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Abstract

In this paper, the harmonic functions of Laplace’s equations are derived explicitly for the Dirichlet and the Neumann boundary conditions
on the boundary of a sector. Those harmonic functions are more explicit than those of Volkov [Volkov EA, Block method for solving the
Laplace equation and for constructing conformal mappings. Boca Raton: CRC Press; 1994], and easier to expose the mild singularity at the
domain corners of the Laplace solutions. Moreover, the particular solutions of Poisson’s equation on the polygon is also provided. We also
explore in detail the singularities of the polygons with the boundary angles ®=m/2, 37/2, v and 27, which often occur in many testing
models.

Besides, the popular singularity models, Motz’s and the cracked beam problems in Lu et al. [Lu TT, Hu HY, Li ZC. Highly accurate
solutions of Motz’s and the cracked beam problems. Eng Anal Bound Elem; 2004, in press], we design two new singularity models, one with
discontinuous singularity, and the other with crack plus mild singularities. The collocation Trefftz method, the Schwarz alternating method,
and their combinations may be chosen to seek the solution with high accuracy, which may be used to test other numerical methods. The
particular solutions of the Laplace equations and their singularities are fundamental to numerical partial differential equations in both

algorithms and error analysis.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper, we derive explicitly the particular solutions
of Laplace’s equation in sectors with the Dirichlet,
Neumann, and their mixed boundary conditions. We
explore those in particular with the boundary angles of
O =m/2, 37/2, 7 and 27, which often occur in Motz’s
problem, the L-shaped and the cracked beam problems.
Although the particular solutions in this paper may be found
in Volkov [11,12], the formulas of the particular solutions
given in this paper are more explicit than those of Volkov
[12], and easier to expose the mild singularity at the domain
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corners of the Laplace solutions. Moreover, new models are
designed for Laplace’s equations including discontinuity,
and the cracked plus mild singularities, *In r, and the
Trefftz method using the piecewise particular solutions can
provide highly accurate solutions, which may be used to test
other numerical methods.

When a solution domain can be split into several
subdomains, the local particular solutions in each subdomain
can be found in this paper. Several methods for Laplace’s
equations with highly accurate solutions may be chosen:
(1) the collocation Trefftz methods (i.e. the boundary
approximation method in [5]), (2) the combinations of the
collocation Trefftz and the Schwarz alternating methods, and
(3) other methods such as the block method in [11,12].

This paper is organized as follows. In Section 2, the
particular solutions are derived for Laplace’s equations in
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sectors with the Dirichlet boundary conditions, and their
explicit formulas are provided for special angles ©. In
Section 3, the particular solutions of those involving the
Neumann boundary conditions are discussed. In Section 4,
the particular solutions of Poisson’s equation are provided,
and those are developed for the cases that the boundary
functions of the Dirichlet and the Neumann boundary
conditions are not smooth. Besides, the singularities of the
solutions at the boundary angles ® =/2, 37t/2,  and 27
are especially analyzed. In Section 5, two new models, one
with discontinuity, and other with crack plus mild
singularities, are designed, and the collocation Trefftz
method are used to provide their very accurate solutions.

2. The harmonic functions

Consider the Laplace equation with the Dirichlet
boundary conditions (see Fig. 1)

u  %u .
Au = <W+a_yz> :O, inS 5 (21)
u=g, ondS*, (2.2)

where S is a polygon. For each angle, we seek the harmonic
solutions in the corresponding sectorial domain (see Fig. 2)
S={(r, 0), 0<r<R, 0<6<06}:

Au =0, inS.

We suppose that the function g is highly smooth that it
can be expressed by the power series

ulgs = glon =Y _ar', 0Sr<R, =0, (2.3)
i=0

ulgs = glog =Y B, 0<r<R,0=0, (2.4)
i=0

where 3; and «; are known coefficients. In fact, when the
function gl 5 = g,(r) is highly smooth, it can be expanded
by Taylor’s series:

© i
g1 (O
gi(n) = E L i .
i=0 :

—_—
—_—

Fig. 1. A polygonal domain.

Y

Fig. 2. A sectorial domain.

Then §;= g(li)(O)/i!. Similarly, for gl = go(r), we also
have:

* D)
8o (O)r
gor) =D -
i=0 ’

Hence, for any smooth Dirichlet boundary condition
u=g on dS, we may simply consider the following case in S
(see Fig. 3). In this paper, we also assume that the
corresponding series occurring are also convergent in
the desired domain. Otherwise, we may consider only the
polynomial boundary conditions

M
ulgs = glon =D er', 0<r<R, =0, (2.5)
i=0

N
ulgs = gloy =D 8", 0Sr<R, =0, (2.6)
i=0

where (3; and «; are known coefficients. This is the special
case of (2.3) and (2.4), because we may let 3;=0 as i>N
and o;=0 as i>M.

Let us consider the mixed type of the Dirichlet-Neumann
boundary conditions in Fig. 4

ou

Au =0, inS, —
u in n

=gn, on Iy,

2.7)

u = gp, onIp,

where 0S=I'p U I'y and 7 is the outnormal of 0S. There are
four types of mixed boundary conditions on two adjacent

Fig. 3. The Dirichlet boundary conditions.
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Fig. 4. A polygon.

edges of a corner: (1) the D-D type, (2) the N-D type, (3)
the D—N type, and (4) the N-N type.

The harmonic solutions of the D-D type will be derived
in this section, and those of the N-D, D-N and N-N types in
the next section.

2.1. General cases

The general solutions of Laplace’s equation in §
satisfying (2.3) and (2.4) can be split into i and u,

u =i+ ug, (2.8)

where the general solutions u, satisfy

Au, =0, in S, U, = 0, #=0and 0 =06, 2.9)

where 0 <® <27, and the particular solution # satisfies:

A =0, inS, (2.10)

ilyo =) _air's ily—o =Y Bir'. @.11)
i=0 i=0

Note that in (2.9) and (2 10), the boundary condition on
Qr={(r, ®)|lr=R, 0<H <O} has not been given yet. Hence,
the general solutions u, and u are not unique.

First for (2.9), the general solutions are ¢;=r"" sin 7,0,
¢ilo—o=0 holds automatically, and ¢;ly—e=0 leads to
sin ;0 =0. Hence, o,0=im, ie. o;=im/@. We obtain
the general solutions

ug =3 er™ sin (’g 0> : 2.12)
i=0

where ¢; are the coefficients to be found.

First, we seek the particular solutions involving mild
singularity Inr, k=1, 2,... The mild singularity is
investigated in this paper, to compare with the rather
strong singularity O(r"), 0<+y<1. Consider a complex
variable z, and let z=x+iy=re"’. The real and imaginary
parts of the complex functions, 7 In z, pER are harmonic.

