solutions as shown in Model II, or

by employing the Schwarz alternating method. For Model
II, let S be divided into three overlapped subdomains S0,

S1, and S2 in Fig. 10. We may carry out the collocation

Trefftz method in each Si including just one singularity,

and use a few iterations to provide the solutions of Model

II having the exponential convergence rates. Numerical

results will report elsewhere.
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