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Abstract—In this paper, we provide a framework of combinations of collocation method (CM)
with the finite-element method (FEM). The key idea is to link the Galerkin method to the least
squares method which is then approximated by integration approximation, and led to the CM. The
new important uniformly V,?-elliptic inequality is proved. Interestingly, the integration approximation
plays a role only in satisfying the uniformly V,?~elliptic inequality. For the combinations of the finite-
element and collocation methods (FEM-CM), the optimal convergence rates can be achieved. The
advantage of the CM is to formulate easily linear algebraic equations, where the associated matrices
are positive definite but nonsymmetric. We may also solve the algebraic equations of FEM and
the collocation equations directly by the least squares method, thus, to greatly improve numerical
stability. Numerical experiments are also carried for Poisson’s problem to support the analysis. Note
that the analysis in this paper is distinct from the existing literature, and it covers a large class of
the CM using various admissible functions, such as the radial basis functions, the Sinc functions, etc.
© 2006 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

Since the finite-element method (FEM) today is the most important method among all numerical
approaches, owing to wide applications and deep theoretical analysis, we employ the FEM theory
in [1,2], to develop the theoretical framework of the collocation methods (CM). If the admissible
functions are chosen to be analytical functions, e.g., trigonometric or other orthogonal functions,
we may enforce them to satisfy exactly the partial differential equations (PDEs) at certain collo-
cation nodes, by letting the residuals to be zero. This leads to the collocation method. Since the
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PDEs and the boundary conditions are copied straightforwardly into the collocation equations,
the methods of the paper cover a large class of the collocation method, e.g., those using radial
basis functions, the Sinc functions, etc.

The CM is described in a number of books, [3-8]. Here, we also mention several important
studies of CM. Bernardi et al. [9] provided a coupling finite-element method and spectral method
with two kinds of matching conditions on interface. Shen [10-12] gave a series of research study
on spectral-Galerkin methods for elliptic equations. Haidvogel [13] applied double Chebyshev
polynomials to Poisson’s equation. Yin [14] used the Sinc-collocation method to singular Poisson-
like problems. Other reports on CM are given by Arnold and Wendland [15}, Canuto et al. {16},
Pathria and Karniadakis [17], and Sneddon [18].

In this paper, we follow the ideas in [6], and provide the combination of the finite-element and
collocation methods (FEM-CM). The advantages of this combination are threefold,

(1) flexibility of applications to different geometric shapes and different elliptic equations,

(2) simplicity of computer programming by mimicking the PDEs and the boundary conditions,

(3) varieties of CM using particular solutions, orthogonal polynomials, radial basis functions,
the Sinc functions, etc.

Moreover, optimal error bounds are derived, mainly based on the uniformly V;%-elliptic inequali-
ties, which are also proved in Sections 4 and 5. Note that the analysis of the CM in this paper
is distinct from the existing literature of CM.

This paper is organized as follows. In the next section, the combinations of FEM-CM are
described, and in Section 3, linear algebraic equations are formulated, and the solution methods
are provided. In Sections 4, the important uniformly V2-elliptic inequality is derived, and in
Section 5, the CM involves approximation integrals, and error bounds are derived. In the last
section, numerical experiments including a singularity problem are carried out to support the
analysis made.

2. COMBINATIONS OF FEMS

Consider Poisson’s equation with the Dirichlet condition,

O 0% _
—Ay =— (_6? + —6—y’2~> = f(z,v), in S, (2.1)

ulp =0, onT, (2.2)
where S is a polygon, and I is its boundary. Let S be divided by I'o into two disjoint subregions,
S1 and S, (see Figure 1): S =5;US,UT and §; NSy = §. On the interior boundary I'o, there
exist the interior continuity conditions,

+

uwt=uT, ul =, on [y, (2.3)

where u, = Z—Z, ut =uwonTyUS; and u~ = u on I'g U S;. Assume that the solution « in Sp
is smoother than u in S;. We choose the finite-element method in S; and least squares method

in SS9, whose discrete forms lead to the CM (see Section 3). Let S} be partitioned into small
triangles: A;j, i.e., S = U;;A;;. Denote h;; the boundary length of A;;. The A;; are said to be

Figure 1. Partition of a polygon.
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quasiuniform if h/min{h;;} < C, where h = max{h;;}, and C is a constant independent of h.
Then, the admissible functions may be expressed by

v = Uy, in Sy,

v = (2.4)

L
vt = E d@‘l’i, in 5'2,
i=1

where @; are unknown coefficients, and v are piecewise k-order Lagrange polynomials in Sj.
Assume that ¥; € C?(S; U 88;) so that vt € C?(S; U 8S;). Therefore, we may evaluate (2.1)

directly,
(Avt 4+ f)(Q:) =0,  for Qi € Sy, (2.5)

at certain collocation nodes Q; € S;. Note that v in (2.4) is not continuous on the interior
boundary I's. Hence, to satisfy (2.3) we have the interior collocation equations,

vV (Q:)) =v" (Q:),  for P €Ty, (2.6)
vt (Qi) =v, (Q:), for P €T, (2.7)

Equations (2.5)—(2.7) are straightforwardly and easy to be formulated. In this paper, we choose
the total number of collocation nodes (e.g., P;) to be larger (or much larger) than the number of
unknown coefficients @;. Hence, we may seek the solutions of the entire CM by the least squares
method (LSM) in [19], see Remark 2.1 below.