We then have
2 Inz = (¥ cos pf + ir’ sin pd) X (In r + i)
= r{In r cos pf — 0 sin ph}

+ ir’{In r sin p# + 6 cos pb},

where p is a real number. Hence the following functions are
also harmonic:

@, = @p(r,0) = {In r sin pf + 6 cos p6}, (2.13)

¥, = ¥,(r,0) = {ln r cos pf — 0 sin p6}. (2.14)
When p is a positive integer k, k=1,2,..., we denote:

or = @i(r,0) = r*{In r sin k0 + 0 cos k6}, (2.15)

Wi = Y(r, ) = r*{In r cos k6 — 6 sin k6}. (2.16)
Define the functions

q)i = d’,-(r, 0)

# sin if

— if i@ #km, k=1,2,...
= (Sinl;’? (2.17)
)

@(r,0), if i® = k1 for some k,

where i>1 and ¢,(r, 0) is given in (2.15). Hence, we have:
Dilyg =0, Plyeo =1, Yr>0i=12,.. (2.18)

Choose the particular solutions for (2.10) and (2.11) as
the following form

i = Z(;A,-ri cos i + By + Z;B,-@i(r, 9), (2.19)

where the coefficients A; and B; are to be determined below.
When =0 we have A;=o; from the boundary condition in
(2.11), and when =06

A0+Bo@=60, AiCOSi@+Bi=6i, l=1,2,
(2.20)

Hence we obtain the coefficients:

B; =8 —a;cosi®, i=12,...
2.21)

Substituting (2.21) into (2.19) gives the particular
solutions:

= %6 + Zairi cosif + Z(ﬁi — ; cosiO)D;(r,0).
i=0 i=1

(2.22)
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In Volkov [12], the following form of particular solutions
for (2.10) and (2.11) are given by

=0+ 00 1S b)Y B0, (223)
i=1 i=1

where

&, = D(r,0) = O;(r,0 — ), (2.24)

to satisfy:

Dilp—e =0, Dily—g= FoVr>0,i=1.2,...

First, let us show the equivalence between (2.22) and
(2.23). When © #ktt/i, i> 1, we have from (2.23):

Q= ,80—0400+Z ;sini(® — 0)+Z lrisiniﬁ

sini® P " sini®
(2.25)

Since sin i(® —#)=sin iO cos if —sin if cos IO, we
obtain from the above equation:

Bo — g sin if

]

u=

0+Zar coszﬁ-l—Z(ﬁ o cos i@)r

(2.26)

This is the very (2.22) for @ #kmt/i.
When i®=km for some k, to confirm the equivalence
between (2.22) and (2.23), it suffices to show:

@ = 1 cos i — cos iOPD;. (2.27)
In fact, we have from (2.24) and (2.17)
&(r,0) = &(r,0 — 6)
_— (_(;)k (In 7 sin i(® — 0) + (© — O)cos i(O — 0)).
(2.28)

When i® =k, there exist the equalities:
$ini(® — ) = sini® cos i — cos i@ sinif = (—1)* "' sinih,

(2.29)

c0si(® — 0) = cos i® cos if + sin iO sinif = (—1)* cos if.
(2.30)

Substituting (2.29) and (2.30) into (2.28) gives the
desired result (2.27).

Second, Volkov in [12] also considers the case of
i® #kt but i® = kTt so that the ratio sin if/sin i® becomes
very large. Other basic functions are also introduced in [12]
for the case of 0<|sini®|<1/2. This is interesting for
theory but not for application. In practical engineering
problems, usually we may assume ®=(K/L)m, 0<K<2L,
and L and K are two integers of relatively prime and in
moderate size. Then we have

o N ¢ . T, T
min |sin i®| = min [sin— 7| = [sin—| =—,
i i L L L

sini®

over all positive integers i such that i®/ is not an integer.
Hence, the ratio

L
<

sin i6
max
1

sini®| T

will not be very large. Consequently, we omit the case of
i® =k in this paper.

Third, let us compare the formulas of the functions
(2.22), and (2.23) of Volkov. Eq. (2.23) is clearly symmetric
with respect to § =©/2. In contrast, we may rewrite (2.22) as
_ Bo

i =ogy+ %0 + Z a;(r' cos i) — cos iOD,(r, 0))
i=1

+ ) 8:,(r,0), 231)
i=1

which is not symmetric, indeed. From the viewpoint of
computation, both (2.22) and (2.23) are effective. However,
Egs. (2.22) and (2.31) are more explicit. In particular, Eq.
(2.22) displays straightforward the mild singularity. For
instance, when i® = k7t and 3;+# o, cos i®, there does exist a
mild singularity of O(/* In ). More exploration on the mild
singularity is provided in Section 4.3.

Remark 2.1. It is assumed that the series in (2.31) is
convergent. Otherwise, we may consider only the finite
terms in (2.11):

M N
_ _ i - _ i
ilg—g = E or',  dlg—e = E Bir'.
i=0 i=0
Hence, the solutions become

Bo —
+
(C]

(2.32)

M
0+ Z a;(r' cos i) — cos iOD,(r, 0))
i=1

N
+) 80, 0), (233)
i=1

to replace (2.31). Similarly for all infinite series given
below, it is always assumed that they are convergent.
Otherwise, a suitable modification should be made
correspondingly.

2.2. Formulas for special ©

Based on (2.22) and (2.17), we list the particular
solutions which are often used in application.

(1) When ®=r1t:

oo
__Bo—g P
u=—0+§ a;r' cosif
T P

+Z( 1)6 Loi(r,0). (2.34)
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(2) When ®=21r:

iu= (pi(r’ 6)
(2.35)
(3) When ©®=1/2:
u= 2(6070%—20” cos i
T i=0
+ Z(—l)’ﬁzjﬂrzf“ sin(2j + 1)
j=0
© 2 )
+ D (=1 By — )1, 0). (2.36)
j=1
(4) When ©=3/2:
_ 2By — ap) . i .
= 2P0~ %), 7 cos if
u Y + ; ;1 COS 1
+) (=1 By PP sin(2j + 1)6
j=0
© 2 )
+ D318y — ay)ey(r,0). (2.37)
j=1

Note that the formulas of the particular solutions for ® =
and ® =2t are very close, and so are those for ® =1t/2 and
O =13m/2. Except the different angles @, the only difference is
that the sign (— 1)’ may change in the series of £;.

(5) When ©@=m/3, 27/3, 47t/3, 57t/3:

Bo—
(C]

in=

0+ Zairi cos if

L Zﬁ%ﬂ—l o341 cos(3j + 1)O s
sin(3j + 1)®

sin(3j + 1)0

+ Z 133j+2 042/+2 005(3] + 2)@ 3j+2
sin(3j +2)©

sin(3j +2)0
+ 26(63j €08 3j0 — a3))@3,(r, 0).
j=1
(6) When ®=m/4, 31t/4, 5T0/4, T10/4:

ﬁziﬁogaoﬁ—i—ZairiCOSiﬁ
i=0

Bajrx — 0tgjig cos(4j + k)O Ak
+ T+ Sin(4j + k)
Jz; kz sin(4j + k)© sin(4j +£)

+ ;5(54,‘ cos4jO — a)@u;(r,0).

(7) When ®=(K/L), 0<K<2L, and integers K and L are
relative prime:

Bo —
(¢}

u=

0+ Zairi cos ifl
i=0

w L—1]

Brj+x — agjri cos(Lj + k)O
>

K sin(Lj + k)0
L sin(Lj + k) s

[=<] 1 ]
+ 26(6” cos Lj® — o ), (1, 0).
j=1

3. Harmonic solutions involving Neumann conditions
3.1. The case of the N-D type

Consider:

oo
Au =0, inS, —lg 0= E or', ulp_e = E B;r'.
i=0

3.1

Let u=ii + u,, where the general solutions are given by
= der"" cos a0, (3.2)
k=0

when g, = (k+ 1/2)1/©. The particular solution i satisfies:

_ . dii . i - N i
Aii =0, inS, o |70 = ;air, ilg—e = ;ﬁ,r.
3.3)
Define the functions
lpi = q/i(r’ 0)
r cosif 1
_— ifi@+ | k+—|m k=0,1,...
cos i® n ( * 2>W
( )k+1 1
——yi(r,0), ifi® = (k +E)TC for some %,
3.4
where ¢ (r, 0) is given in (2.16). Hence:
v, i i .
an 0=0— — raa |9:0=0, lpilﬂ:@ =r, VV>0,l= 1,2,...
3.5
Choose the following particular solutions to (3.3)
i = ZA,-r" sin il + By + ZB,-LUi(r, 0), (3.6)
i=1 i=1

where A; and B; are the coefficients. When #=0 we have:

0
0o — — E Aiirlil
i=1

ar = ——p=
i=0 d
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A=——L =12, (3.7)

Also when =0:

Zﬁiri = I/_l|,9=() = ZA,-ri Sin l@ +BO + ZBiri.
i=1 i=1 i=1

This gives:
By =By, Bi=0;

—A;sini® = §; +
(3.8)

Hence, we obtain from (3.6) to (3.9) the particular
solutions:

i = —i“'i“ ¥ sinif + B,
i=1
+ f: (6, ~Lgin i@) W(r,6). (3.9)

i=1

Eq. (3.9) is explicit for computation, in particular for
directly displaying the existence of the mild singularity
O(ri In r), when i®=(K+1/2)m and 3; + (a;_/i)sini® # 0.

Below, we also list the useful formulas of the particular
solution for some special ® from (3.9).

(1) When ®=1/2:

Lyl sin i@

o o) )
+Z;; <(_1)]+1i82j+1 2+ 1)W2j+1(7 0)
=

+) (= 1YByr¥ cos 26.
Jj=0
(3.10)

(2) When ©=3/2:

0

_ (27
= — E —— ¥ sin if
i

i=1

+z(;§((_l)]i82j+l % +1>¢2j+1( )
=

+ Z(—l)jﬁzjrzj cos 2j6.
=0
(3.1D)

In Volkov [12], there are the different but equivalent
formulas of (3.9). The discussions and comparisons between
(3.9) and Volkov’s are similar as the above.

3.2. The case of the D-N type

Now, we consider the mixed type of the D-N type:

Au=0, inS, ulj—y= Zairi,
i=0
(3.12)

Its solution is just the reflection of the solution of the N-D
type about §=0/2 with «; and (; switched. But for the
completeness, we also include its derivation here. Let
u= i+ u,. We have the general solutions:

- k+1
U, = der"k sin(e,60), o, = (.#2)75. (3.13)

The particular solution satisfies:

AIZZO, inS, ﬁlg:()z E air’,

—lﬁ @—Zﬁr

i=0
(3.14)
Define the functions:
=@, (1, 0)
¥ sin i0 1
ifi@+k+—- |7, k=1,2,...
icosi®’ n ( Z)TC
)k+1 1
————r,0), ifi® = (k + 2>TC for some k.
(3.15)
Hence:
A (9&)1 i—1 .
N Pr— —_— ey = — g = > = e
Pily—o =0, 9 6= raalf)_@ L Vr>0,i=1.2,
(3.16)
Choose the particular solutions to (3.14):
1= Agir'cosif + Y Bidi(r.0), (3.17)
i=0 i=1

where A; and B; are the coefficients. When =0 we have A;=
a;, and when /=6

. . on N 1. N
r=—lgmg=—> A7 isini®@+ Y B .
;,8; o |6=© ; ;7 isini ; s
This gives:
Bi = 61'_1 + iaisini@. (318)
Hence we obtain from the particular solutions (3.17):

= apr'cosif+ Y (Bi_y +iasini®)d(r,0).  (3.19)
i=0 =

i=1
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Below, we also list the useful formulas from (3.19).

(1) When O =m/2:

= Z r cos if
+Z < );+1 ﬂzj 042j+1><P2j+1(V, 0)
+Z( 1y 2L ‘62] L+¥ sin 2j6. (3.20)

(2) When ©=3m/2,

o]
i = E a;r' cos i

i=0

2 [ By
+;3_n<( 1)l2j+1

- a2j+1> ®oj+1(r,0)

+Z( 1y ==L 521 L ¥ sin 2j6.

(3.21)
3.3. The case of the N-N type
Consider:
Au =0, inS, (3.22)
du - . du
— lp=0 = i, = i 3.23
o |o=0 ;W i 0=© Zﬁ (3.23)

Let u=ii+ u,, where u, =3 or’ cos 0,0, 6;=i/O.
The particular solution satisfies:

Aii =0, inS, (3.24)

5, |i=e = Zﬁir". (3.25)

Define the functions:

g
I

i 'f’i(”» 0)

“reosi ifi0%km, k=12, ...

isin i®
( 1)k+l
if i® = kTt for some k.

Vi(r, 0),
(3.26)

Hence:
v, oW, i ,
W&zoz s W’g:@=r , Vr>0,i=1,2,...
(3.27)
Choose the particular solutions
i = ZA,-ri sin il + ZB,-'f’i(r, 0), (3.28)
i=1 i=1
with the coefficients A; and B;. When #=0 we have:
.. i dii - -
A=, =, == A
; alr an |t970 raa |070 ; llr
Then A;= —a;_ /i, i=1,2,.... Next, when §=0:
. . i dii
;5# 3 0=0 = @M:@
= ZA,-ri_li cos i® + ZBiri_l.
i=0 i=0
This gives:
B, =061 +a_ycosi®, i =1,2,... (3.29)

Hence we obtain from (3.24) and (3.25) the particular
solutions:

u= — Zl%ri sin if + ;(61‘,] + o; 1 COS i@)'f’i(r, 0)

(3.30)

From (3.30), we also list the useful formulas for special
angles 6.

(1) When ©@=rt:

+Z—<( D™ — i )y(r,6). (331)

Ly sin i@

(2) When ®=21:

= [ =~ 1
u = —ZITIV Sin 10 - ;ﬂ(ﬁi,I + Olifl)l//i(l", 0)

(3.32)
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(3) When ®=1/2:

_ . ‘ I
i=— E — 7' sinif + E (—1y* A
i=1 =0

i 2j+1
X cos(2j + 1)0

+ ZJ.;((—lY*‘ﬁzj,l — ay W, 60).  (3.33)
j=1

(4) When O =3m/2:

_ = (LT = i 182‘ i
u=—; ilr 51n10+;(—1)12j—_if1r2’+1

X cos(2j + 1)8

) (=1 By — ay Wy, 0). (3.34)
= 3jm

Interestingly, when ® =t/2, 7t, 37t/2 and 27, for the N-D,
the D-N and the N-N types, the worst singularity of i is
O(r In r), and for the D-D type, the worst singularity of i is
0(0/0).

4. Extensions and analysis on singularity

4.1. Particular solutions for Poisson’s equations

In this section, we consider the simple case of the Poisson
equation

—AG=f, inS, 4.1
_ dit
ilr, = gps P Ire = &n- 4.2)

where 0S=I"=IpUIy, f=axi)/, ij=0,1,..., and a is a
constant. Suppose that i >j without loss of generality.

Case I. For 0<;<1:
i+2
. S
i+ D3GE+2)
Case II. For 2<;<3:

B { Xty B X2 — 1) }
“ G+DE+2) (+HE+3)E+26E+ D]

u=

7]
Case III. For 2k<j<2k+1, k=12,...