We assume that the solution expansion: u =) o, a;¥; in S, where a; are the true coefficients.
Denote

L
Ur = Zai\l/i, in Sg. (28)
=1

Then, u = uy, + Ry, and the remainder,

=]

Rp= Y a¥, (2.9)

i=L+1
Assume that (2.8) converges exponentially which implies

o

Z a,,;\I’i

i=L+1

|R| = =0(e7®),  in S, (2.10)

where €>0 and L > 1.

Denote by V}? the finite-dimensional collections of (2.4) satisfying v|r = 0, where we simply
assume ¥;|s5,nr = 0. If such a condition does not hold, the corresponding collocation equations
on 853 NT are also needed, and the arguments can be provided similarly. The combination of
the FEM-CM is designed to seek the approximate solution u; € V)2 such that

a(un,v) = f(v), Yve VR, (2.11)

where

a (u,v) =/ VuVu +/ u v + Pc/ AvAv
S] FO SZ

+-%-/FO (ut —u7) (v*’—v“)—}-F’c/F0 (ui —uz) (vf —vz),

flv) = //51 fv ~Pc/52 fAv, (2.13)

(2.12)
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where Vu = u,i + uyf, Uy = %, Uy = g—:, Up = g—:f, and n is the unit outward normal to 8S;.
h is the maximal boundary length of A;; or 0,5 in Sy, and P, > 0 is chosen to be suitably large
but still independent of A.

Denote the the space

H* = {v,v € L*(S), ve H' (S1), ve HY(S;), Av € L*(S,), and vl. =0}, (2.14)

accompanied with the norm

P 1/2
o]l = (nvnislm Iolly s, +Pe 1 A0l 5, + 3= o+ =v7[[g o, + P uv::—v,:ns,ro) . (215)

where [[v]|1,s; and |[v]|1,s, are the Sobolev norms. Obviously, V}? C H*. For the true solution u
to (2.1), we have a(u — un,v) = 0, Vv € V2. By means of a traditional argument in [1,20], we
have the following theorem easily.

THEOREM 2.1. Suppose that there exist two inequalities,
a(u,v) < Olllulll x [Ilvlll, ~ VYveWV, (2.16)

a(v,v) > Col|Ivl] 2, Vve vy, (2.17)
where Cy > 0 and C are two constants independent of h and L. Then, the solution of combina-

tion (2.11) has the error bound,
lllu = unlll = € inf {llu—vl]|. (2.18)
veVP

The proof for (2.17) is important but complicated, and is deferred to Section 4. Choose an

auxiliary function,
ur, in 81,

ur L = (2.19)

L
E ai‘I/iy in S?y
i=1

where uy is the piecewise k-order Lagrange interpolant of the true solution u, and a; are the true
coefficients. Then, u = Zf;l a;¥; + Ry, in S;. By means of the auxiliary function (2.19), we
obtain the following corollary easily.

COROLLARY 2.1. Let all conditions in Theorem 2.1 hold. Suppose that
ue H¥Y(S)  and  we HFY(T). (2.20)

Then, there exists the error bound,

M —uill] < € {hkmlkﬂ,sl +VE: |Rellzs,

(2.21)
1
Ve (W3 s + e WRelor, + IRe)ullg, ) -
Also suppose that the number L of vt in (2.4) is chosen such that
IRLl2,s, = O (h*),
IRzllo.r, = O (R<+1/2) (2.22)
Il (Rz)n llore = O (B¥) .
Then, there exists the optimal convergence rate,
Hu — wal|| =O(hk). (2.23)

REMARK 2.1. The combination (2.11) is nothing new (cf., [6]), except the proof of (2.17) is
challenging. Our goal is the CM used in S;, which can be obtained from (2.11) involving ap-
proximation integration. Hence, the combination of Ritz-Galerkin-FEM is a basis for the study
in this paper, but more justification will be provided below.
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3. LINEAR ALGEBRAIC EQUATIONS
OF COMBINATION OF FEM AND CM