B X2y B a
a(i +DE+2) G+DE+2)

u

k
% Z(_l)szwaiﬁtzufeyj—zsz’
2=l

where the coefficients:

2 ; i
_ G—2m)(j—2m—1)
bijg —ng(i+2+2m)(i+1+2m)'

Besides, Cheng et al. [3] gives a different approach for
deriving the particular solution for the same function f. The
particular solution is given as follow

_j+2_
Int —2
_Z _a(_l)k-H i!j!x1+2ky/—2k+2 fori>j
_ = i+ 201G — 2k +2)!° 7
u= x _
i+2
Int 3
L d iy T2k 2,2k
a2 fori <,
£ (i—2k+2)1( + 2k)!

where Int[s] means the integer part of s. By the above
arguments and principle of superposition, we can obtain the
particular solutions i for:

M_N_
—Aii=f= ZZaijx’y’. 4.3)
i=0 j=0

To find the solution of (4.1) and (4.2), it suffices to seek
v=u— i to satisfy (4.1) and (4.2):

Av =0, inS, 4.4
V= gp — u, on FD? (45)
v i

—= - I'y.

an SN T gy OMIN

Hence, it is reduced to the Laplace equation with the
Dirichlet—Neumann conditions, which solutions have been
provided in Sections 2 and 3.

4.2. Extensions to not smooth functions of gp and gy

In this subsection, we consider that the functions gp and
gn are not smooth. First, consider the D-D type

Aii =0, in S, ilg—@ = b1, (4.6)

ilg—o = ar?,

where p and ¢ are real. For the Laplace solutions u€ H'(S),
where H“(S) is the Sobolev space, the boundary functions of
the Dirichlet and the Neumann conditions satisfy
gnE€H"*(I'p) and gnEH "*(I'y) (see Babuska [1]).
Hence we assume p,g> —1/2 in (4.6).

Hence p and g are not confined to be positive integers (cf.
Sections 2 and 3). When p®, g®+* k. The particular
solutions are given by:

sin pd +ar sin g(® — )

i = br’
! sin p® sin g®

%))

For simplicity, here we only give one term on the right
hand side of the Dirichlet condition (4.6). For more terms,
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the particular solutions can be obtained easily by linear
superposition as done in Sections 2 and 3. Since the
solutions O(+” In r) for p& (—1/2,1) are of strong singularity,
we use the formulas in symmetric form of (2.23) as those in
Volkov [12].

Suppose that p@® = +m7t and g® = + L1t, where m and ¢
are positive integers. The particular solutions are given by:

ﬁzﬁ(pp(r’e) ifﬂq("’@_g)
O cosp® O cosqgO®
(—D)"b (—D'a
= @ Q’p(”, 0) + @ (pq(}’, @ - 0) (48)

When p® # +mm and g® # 12, the particular solutions
can be easily obtained. Moreover, the function ¢ (r, @ —0) is
defined in (2.13), and may be further simplified (see Sections
2 and 3).

Next, consider the N-D type

ou

A =0, inS, —
il in n

ily_o = br’, 4.9)

|€:0 = arq’

where real number p> —1/2 and ¢> —3/2. For p®,
(g + 1O #=+(k + 1/2)m, the particular solutions are:

cos pl a

Lt sin(g + 1)(©@ — 0)
cosp® g+1

P — b
“=b cos(g + 1)O

(4.10)

For p® =+(m+ 1/2)w, (¢ + 1)O® =+ + 1/2)7, m and £
are positive integers, the particular solutions

L_t:_ﬁll/p(r,ﬁ)_ a (pq+1(r9®_0)
O sinp® (¢+ 1)@ sin(g +1)O
_ *H= 1)’"b +(—1)'a B
=T W g e 0 =0, (@1D)

where ¥,,(r, 0) is defined in (2.14). The particular solutions of
the D-N type can be obtained from those of the N-D type by
p=0-—4.

Finally, we consider the N-N type

.
e =", (4.12)
on

Aii =0, inS, — |4=0=ar’,

where real p,g> —3/2. When (p+1)0 and (¢ + 1)0 # Lk,
k=0,1,..., the particular solutions are:

b e cos(p + 1)
p+1 sin(p + 1)©

n a L] cos(g + 1)(©® — )
qg+1 sin(g + 1)©

(4.13)

When (p+1)0=tmm, (¢g+1)0= 1w, m, L=1,2,...,
the particular solutions are:

‘//q+l(r’® - 0)

] b W) |, a

T T T 1)@ cosp+ DO (g + 1)O cos(qg + O
(—=1)"b (—D'a
(P + 1)@ ¢p+1( ) ( i 1)@ wq-&—l (r,@ - 0)

(4.14)

Of course, we may derive the particular solutions for
O =m/2, 31t/2, 27t and 27 by following Sections 2 and 3.

4.3. Regularity and singularity of the solutions of ® =/2,
3n/2, m, 2w

From the analysis in Sections 2 and 3, when gp, and gy are
highly smooth on aS, the solutions u inside of S may also be
smooth for ®=1/2, . However, the solution u near the
corners may have the mild singularities O(rk Inr), k=12,...
in addition to the strong singularities. Since the singularity
analysis on general solutions can be found in textbooks (cf. Li
[5]), we focus on the analysis for the particular solution i. In
particular, we consider when & =itt/2, i=1-4 which exist in
Motz’s and cracked beam problems [9], and the L-shaped
domain problems and the general cracked domains in Fig. 5
(see [5,9]).

4.3.1. For the Case of ©®=1/2
First, consider a simple case of the D-D type as ® =1t/2

Ai =0, inS, i=aqy+or+ azrz,
(4.15)

0=0, a=p0+0r+0r’, 0=06,

where «; and §3; are constants. Only the quadratic polynomials
in the Dirichlet conditions are chosen, because the resulted
singularities are strongest among all mild singularity.

Fig. 5. The popular domains in testing models with @ =im/2, i=1-4.



68 Z.-C. Li et al. / Engineering Analysis with Boundary Elements 29 (2005) 59-75

We then obtain from (2.36):

§

ﬁ=a0+ﬂ0+6lrsin0

— m(pz(r, 0) + ayr cos 6 + a,r? cos 260.  (4.16)

In (4.16), when By # a, the function 8¢ H'(S), called the
discontinuity singularity. Moreover, when (,+a,#0, the
function 7% In r& H(S), called a mild singularity, compared
with the crack singularity

u=0(r'?) & HX(S),

in the cracked beam problem. Interestingly, the case of 8, +
a,#0 implies u, +u,,=B,+a,#0 against the Laplace
equation. Note that the case of §; or «a; has no effect on
singularities because r sin =y and r cos #=x. In Section 5,
Model II of crack plus mild singularities will be designed on
the rectangles with @ =1t/2.

Next, consider the N-D type:

e
At =0, inS, o o +oyr + azrz,
dn (4.17)
0=0, ia=PLy+0Br+pBr’ 0=06.
From (3.10) we obtain:
ii =By — b + %0 (r, 8) — Byr* cos 26
— or sin 6 — %rz sin 26
1
—‘?{ﬁ sin 30 + 5 Ya(r. 0)}. (4.18)

From (4.18), when 3 + ag# 0 which results from:
===, (4.19)

there exists a mild singularity O(rIn r), and when «,+#0,
there exists O( In 7). Interestingly, 8o, 8> and «; do not
cause any singularity in the N-D type, since 7> cos 20 = (x*—
y%) and r sin 26 = 2xy.

The conclusion for the D-N type can be drawn similarly.
Below we only consider the N-N type:

P
Ai =0, inS, a—” =y + a7 + ayr?,
n
(4.20)
o

0=0, G——ﬁo‘i‘ﬂﬂ""ﬂzr 0 =0.

From (3.33) we obtain:

_ B —a B2 3

= —Bqrcos 0 + 20 Yo (r,0) + 3 r~ cos 30

2

— ayr sin 6 — %r sin 26 — %P sin 36, 4.21)

Table 1
The singularities for the particular solutions of the Dirichlet-Neumann
conditions assigned by quadratic polynomials when & =1/2

Types Conditions Singularity of @  Not in H*(S)
D-D Bo# o 0(0/0) EH'(S)
B+ a,#0 O(*Inr) & H(S)
N-N 81— #0 O Inr) & H(S)
N-D 81+ ay#0 O(rlnr) & HX(S)
0, #0 o Inn & H*(S)

Only 8, — o #0 resulting from i,, # i,, will cause the
singularity O( In 7).

We summarize the singularities at the corner with ® =1t/2
in Table 1. The discontinuity 8+ «g in the D-D type is the
strongest. The next strongest singularity occurs in the N-D
type of B;+ap#0 and the N-N type of 81+ «;.

4.3.2. For the case of O=m
Next, we consider the D-D type of (4.15) with ®=1r.
From (2.34) we obtain:

Bo —
(C]

=0y + 0+oz1rcos0+a2r200320

_ Bt B —
@ @1(r,0) + ———

When B+ ag the solution of O(6/0) is discontinuity at
origin O, and when (,+ «,, the solutions of O(? Inr) are
obtained. Note that the case of §;#* —«;, will also cause
the singularity of O(r In 7). In fact, the case of §;#* —«y,
implies the existing of a piecewise x-function because r=x at
#=0Dbut r=—x at f=1r.

Consider the N-N type of (4.20) with ® =Tt. From (3.31)
for =1

(pz(r 0). 4.22)

0= —aorsmﬁ—?r sin 20 — 2213 sin 3¢
Bo — « B+«
+ g e 0) = = o 0a(r0)
8, —«
+ % @3(r, 0). (4.23)

When Bo# g, 1% —«;, and (B, «,, there exist the
solutions with u=0(0/0), O(rlnr) and O( Inr),
respectively.

Consider the N-D type of (4.17) with ® =1, which
appears in Motz’s and the cracked beam problems in [9]. The
general solutions are

L
» 1
u, = ; dir’+1/2 cos (i + E) 0,

and the particular solutions are obtained from (3.9)

2

3
i =Y (=B coskb =) kk L /¥ sin k6. (4.24)

k= k=1
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Interestingly, the singularity results only from the general
solutions of O(r'*?), but not from 8;#0 and «;#0.

4.3.3. For the case of ®=37/2

The boundary angle ®=37/2 exists in a typical concave
polygon, such as the L-shaped domains in Fig. 5. First, we
consider the D-D type of (4.15) with ®=31t/2. The solution
iSu=i-+ Uy, where

L
Z A2 ( )0,

and the particular solutions from (2.37) are:

Bo —
G

Bt
(¢

0 — (,rsinf

@y(r, 0) + a;r cos 0 + a,r? cos 2. (4.25)

Compared the above function with that of ®=1/2 in
(4.16), only the sign in front of the term @, sin 0 is different.
Note that when d;#0, u, = O(r*?) & H*(S) is the next
strongest singularity to that of O(6/0).

Consider the N-N type of (4.20) with ®=37/2. The
general solutions are

L .
: 2
U, = ; d,-r(m)’ cos <?l> 0,

and the particular solutions (3.34) give:

ﬁ

i = Byrcos 0 + '8—r cos 36

Wz( 0) —
— aorsin 6 — %rz sin 20 — %ﬁ sin 36. (4.26)

Compared (4.26) with (4.21), only the signs in front of
Bor cos @ and (B8,/3)r° cos 36 are different.

Finally, consider the N-D type of (4.17) with ® =3/2.
The general solutions are u, = Z,-L:O d;7" cos(a;0) where
0;=(2/3)i+ (1/3). The particular solutions of (3.11) give:
B1— g

(C]

=B+ 52r2 cos 26

Yi(r,0) —

— or sin 0 — =L/ sin 26

- % {r3 sin 30 + %%(r, a)}. (4.27)

The strongest singularity of u is O(r'"?).

4.3.4. For the case of @ =2

The boundary angle ® =27t occurs for the domains with
an inside crack in Fig. 5. First, we consider the D-D type of
(4.15) with ®=21. The general solutions are given by

U, = L ;7" sin(i/2)0, and the particular solutions

Table 2

The singularities for the general and the particular solutions for the
Dirichlet-Neumann conditions assigned by quadratic polynomials when
O=m

Types Conditions Singularity of #  Singularity of u,
D-D Bo# ag 0(0/0) /
B1+a;#0 O(rinr) /
BaF s O Inr) /
N-N Bo# agp O(rlnr) /
B1+a;#0 O(rzlnr) /
Ba# oy O’ Inr) /
N-D / / o'

from (2.35) are:

U=y @i (r,0).

Bo — ag 2 k 2\ B — oy
+ o 0+;akr cosk6+; )

(4.28)

When (o # « the singularity O(6/0) is the strongest. The
next strongest singularity results from ugzO(rl/ %). Also
when 3;# «;, i=1,2, the mild singularities O(r; In r) occur.

Consider the N—-N type of (4.20) with ®=27t. The general
solutions are u, = Z,-L:O d;r'"? cos(i/2)8, where d, is an
arbitrary constant, and the particular solutions from (3.32) give:

3
Z Qe 1+18k Ut By, ) — Z H=1 kG k.
k=1

(4.29)

Consider the N-D type of (4.17) with ©=2m,
Uy = Sk d;r% cos(a;0), where 6;=i/2+ 1/4. The particular
solutions from (3.9) are:

2 3
i = Z Byr* cos kf — Z F—1
=0 ok

Tables 24 list the overviews of the singularities of
particular solutions for ® =31t/2, T, 2.

Among all cases of @=1/2, 37t/2, T, 2, the strongest
singularity is still O(6/@), and the next strong one o'
results from the N-D type of ®=27t. Based on the analysis
for the harmonic functions on the polygonal domains,
we understand completely the regularity and singularity of
Laplace’s solutions. Therefore, we may deliberately design
the brand-new models of different kinds of singularities.
In this paper, we consider the test models on the simplest

* sin k6. (4.30)

Table 3

The singularities for the general and the particular solutions for the
Dirichlet-Neumann conditions assigned by quadratic polynomials when
O=37/2

Types Conditions Singularity of i Singularity of u,
D-D Bo# o 0(0/0) o3
8o+ #0 O 1nr) o*?)
N-N 81—, #0 O 1n ) )
N-D 81%# a O(rlnr) or'?)
0, #0 O Inr) or'?)
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Table 4
The singularities for the general and the particular solutions for the
Dirichlet-Neumann conditions assigned by quadratic polynomials when
O=27

Types Conditions Singularity of i Singularity of
Ug
D-D Bo# o 0(6/0) o'
B1# O(rlnr) o'
Br#E s [ ) o'
N-N Bo+0p#0 O(rlnr) o'
81+, #0 O Inr) our'?
Bot+ o, #0 o Inr) o'
N-D / / o'

rectangular domain in Fig. 5, and employ the particular
solutions in Section 4.3.1. Of course, we may also design
other testing models on the L-shaped and the inside
cracked domains as shown in Fig. 5, by means of results in
Sections 4.3.2-4.3.4.

5. New models of singularities for Laplace’s equation

5.1. Two models

The singularity models play an important role in studying
numerical methods, because one may compare their
performance for the same models. Two popular models,
Motz’s and the cracked beam problems, have been explored
in Lu et al [9]. In this paper, we propose a new discontinuity
model, called Model I (see Fig. 6)

Au=0, inS, u=0, onOD,

_ ) ou _ ) 6.1
u =500, on OA UAB, ™ =0, onBCUCD,
where S={(x,y)| —1<x<1,0<y<1}.