Let fAf s, and Tr‘o denote the approximations ff s, and f r, Dy some integration rules, respec-
tively. The combination of FEM-CM of (2.11) involving integration approximation is given by
the following. To seek the approximation solution 4, € V) such that

a’(ﬁh,v) =f(’U), Vve V}?) (31)
where
& (u,v) =/ VuV'u+/ s v +P// Aulv
N . o (3.2)
A [t —w) )+ pc/ (ut — ) (o - 7)),
h’ Fo l‘0
fw) = / fu—P, / / fAv. (3.3)
5 S
Equation (3.1) can be described equivalently,
a* (0, v) = f1(v), Yve VP, (3.4)
where o
a*(u,v) =/ Vqu+/ u v +Pc// (Au+ fHAv+ f)
s fo T (3.5)
e IS CAE TR Y IS e}
h To To
aw = [[ 1 (36)
In S5, we choose the integration rules,
//s =) 0¥ Qi) Qi €Sy, (3.7)
2 1]
[ #=Fas@)  Qer (3.8)
0 J

where a;; and «; are positive weights. In fact, we may formulate the collocation equations at
Qij € S3, and Q; € I'g directly. The collocation equations at Q;;, and Q; are given by

(Bvt 4+ f)(Qi) =0, Qi €8s, (3.9)
(vt —v7)(Q5) =0, Q; €T, (3.10)
(vF —v7) (Q;) =0, Qj €T (3.11)
By introducing suitable weight functions, we rewrite the equations (3.9)—(3.11) as
v Pcaij (A'U+ + f) (Qz]) =0, Qij € S21 (312)
ca
J (vV —v7) (@) =0, Q; €Ty, (3.13)
P, 04J

(’U n) (QJ) = 07 Qj € I‘Oa (314)
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where oy, are positive weights, and Q; are the interior element nodes of I'y. We give some rules
of integration with explicit weights a; and a;; in (3.12). First, choose the trapezoidal rule,

—

[ =R @)+ @) = 5 (7@ 46 (@), (3.15)

The weights o; = H/2 or H when Q; is at a corner of S or not. Let S, be a rectangular
subdomain of S, and be divided into uniformly difference grids with the meshspacing H, where
Qi; denote the collocation nodes (7, 7). Hence, the weights c;; in (3.12) have the following values,

H2) (7'7.7) € 52;
1

ayj = EH 2 (4,7) € 85 excluding corners of 85;, (3.16)
%Hz, (,5) € corners of 8S.

We may choose more efficient rules, such as the Legendre-Gauss rule with two boundary nodes
fixed in [7,21],

—

1 n
/ g (z) dz = ijgz(xj), (3.17)
-1 =1
where z; is the jth zero of P,(z), and P,(z) are the Legendre polynomials defined by
(-np" ar 2\"
= c— (1 - >1. 3.18
Fn(2) 2! dzn [(1 z’) ] ’ nzl (3.18)
The weights are given by
2 (3.19)

w; = .
T -z [P
Then when choosing the collocation nodes Q;; = (z;,y;), the weights in (3.12) are obtained as
oy =wiw;,  (4,) € Sa. (3.20)
Let f = g? and f € C?"[-1,1], then the remainder of (3.17) is given by

22n+1 )

E(f) = rE),  f=g¢% -l1<éE<l (3.21)

T @en+1)[2n)Y°

Let g in [—1,1] be polynomials of order L. Then, f(= ¢2) is polynomials of order 2L. Choose
n = L + 1, then the derivatives f2*(¢) = f?L*2) = 0 and E(f) = 0. Therefore, when S, is a
rectangle, the functions v* in S, are chosen to be polynomials of order L. Functions Av* are
polynomials of order L — 2. The Legendre-Gauss rule with n = L — 1 in (3.7) and (3.20) offers

no errors for [[ g (Avt)? ie.,
/782(Au+)2 = / /S Z(Av+)2. (3.22)

Now, let us establish the linear algebraic equations of combination (3.4) of FEM-CM. First,
consider the entire FEM in S; only,

al('&h,v) = fl(v), Yv € Vh, (323)
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where

ay(u,v) = / VuVy +/ u v, fiv) = / fu. (3.24)
S, To S1
We obtain the linear algebraic equations,
A3 =by, (3.25)

where I is a vector consisting of v;; only, and matrix A; is nonsymmetric.
Next, equations (3.12)—(3.14) in S UT'g are denoted by

AsTy = by, (3.26)
where 73 is a vector consisting of d;, vi; and vo;, and vo; and vy; are the unknowns on the two
boundary layer nodes in S; close to I'g if the linear FEM is used. Denote by M; the number of all

collocation nodes in S; and 855, and by N; the number of vy; and vg;. Matrix A, € RMix(L+N1),
Therefore, we can see

1, o e
Em;rA;rAzmg —Albyi, + ¢

P, // 2 P 2 P N2 (
=== Av+f +—/ vt~ +—/ AR Vi
] e - B o)
Combining (3.25) and (3.27) yields explicitly?
AT =b, (3.28)
A=A +AJA;, b=b +AJb, (3.29)

where ¥ is a vector consisting of the coefficients d; and v;; in §; UTo. Denote by N the number
of nodes on S; U T, then the vector Z in (3.28) has N + L dimensions. The matrix A is
nonsymmetric, but positive definite, based on Theorem 5.1 given later.