Note that Models I is different from the Motz’s problem
only on the boundary condition on OA, where the Dirichlet
condition =500 is used to replace the Neumann condition
O0u/dn=0. The solution u at the origin is discontinuous,
having much stronger singularity than that of Motz’s

Y—-axis
A
c B B
u =0
n
u =0 u=500
n :
D 0 A
-1 u=0 u=500 1 X-axis

Fig. 6. Model I.

U =125 ( -x2+2x+3 )

¢ A B
u=0 u = 500
n H

D u=0 o u=0 A

Fig. 7. Model II.

problem. We have the solution expansion from (4.22)

_ 500
(TC ) 4 Z ¢ sin if, (5.2)

where c; are the unknown coefficients to be sought. Since the
function (5.2) also satisfies the boundary conditions on DO
and OA already, then ¢; can be found to satisfy the rest
boundary conditions on 0S as best as possible. We
will choose the collocation Trefftz method described in
Section 5.2 to solve it.

Consider the following model of the crack plus mild
singularities of pk In p, k=1,2, which are developed from
Motz’s problem, called Model II (see Fig. 7):

Au=0, inS, u=0, onOD,

_ 0 _ _
u=500, onAB. X —0, onOAUCD, (5.3)
n

u = 125(—x* 4+ 2x 4+ 3), on BC.
Since the function on BC is expressed by
u = 500(x + 1) — 125(x + 1)

=500 — 125(x — 1)%, on BC, (5.4)

we obtain the solutions at the corners B and C

M
_ 2% . . .
vy =V + g a;p” sin 2i¢, in S,
i=1

(5.5)

M
vy =7+ > bE T sini + 1y, in S,
i=1

where the coefficients a@; and b; are unknowns, (p, ¢) and (&,
n) are the polar coordinates at corners B and C, respectively,
and S; and S, are the subdomains (see Fig. 8):

Sp = {(P,¢)|0£p£p1, ogqsgg},

s ={emo<e<s, o<n<Z}
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C E B
n S2 S q)\
So
€ P
T
Ao
D 0 A

Fig. 8. Partition of the rectangle.

The functions ¥; and ¥, can be found by following the
particular solutions in Section 4.3

125
7 =500 — 125p cos2¢) + sz(lnpsin&]ﬁ + ¢ cos2¢),

500
7, = —1258% cos 2n + 5008 cosnp — ?E(lngsinn +ncosn).
(5.6)
where © =1/2.

Let S=S,US;US, shown in Fig. 8. Hence, the piecewise
admissible functions are given by:

L
‘ 1

= Zd,r”’wz) cos <i + ) 0, in S,
i=0 2

M
v=Qv =0+ Y a4’ sin i, ins;, (5.7

i=1

vy =7+ Y _bE  sini + Dy, in'S,.
i=0

Note that the solutions at corners B and C have the mild
singularities, O(p? In p) and O£ In £), respectively.

5.2. The Trefftz method

Based on the above analysis, we have found the local
particular solutions near all the corners of S. If there exist the
singularities, e.g. the discontinuity as O(6/0), the angular
singularity as O(#’), 0<p<1, and the mild singularity as
O(rk Inr), k=1,2,..., we may split S by a interface I, into
finite sub-polygons S;, e.g. S =UY S,. In each S;, there exists
only one singularity point at one exterior corner (see Fig. 9).
We denote simply

ZC@H(') in S;, (5.8)

where v; are the particular solutions, H(’) are the known
functions satisfying the Laplace equation, and c(') are
the unknown coefficients. Inside Sy in Fig. 9, the smooth

Fig. 9. Partition for the collocation Trefftz method.

solutions can be expressed by

o oo
u= E a;r' cos il + E b;r' sin if,
=0 i=1

where a; and b; are coefficients.

Suppose that the piecewise admissible functions (5.8)
satisfy (4.1) in S; and the exterior Dmchlet Neumann
conditions. Then the coefficients ¢, = ck may be sought by
satisfying the interior continuity conditions:

" _ out du
u=u, —=

on W, on Fo. (59)

Define the errors on I’y

+ —\ 2
Ivllg = J(W —v7)%de +w2j (aL—aL> aws

on on
Ty Ty
(5.10)

where w is a suitable weight. For Model II, we choose w=
min{ 1/L+ 1, 1/2M, 12N+ 1} (see [5]). Then the coefficients
G = ck are found by

1(&) = minI(cy), 5.11)

where:

1(cp) = Vil

+
— J(ﬁ —y7)2dL + wP J (aavn aavn ) e, (5.12)

Iy Iy

Eq. (5.11) is called the Trefftz method. When the integrals
in (5.12) involve numerical quadrature, we denote

dv o~

1(ck)—j(v —v)Ade + Zf(an ”

) de,  (5.13)
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where fTo is evaluated by some rules. The collocation Trefftz
method is to seek the coefficients ¢; = 65(’) by:

1(¢,) = minl(c;). (5.14)

The detailed algorithms and error analysis are also
provided in Lu et al. [9]. The exponential convergence
rates can be achieved if all corner singularities are taken into
account.

5.3. Numerical experiments

First, consider Model I with discontinuity solutions. We
divide AB by NNP uniform sections, and use the central rule
for numerical integration. Based on our trial computation,
choose NNP=L, and carry out the collocation Trefftz
method. The error norms, condition numbers (Cond.) of the
associated matrix, and the leading coefficient ¢, are listed in
Table 5, and the computed coefficients in Table 6. From
Table 5, we can see:

llellz = O((0.56)%), Cond. = O((1.43)"). (5.15)

The coefficient ¢; has 12 significant digits, if we compare
the data in the last two rows in Table 5. From Table 6, the
declining behavior of coefficients ¢, is like that in Motz’s
problem, and the errors ||¢||g in Table 5 decline by a factor
about 0.1 by increasing four terms of series sin if (see [9]).

The function @&t =500(w— @)/ in (5.2) satisfies i &
H'(S) but i € H"*(S) only. This causes a dilemma for the
error analysis of the Trefftz method for Model I. In fact, let
w=u— ii. We obtain from (5.1):

Aw =0, inS, w=0, onAD,
8_w= —a—u, on BC U CD.
on on

So the solution w is a smooth solution. Hence, we may
also achieve the exponential convergence rates by the
collocation Trefftz method for Model I (see [9]).

Table 5
The error norms, condition numbers and the leading coefficient from the
collocation Trefftz method for Model I with discontinuity solutions

L NNP  lells Cond. &

4 4 8.00 721 388.19237952022
8 8 0.374 39.4 431.70665114799
12 12 0.310(—1) 189 432.14376500110
16 16 0.262(—2) 865 432.14136607970
20 20 0.240(—3) 0.385(4) 432.14228064373
24 24 0.226(—4) 0.168(5) 432.14218726860
28 28 0.219(—5) 0.725(5) 432.14219772889
32 32 0.217(—6) 0.309(6) 432.14219655948
36 36 0.218(—7) 0.131(7) 432.14219669083
40 40 0.221(—8) 0.553(7) 432.14219667602
44 44 0.227(—9) 0.230(8) 432.14219667770
48 48 0.234(—10)  0.892(8) 432.14219667751

Table 6
The coefficients from the collocation Trefftz method by the central rule for
Model I with u; as L=44

i ¢ i ¢y

1 0.43214219667770(2) 23
2 0.31260955885527(2) 24
3 0.18038119234387(2) 25
4 —0.50111963888576(1) 26
5 0.25247674269181(1) 27
6
7
8

0.16489962791699(—5)
—0.79051314384074(—6)
0.37931215697053(—6)
0.18240663865146(—6)
0.87840710016997(—7)
—0.42329123575021(—17)
0.20396909210300(—7)
0.98583773313965(—8)