Let us briefly address the solution methods for (3.28). When P is chosen large enough, matrix
A ¢ RIEAN)X(L+N) in (3,28) is positive definite, nonsymmetric and sparse when N 3> L. When
L + N is not huge, we may choose the Gaussian elimination without pivoting to solve (3.28),
see [19)].

Also, since &(u — @p,v) =0, Vv € V)2, we obtain the following theorem.

THEOREM 3.1. Suppose that there exist two inequalities,

8 (u,v) < Clllulll x llelll, Vo€ V2, (3.30)
é(v,v) > Co[||v|||2, Yo e V,?, (3.31)

where Cy > 0 and C are two constants independent of h and L. Then, the solution of combina-
tion (3.1) has the error bound,

liu = allf < € ing Y=ol (3:32)

Moreover, the optimal convergence rate (2.23) holds if the conditions (2.20) and (2.22) are satis-
fied.

1In (3.29), (3.34), and (3.40), the dimensions of matrices may not be consistent, where the equality means that
the matrices of less dimensions should expand by filling up more zero entices.
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The proof of inequality (3.31) is deferred to Section 5.
REMARK 3.1. Note that equation (3.28), called Method I, presents exactly combination (3.4).
There arises a question. Since (3.28) results from (3.25) and (3.26), should we solve (3.25) and
(3.26) directly (i.e., together) by the least squares method? The following arguments give a
positive justification.
METHOD I. We rewrite (3.28) and (3.29) as

Aj =5, (3.33)
ie.,
A7+ Aj Agi=b1 + AJ bs. (3.34)
METHOD II. THE LEAST SQUARES METHOD DIRECTLY. Solve
AT =by, AT = by, (3.35)
by
I(Z) = min I(2), (3.36)
z
where
I(2) = [|A1Z = b1 || + | A2Z = b5, (3.37)
and || - || is the Euclidean norm.

PRrRoOPOSITION 3.1. Let Z and § be the solutions from (3.35) and (3.33) respectively, then Z = §
with the relative error bound,

[k “_“y” < Cond. (A) H < Cond. (A) (1 + [|A2])
where the error of Method II is

12 2\ Y
(e N

Cond. (A) denotes the condition number of A:

(3.38)

k]

Amax (ATA)

Cond. (A) = N (ATA)

and Amax(ATA) and Anax(ATA) are the maximal and minimal eigenvalues of ATA, respec-
tively.
PROOF. Denote I(F) = €2, we then obtain (3.36)

“Ala? — 5 ” <e, ”Agf - b;“ <e. (3.39)
Consider the remainder of (3.34) when & replaces ¥:
Fe=AT—b=A1T—b +AToAF — ATobs. (3.40)
We have from (3.39)
17 < || a1z = 81| + 1 Aall | 427 - B3| < (1 + Azl e. (3.41)
Moreover, we have from equations (3.33) and (3.40)

AE-§) ="~
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Since 7]l > |b]l/|A]l from (3.33), the desired result (3.38) is obtained by following [19,21].
Since ¢ is very small, the solution £ of Method II is the solution § of Method I approximately.
This completes the proof of Proposition 3.1. ]

4. UNIFORM V,?-ELLIPTIC INEQUALITY

The key analysis of combinations (2.11) and (3.1) is to prove the uniform V?-elliptic inequali-
ties (2.17) and (3.31), since the proof for (2.16) and (3.30) is much simpler. We shall prove (2.17)
in this section and then (3.31) in the next section.

First, we consider a(v,v) without the term fI‘o v, v~. Define the norms

P 1/2
o]l 5 = <|v|isl + Pe||Aollg s, + 7 [l - v |lo g, + Pellut - v,fllz,m) . @D
and
vt —v=llpp, = llo* ~ U—”e,ro | (4.2)

where £ = 0,1/2, and 9% is the piecewise k-order polynomial interpolant of v* in S;. Then, we
have the following lemma.