0.79217647609612 28
0.31101912715291 29
—0.15593842689060 30

9 0.64666484264955(—1)31 0.47728167326695(—8)
10 0.31023130031003(—1)32 —0.23016373178046(—8)
11 0.14574593153069(—1)33 0.10945497384787(—8)
12 —0.64753673008044(—2)34 0.53140684243878(—9)
13 0.30355950425750(—2)35 0.25906239084496(—9)
14 0.13875866526055(—2)36 —0.12253369539977(—9)
15 0.64253903347776(—3)37 0.52906242779061(— 10)
16 —0.30356334877807(—3)38 0.25805735672319(— 10)
17 0.14229592607503(—3)39 0.12740674743505(— 10)
18 0.67458107151949(—4)40 —0.56229016798380(—1 1)
19 0.32016503381154(—4)41 0.16282561223942(—11)
20 —0.15178192325529(—4)42 0.79889831908072(— 12)
21 0.72347424374442(—5)43 0.40231053525172(—12)
22 0.34495750578571(—5)44 —0.15531526257412(—12)

Next for Model I1, we should choose the partition in Fig. 8,
and use the piecewise particular solutions (5.7). Both the
central rule and the Gaussian rule of six nodes are employed
to compute the integrals in (5.13). Denote by NNP the
partition number of AE and ED. In computation, we choose
NNP as the multiple of six. The errors, condition numbers
and the leading coefficients ¢, are listed in Tables 7 and 8. For
two integration rules, the errors and Cond. are slightly
different, with the empirical rates:

llellg = O((0.55)%), Cond. = O((1.27)"). (5.17)

Compared with (5.15), the condition numbers are
significant smaller, while the errors retain the same high
accuracy. The better performance in accuracy is also a
development from the observation [5], based on the
numerical data in [6].

Note that |le|lz in (5.17) displays the exponential
convergence rates. It is proved in [9] that when the uniformly
V,, elliptic inequality as well as the bilinear inequality is
satisfied, the errors from the collocation Trefftz method are,
basically (i.e. with a constant factor), the optimal truncation
errors in (5.7), which have the exponential convergence rates
for the harmonic functions on a sectorial domain, see Volkov
[12], p. 41.

From Tables 7 and 8 the leading coefficient

~

dy = 491.49398551255, (5.18)

has 14 significant digits. When L=24, coefficient d, has 9
and 12 significant digits from Tables 7 and 8, respectively.
This implies that the Gaussian rule with six nodes provides
better leading coefficients, the same conclusion made in [9].
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Table 7

73

The error norms, condition numbers and the leading coefficient from the collocation Trefftz method for Model II by the central rule

L N M NNP llellg Cond. dy

6 3 3 6 0.485 5.14 491.50375447935164
12 6 6 12 0.990(—2) 17.8 491.49403292439115
18 9 9 18 0.141(=3) 71.3 491.49398597288712
24 12 12 24 0.489(—5) 294 491.49398548887837
30 15 15 30 0.916(—7) 0.122(4) 491.49398551220833
36 18 18 36 0.371(—38) 0.514(4) 491.49398551257605
42 21 21 42 0.767(—10) 0.216(5) 491.49398551255416
48 24 24 48 0.354(—11) 0.916(5) 491.49398551255229
Table 8

The error norms, condition numbers and the leading coefficient from the collocation Trefftz method for Model II by the Gaussian rule of six nodes

L N M NNP lells Cond. & \do — dol < =48
6 3 3 6 0.527 5.12 491.50984946552893

12 6 6 12 0.959(—2) 17.0 491.49399162427318 0.00001172067
18 9 9 18 0.152(—3) 67.5 491.49398552412674 0.00000157423
24 12 12 24 0.454(—5) 278 491.49398551269798 0.00000014547
30 15 15 30 0.995(—17) 1.15(4) 491.49398551252898 0.00000002353
36 18 18 36 0.361(—38) 0.481(4) 491.49398551255371 0.00000000120
42 21 21 42 0.859(—10) 0.202(5) 491.49398551255291 0.00000000040
48 24 24 48 0.392(—11) 0.861(5) 491.49398551255251 0.00000000000

Hence, we list in Tables 9a and 9b the computed coefficients
from the Gaussian rule with six nodes only. Besides, the
leading coefficients @; and by have 15 and 16 significant
digits, given by:

a; = —197.843688202747, I;O = —108.3167742382339.
(5.19)
Table 9a

The coefficients d; from the collocation Trefftz method by the Gaussian rule
with six nodes for Model II with L=42, M=21 and N=21

Moreover, we can see from |dy — do| <=48 in Table 8
that the leading coefficient d, also has the exponential
convergence rates,

Ady = |dy — dy| = O((0.56)").

Remark 6.1. In Tang [10], a number of singularity
models for Laplace’s equations on rectangle S with the

Table 9b
The coefficients a; and b; from the collocation Trefftz method by the
Gaussian rule with six nodes for Model II with L=42, M=21 and N=21

i d; i d;

0 0.49149398551255(3) 22 0.28296876209014(—3)
1 0.20065238223118(2) 23 0.17445041211420(—3)
2 —0.31336492129090(2) 24 —0.30575467669084(—3)
3 0.84502739982599(1) 25 0.19077594908752(—3)
4 0.15443903862693(2) 26 —0.50780058124318(—4)
5 —0.52203007093797(1) 27 —0.31978418070731(—4)
6 0.10853377508385(1) 28 0.55851059563915(—4)
7 0.45247368697120) 29 —0.35445135492159(—4)
8 —0.71447060802058) 30 0.95349846596053(—5)
9 0.34620015754709) 31 0.60578683131418(—5)
10 —0.75107200195077(—1) 32 —0.10476743650533(—4)
11 —0.39753375330083(—1) 33 0.66984928968357(—5)
12 0.82736452629329(—1) 34 —0.17784188813767(—5)
13 —0.45334765014809(—1) 35 —0.10897146397864(—5)
14 0.11220412185256(—1) 36 0.18351999362232(—5)
15 0.63615937532872(—2) 37 —0.11574049991123(—5)
16 —0.11139219730940(—1) 38 0.27828600655526(—6)
17 0.65343214462257(—2) 39 0.13463498937738(—6)
18 —0.16594741652122(—2) 40 —0.21339700669832(—6)
19 —0.99468983459638(—3) 41 0.12852559004887(—6)
20 0.17769148561836(—2) 42 —0.22265448089398(—7)
21 —0.10807339151966(—2)

i a; i b,

1 —0.19784368820275(3) 0 —0.10831677423823(3)

2 —0.31926930057149(1) 1 0.29780407286597(2)

3 0.64293346822787(1) 2 0.12655253431819(2)

4 0.75030546466542 3 —0.14499389726714(1)

5 —0.60862066562632 4 —0.10047797333552(1)

6 —0.92423658976556(— 1) 5 0.15330929917106

7 0.93708777642456(— 1) 6 0.14978794259931

8 0.15521001580253(— 1) 7 —0.24773993470475(— 1)
9 —0.15878893208957(— 1) 8 —0.24629343903207(— 1)
10 —0.27632100592619(—2) 9 0.42813849810836(—2)
11 0.29306574648338(—2) 10 0.44706691928972(—2)
12 0.52625553145008(—3) 11 —0.80216072455720(—3)
13 —0.56856704278497(—3) 12 —0.85704781612190(—3)
14 —0.10419605918837(—3) 13 0.15720069031688(—3)
15 0.11420949850474(—3) 14 0.17078652690669(—3)
16 0.20936766448185(—4) 15 —0.31858002906200(—4)
17 —0.23074560887560(—4) 16 —0.34434427308903(—4)
18 —0.38768970065648(—5) 17 0.65258826319999(—5)
19 0.42150857308363(—5) 18 0.63676400596069(—5)
20 0.47049774548533(—6) 19 —0.12273737750039(—5)
21 —0.49013499517408(—6) 20 0.76595590808321(—6)