LEMMA 4.1. Suppose that there exists a positive constant v(> 0) such that

lo*lpr, < CLY o*|lop,»  €=1,2- (4.3)
Then, there exists the bound for v € V)2,
_ C -
lo* ~v ”1/2,1“0 pS V3 [[o* —v Ho,ro +Ch¥/2L» ””+“1,sz . (44)

Proor. We have from triangle inequalities,

[[v* - U_||1/2,Fo ST =v= Ty, + |17F - v+"1/2'r‘° '

——— _ ) (4.5)
o ~ vl < fJo* = v {lgp, + 167 = v lor, -
Then from the inverse inequality for piecewise polynomials, there exists the bound,
“”+ - ”_”1/2,&, < ot - ”_”1/2,I‘o + ""ﬁ - v+”1/2,1“o
C ——— .
< :/“h-““+ —v7lor, + |”+ - ”+”1/2,r° (4.6)
C - C . .
< N/ [[o¥ —v “o,ro + 7h o+ ~ "’+“o,ro + ””+ - ”+"1/2,ro :
Moreover, from {4.3) we have
hi/2 “’7+ - ”+”0,I‘0 + “f’+ - U+“1/2,ro < Ch/? ”v+“2,r0 (47)

< CR2L% v S CR2L¥ vt g

* ”(),l"o

Combining (4.6) and (4.7) yields the desired result (4.4). This completes the proof of Lem-
ma 4.1. |
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LEMMA 4.2. There exist the bounds for v € V2,

ot lly,s, < C{llAvH|_1s, + v 172,05, } (4.8)
v ll-1/2,00 < C{lAVY | Z1,5, + [[vF]l1/2,68, }» (4.9)

where C is a constant independent of h and L.
ProoFr. We cite the bound from [2, pp. 189-192],

m—1

3{3—2"'(0) + Z ”Bku“ip—gk—lﬂ(ag)}, (4-10)
k=0

Il 2m gy < CLIlAul

where s < 2m, and m is a positive integer. The notations are: Au = Au, Bou = u, Bju = up,
go =0 and g; = 1. The norm on the left-hand side in (4.10) is defined in [2, p. 183],

r—1

2 k
i}s,r(m = |lullFrsqy + kzo [ Drul

(4.11)

[l i{s—k—l/z(an)»

where r is a positive integer, s is an integer, and Df = %} is the kth normal derivatives. In
(4.10), choosing s =1, m =1 and §} = S, we obtain
2
I|UI|H1.2(S2) < C{HAU“%{—I(SZ) + ”““?{1/2(332)}’ (4.12)

where the norm is given in (4.12) with s =1, r = 2, and Q = S5,

||“'H%n.z(32) = ||u||%{1(52) + H““%{lﬂ(asz) + ||unl|il~1/2(asz)- (4.13)
Combining (4.10) and (4.13) gives the following bound,
lullf s, + [ull? 2,05, + lunllZ /2,08, < CLIAUIZ, g, + [[ullf)2 05,}- (4.14)

The desired results (4.8) and (4.9) are obtained directly from (4.14). This completes the proof of
Lemma 4.2. [ |

LeMMA 4.3. Let (4.3) and the following bound hold,
R32L% = o(1). (4.15)

Then, for v € V)2 there exists the bound,

- 1 -
[+l < © { A T HAN”OYSZ} , (4.16)

where C is a constant independent of h and L.

Proor. From Lemma 4.1, we have

””+”1/2,r0 < ”v_”1/2,r'O + ””+ - ”_”1/2,1‘0

B c _ (4.17)
< ”” “1/2,1‘0 + 7—,; Hv+ —v “o,ro +Ch¥2L» “v+“1,52 .
From Lemma 4.2 and (4.17)
”U+||1,s2 <C {””+“1/2,r0 + ||Av+||_1'52}
(4.18)

_ 1 - "
<C {“v ”1/2,r‘0 + ﬁ “v"' —-v ”0,1“0 +h¥2L2 ||U+||1,Sg + ”AU+”0,52} .
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This leads to

C _ 1 -
”v+“1,32 < 1= Ch3/2L% {”v ”1/2,1‘0 + N/ “U+ —-v "o,ro + ”A”+“o,sg} . (4.19)

The desired result (4.16) follows from Ch3/2L? < 1/2 by assumption (4.15). This completes the
proof of Lemma. 4.3. 1

LEMMA 4.4. LetT'NS; # 0, (4.3) and (4.15) hold, there exists an inequality
Collllll < llolle,  Yve Wy, (4.20)

where |||v||| and ||v||g are defined in (2.15) and (4.1) respectively, and Co > 0 has a lower bound
independent of h and L.

ProoF. By the contradiction, we can find a sequence {v;} € H* such that
llvelll =1, lvelle =0,  as&— oo (4.21)

First, {|lve||g — O implies that for large ¢, |v; 1,5, <1 and vl—‘smr = 0, and then |lv; ||1,s, is
bounded. Based on the Kandrosov or Rellich theorem [1], there exists a subsequence {v, } in
L%(S,) (also written as {v, }) such that v; — o~ € L?(S;). Then, 9~ € H!(S}), since |77 1,5,
are bounded due to |v, |15, < 1. Moreover, |lvel|lz — O gives |v; |1,5, — 0 as £ — oo. Since
H'(S,) is complete, we conclude that |57 |;,s, = lims_,oo [V |1,5, = 0. Hence 9~ is a constant,
and o~ =0 in S; due to ﬁ—lsmr‘ = 0.