21

0.14902151022334(—6)
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Table 10

The error norms, condition numbers and the leading coefficient from the collocation Trefftz method by the central rule for Model II by ignoring the mild

singularities at the corners B and C

L NNP llells Cond. &'S |c}(’; —dj
6 6 13.7 5.99 492.34847235119
12 12 3.58 82.8 491.51252765213 0.185(—1)
18 18 1.71 636 491.50221240460
24 24 0.863 0.720(4) 491.49869961824 0.471(—2)
30 30 0.583 0.513(5) 491.49694490581
36 36 0.350 0.556(6) 491.49602070057
42 42 0.262 0.385(7) 491.49546168905
48 48 0.177 0.429(8) 491.49510320203 0.112(—2)
Dirichlet-Neumann boundary conditions are computed. The polynomial
uniform admissible functions N _

Ady = O(L™2), (5.23)

L

1
Z P2 cog <i + 5) 0, inS, (5.20)

i=0

are chosen. When there is only one singularity at the origin,
the very highly accurate solutions can be obtained by the
collocation Trefftz method, and the exponential convergence
rates are verified numerically. However, if there exists a mild
singularity of O(/* In r), k= 1,2 at corners, the accuracy of the
numerical solutions is reduced significantly, and only the
polynomial convergences rates can be observed. From Tang
[10] we conclude that the divisions of S into three
subdomains and the use of the piecewise admissible functions
as (5.7) are absolutely necessary to achieve the highly
accurate solutions by the collocation Trefftz method, and to
retain the exponential convergence rates.

Now, we ignore the mild singularity at the corners B and
C, choose the uniform functions (5.20) only in the entire
domain, and carry out the collocation Trefftz method for
Model II. The computed results are list in Table 10, and the
leading coefficients in Table 11. From Table 10 we can see

llellg = O(L™%), Cond. = O((1.42)"), (5.21)

by noting the ratio from the data in Table 10:

(||€||B)L=24 _ 0.863
(lellg)r=ag  0.177

The convergence rate O(L™?) is polynomial and slow;
while the condition numbers significantly larger than those in
(5.17). In Babuska and Guo [2], for the mild singularity
O(@* In r), the polynomial convergence rates

= 4.88 = 2>%,

llell, s = OL™), (5.22)

are proved for the p-version FEM. Since there is a mild
singularity O(§ In 7) at corner C in Model 11, the convergence
rate O(L™?) coincides with (5.22) very well. Interestingly,
although the slow convergence rates occur, the leading
coefficients, &S and ﬁf, still have five and four significant
digits. This implies that the solutions near the origin may not
be influenced strongly by the mild singularity at the far away
corners. However, the convergence rates for do is also

by comparing d, in Table 10 with d,, in (5.18)

0.471(—2)
T 0.112(—2)

~ A%
|dy —dolp—os

0 9 =421 =27,
|d0 - dO |L=48

6. Concluding remarks

To close this paper, let us give a few remarks.

1. The particular solutions of Poisson’s and Laplace’s
equations on a sector with the Dirichlet, the Neumann
boundary conditions, and their mixed types are derived in
detail. Although these solutions can be found in Volkov

Table 11

The coefficients d,~* from the collocation Trefftz method by the central rule
for Model II with L=42 by ignoring the mild singularities at corners B
and C

i d; i a;

0 0.49149546168905(3) 22 —0.38732308021276(—2)
1 0.20061741631796(2) 23 0.15222922823156(— 1)
2 —0.31332682690943(2) 24 —0.18537659186308(—1)
3 0.84476705355138(1) 25 0.13164570233705(—1)
4 0.15444654497322(2) 26 —0.36127640611058(—2)
5 —0.52197549909606(1) 27 0.13507935540894(— 1)
6 0.10843997742414(1) 28 —0.15269033237590(—1)
7 0.45314965063084 29 0.97379816592412(—2)
8 —0.71469113400049 30 —0.14839402178926(—2)
9 0.34610701298805 31 0.64905517111838(—2)
10 —0.74935909769621(—1)32 —0.70035779273999(—2)
11 —0.39632984998754(—1)33 0.41042351379424(—2)
12 0.82256535112322(—1)34 —0.25528371216394(—3)
13 —0.44645267648607(—1)35 0.15575280684639(—2)
14 0.10533093384599(—1)36 —0.16258709839073(—2)
15 0.88658956518358(—2)37 0.89428271787672(—3)
16 —0.14897241354148(—1)38 0.24127768058350(—35)
17 0.10194437974102(—1)39 0.14814295972461(—3)
18 —0.40342227174215(—2)40 —0.15230483989584(—3)
19 0.77421337052198(—2)41 0.80339732143722(—4)
20 —0.98722765968634(—2)42 0.31972123443789(—5)
21 0.84599449662161(—2)
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[11,12]. The solution formulas of harmonic functions
given in this paper are more explicit, and easier to expose
the mild singularity at the domain corners than those in
[12]. A number of useful particular solutions for the
rectangular, the L-shaped and the cracked domains are
derived. Obviously, the analysis in this paper is also more
comprehensive and complete than that in [5,7]. Choosing
a set of good basis functions, in particular those
representing singularities, is essential for the collocation
Trefftz method. Hence, the analysis of the particular
solutions in this paper will promote the collocation Trefftz
method to a high capacity to solve the Poisson and
Laplace equations on a polygon.

. The particular solutions can exhibit a clear view of
regularity and singularity. In this paper, we provide the
particular solutions on special angles, ® =itt/2, @ = (2i—
1)m/4, i=1-4. Those solution behavior is important for
the choices of numerical methods, because different
numerical methods need different regularities of the true
solution. Take linear finite element method and the finite
difference method as examples. If u€ H(S), the optimal
convergence rate can be obtained, where HX(S) is the
Sobolev space (cf. Ciarlet [4]). If uEH3(S), the super-
convergence of FDM may be achieved, see Li et al. [8].
Moreover, the existence of singularity may suggest that
whether the refinement of elements is employed or not,
and where this refinement should take place. When multi-
singularities occur, the division of S should also be
considered, and combinations of numerical treatments
must be used. In summary, the particular solutions in this
paper are imperative for numerical methods, not only for
the collocation Trefftz method, but also to other methods,
such as the combined method in [5] and the Schwarz
alternating method.

. Two new singularity models are designed, to include the
discontinuity, and the crack plus the mild singularities of
O(rk Inr), k=1,2. The high accurate solutions of
exponential convergence rates are also provided by the
collocation Trefftz method, which can be regarded as the
‘true’ solution for testing other numerical methods. By
using piecewise particular solutions in subdomains, not
only can the condition numbers be reduced significantly,
but also the high accuracy of the solutions may be
achieved as well. This is a new discovery, compared with
[5]. Moreover, the Gaussian rule with high order may raise
the accuracy of the leading coefficients; this is also
coincident with [9].

. Highly accurate collocation Trefftz method in [9] can be
extended to the complicated problems by using the
piecewise particular solutions as shown in Model II, or
by employing the Schwarz alternating method. For Model

C

Fig. 10. Overlapped subdomains of S.

IL let S be divided into three overlapped subdomains Sy,
S1, and S, in Fig. 10. We may carry out the collocation
Trefftz method in each S; including just one singularity,
and use a few iterations to provide the solutions of Model
II having the exponential convergence rates. Numerical
results will report elsewhere.
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