From the trace theorem {1},

”Ue_ ”1/2,1"0 <C H”E—HLS] J (4.22)
llug ll1/2,r, is also bounded, and
Jm ”ve—“uz,r‘o |2 ”1/2 fo = (4.23)
Next, consider the sequence vé‘” in S;. We have from Lemma 4.3,
“”l “1/2 To = <C ””2.“1,52
(4.24)

- 1 -
R P N ] A v

We conclude that ||v7 ||1/2,r, is bounded, and that limg o ||v} ||1/2,r, = O from (4.24), (4.23) and
llvellg — 0. Based on Lemma 4.2,

o7 ls, < € {80 [y g, + 165 N 2 05, }

<c{l|avtllos, + 0l are -

(4.25)
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Hence ||v/ ||1,s, is also bounded from |lvel|g — 0, and then limg oo ||vf ||l1,5, = 0. By repeating
the above arguments, there exists also a subsequence v} to converge o+ € H*(S;). Moreover, we
have ||57||1,s, = limg—co ||vf ||1,5, = 0, and then 3+ =0 in S;. Hence, 7 = 0 in the entire S and
[l|l|| = 0. This contradicts the assumption |||7]|| = lims— e |{|ve]}} = 1 in (4.21), and completes
the proof of Lemma 4.4. 1

Now, we give the main theorem.

THEOREM 4.1. Let TN 9S; # 0, (4.3) and (4.15) hold, and P be chosen to be suitably large
but still independent of h. Then, the uniformly V?— elliptic inequality holds,

Colllvll|? < a(v,v), Yve Ve, (4.26)
where Cy > 0 is a constant independent of h and L.
Proor. From Lemma 4.4, we obtain the bound,

a(0,9) 2 olfy ~ [ v 2 CullullP - [ v

To To
P
=C (Hvl 2 s FP|3 5, + P |lAv||(2),Sz+-’-15 [+ = v~ lg o, +Pe [l - v;”ir‘) (4.27)

— / v, v,
To
where C; > 0 has a lower bound independent of h and L. Next, we have

/ v v
o

Moreover, there exist the bounds for v € V2,
””_”1/2,1‘0 < C””_”le ) (4.29)
”v;”—uz,ro < ”v:”—l/zro + H'u;f - U;”—l/z,r‘o (4.30)

<O {[v* s, + A0, + et = vl }
where we have used the bound from Lemma 4.2,

ol yyam, < € {18 s 5, + 1¥ 25,
<c{llavtlos, + Iv*ls, -
Since Cab < ea? + (C?/4¢€)b? for any € > 0, we obtain from (4.29) and (4.30)

[ v < 0ol {1, + 180 s, + 15 = T,
o

<Hlon ll-1/2,m6 107 /2,00 - (4.28)

Cyy — Cc? B 2
< O+ o (s, + A, + g, ) 43D

Cry —y2 3C? 2 2 2
e e (P - RS ey [P B
where Cj is given in (4.27). Combining (4.27) and (4.31) gives
C
a(w,0) > S ol s,

3¢? - P, -
+ (CIPC—E) (0l 5, + 1AvlE s, + o = vz llop,) +Cor 7ol = v o, (4:32)

> Sl

provided that C1 P, — (3C?/2C;) > (1/2)C1 P.. This leads to P, > 3(C?/C#%), which is suitably
large but still independent of h and L. Then the uniformly V0-elliptic inequality (4.26) holds
with Cp = C1/2. This completes the proof of Theorem 4.1. [ |
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5. UNIFORM V,?—ELLIPTIC INEQUALITY
INVOLVING INTEGRATION APPROXIMATION

In this section, we prove the uniformly V}2-elliptic inequality, (3.31). Choose the integration

rule,
. —
[ =] #=Tollor,, 6:)
To o

where 9 is the k-order interpolant of v. First, we give a few lemmas.
LemMA 5.1. Let (4.3) and
+ 2 + 0
(i “1,1‘0 < CL |v ”1,32 ’ VveVy (52)

hold, where v(> 0) is a positive constant. There exist the bounds for v € V)2,

vt = v Tor, 2 lJo —v7lg r, = CRPL* |[v* ]|, g, » (5.3)

ToE = oy = it = oy = OBL™ ¥ 5, 6.9

where C is a constant independent of h and L.

Proor. We have
o = v llor, < To¥ = v Tlop, + 1167 = vF [l 1, » (5.5)

and from (4.3)

6% — “+“o,ro < Ch? |v+|z,r0 < CR?L¥ lvllo,r, < Ch*L* lvlly,s, - (5.6)

Then combining (5.5) and (5.6) gives the first desired bound (5.3),

v =~ lloyry 2 llo* ~v7 |l r, = CRAL* vl s, - (5.7)

Similarly, we obtain from (5.2)

o = vallox, 2 oz = vallop, = o3 = 8% llor,

Z “U: - 'U; ”0’1'*0 - Ch ”vn”l,ro (5‘8)
2 ||ox = vz llop, — AL lIvlly,s, -
This is the second desired bound (5.4}, and completes Lemma 5.1. 1
LEMMA 5.2. Let all conditions in Lemma 5.1 hold. Then,
s 1
oF =vTor, 2 5llv* =v7llo, = OR*L* o3, (5.9)
TP — 1 _ v 2
o =i Tor, 2 ot = vz, - OWL o, (5.10)

where C is a constant independent of h and L.

ProoF. Denote
T= ”’U+ - U—HO,I‘ov

y=[jv* - "’_Ho,ro’
(5.11)

z= vy,

w = Ch2L%.
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Equation (5.3) is written simply as x > y — wz > 0. We have
2% > (y — wz)? = y? — 2wyz + w22, (5.12)
Since 2wyz < y?/2 + 2w?22, we obtain
Y y
22 >9% — (? + 2w2z2> +w?2? = 2 — w22 (5.13)
This is the desired result (5.9) by noting (5.11). The proof for (5.10) is similar, and this completes
the proof of Lemma 5.2.

Second, let us consider integration approximation for [ fsz t, where t = t(z,y) = (Au+ f)
(Av+ f). Let S, be divided into small triangles A;; and small rectangles 0;;,

Sy = (U Aij U (U Dij) . (514)

Denote by ¢, the piecewise r-order interpolant of ¢ on Sa, i.e.,

t, = Po(z,y) = Z a; ;Y (z,v) € Dj, (5.15)
i+j=0
or -
f’r = Qr(xyy) = Z a‘i,jxiyj’ (x,y) € Dijv (516)
i,j=0

where a; ; are the coefficients. Then, the integration rule in (3.7) can be viewed as

%:aijgz(l’ij) = 773292
-/,
- /1,5
o/ BRSO /IS

The partition in (5.14) is regular if max;;(Hy;/pi;) < C, where H;; is the maximal boundary
length of A;; and O, p;; is the diameter of the incircle of A;; and [J;;, and C is constant
independent of H(= max;; H;;). The partition (5.14) is quasiuniform if H/min;; H;; < C. Then
we have the following lemma from the Bramble-Hilbert lemma [1].

(5.17)

LEMMA 5.3. Let partition (5.14) be regular and quasiuniform. Then, the integration rule (5.17)
has the error bound,
=| [ -
Sz

IR

where C is a constant independent of H.

<CH™ |t , 5.18)
41,52
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The integration rule on A;; can be found in Strang and Fix [20], and the rule on 00;; can be
formulated by the tensor product of the rule in one dimension, such as the Newton-Cotes rule
or the Gaussian rule. The Legendre-Gauss rule given in (3.17)—(3.20) is just one of Gaussian
rules with two boundary nodes fixed. For the Newton-Cotes rule, we may choose the uniform

integration nodes. When r = 1 and 2, the popular trapezoidal and Simpson’s rules are given.
When vt in Sy are polynomials of order L and choose 7 = 2L, the exact integration holds,

/A/Sz (Av+)? = / /S (o) (5.19)

Below, we consider the approximate integration

/7 5 (a0*)" ~ / [5 (ah)?, (5.20)

by the rule with integration orders r < 2L — 1. We have the following lemma.

LEMMA 5.4. Let vt in Sy be polynomials of order L, and the rule (5.17) with order r < 2L — 1
be used for [fg (Au+ f)(Av + f). Also assume

”v+"e,52 < CcLt-b¥ “v"’”l,s2 , £>1, VYveVp, (5.21)

where v > 0 is a constant independent of L. Then, there exists the bound,

LT

where H is the meshspacing of uniform integration nodes in S3, and C is a constant independent
of H and L.

< CH™ LU |2 o, (5.22)

Proor. For the rule of order r < 2L — 1, we have from Lemma 5.3 and (5.21),

LT, ) e

< CH™! ’(Av)2

r+1,5;

r+1
SCH™ Y |Av|, g 180,41 s,

=0

T+ (5.23)
<CH™! Z ”U“H—Z,S; ”v|lr+3—i,52

i=0

+1
< CH™1 Z (L("“’” Ilvlll,sz) (L(M_i)u ”v”"&)

i=0

< CHr+1L('r+3)u “’U"? S5

This completes the proof of Lemma 5.4. 1
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THEOREM 5.1. Let (5.2) and all conditions of Theorem 4.1 and Lemma 5.4 hold. Suppose
RL% = o(1), (5.24)
HL+2/r0 — (1), (5.25)

Then the uniformly V0-elliptic inequality (3.31) holds.
PROOF. From Lemmas 5.2 and 5.4 and Theorem 4.1, we have

P2 S TH S—
+ f”’ﬁ =v7lor, T PC””'JLr ~ Un ”0,1"0

[ ot [ en ] o

- P -
+ 5l =l + 5t vz lor,

— CP. (L™ + h2L*) ||} g, — CHT 'L+ lvli? s,

(5.26)
> %a (v,v) - C {Pc (R3L* + R2L*) + HT“L(’”’”} ll? s,
> %mvm? — C{ P (h*L* + h2L™) + H™HLU+ Lo} ,
> % {H"’Hisl " {1 _ Qg_ [Pc (hsL4u + h2L4u) + Hr+lL(7‘+3)u] } ”v“iS2
0
2 Py 4 -2 + —1|2
+ Pc||Avllg g, + T“” —v “o,r‘0 + PC”'Un ~Un “0,1‘0
> 2ol
provided that
E 3rdv 2rdv r+1 7 (r+3)v l
2CO[Pc(hL +h2LA) 4 H L] < o (5.27)

which is satisfied by (5.24) and (5.25). This completes the proof of Theorem 5.1.
When there is no approximation for [ Au*Av*, we have the following corollary.

COROLLARY 5.1. Let (5.2) and all conditions of Theorem 4.1 hold. Also let the integration (5.19)
in Sy be exact. Suppose

hL¥ = o(1). (5.28)
Then, the uniformly V?— elliptic inequality (3.31) holds.
Corollary 5.1 holds for the case that v in S are polynomials of order L(> k), and that the

Legendre-Gauss rule in (3.17) with n = L—1 is used for [[ S A?vt. Next, let us consider a special
case: The functions v* in S, are chosen to be the particular solutions satisfying —Avt = f in S
exactly. The combination of FEM-CM in (3.4) is given by

a*(tp,v) = fi(v), VYveVd, (5.29)
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where

a* (u,v) =/ VuVu -+-/ uzv”
Sy To

+%7F0 (uF—u) (vt —v7) +Pc/ro (ug —uz) (o1 —vz),

fiw) = / e (5.31)

Note that the term, P, [f 5 (Av)?, disappears in computation. Obviously, Corollary 5.1 is valid
for Motz’s problem discussed in Section 6.2.

REMARK 5.1. Different integration rules for [/, s,(Bu+ f)(Av + f) do not influence upon errors
of the solutions by combinations of FEM-CM, but guarantee the uniformly V/2-elliptic inequal-
ity (3.31), as long as H is chosen so small to satisfy (5.25), e.g., as long as the number of
collocation nodes P;; in quasiuniform distribution is large enough. This conclusion is a great
distinctive feature from that in the conventional analysis of FEMs.

REMARK 5.2. For Theorems 4.1 and 5.1, three inverse inequalities, equations (4.3), (5.2), and
(5.21), are needed for a polygon S;. For polynomials v+ of order L, equation (4.3) holds for
v = 2 in [6]. The proof of (5.2) and (5.21) is given in [22].

REMARK 5.3. Equations (3.12)—(3.14) represent the generalized collocation equations using other
admissible functions, such as radial basis functions, the Sinc functions, etc. The analysis of this
paper holds provided that the inverse inequalities (4.3), (5.2), and (5.21) are satisfied. In fact,
these inequalities can be proved for radial basis functions, the Sinc functions, etc. Details of
analysis and numerical examples appear in [23].

6. NUMERICAL EXPERIMENTS

6.1. Poisson’s Problem

Consider Poisson’s equation,
—Au = 2% sin (1) cos (Ty) in S, (6.1)

where § = {(z,y)| -1 <z < 1, 0 < y < 1}, with the following Dirichlet conditions:

u=70 onz=321A0<y <1,
u = —sin{nz) ony=1A-1<z<1, (6.2)
u = sin(nrz) ony=0A-1<z<1.

The exact solution is u(z, y) = sin(mz) cos(wy). Divide S by I'g into Sy and S2. The subdomain $;
again is split into uniform regular triangular elements: S; = U;;A;;, shown in Figure 2. The
admissible functions are chosen as

v” =, in S,

v = L (63)
’U+= Z dun(Q.’E—l)T},(2y—1), in 52,

i,5=0
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S,

Fo

Figure 2. Partition of a rectangular solution domain with M = 4, where M denotes
the numbers of partitions along the y-direction in S.

Table 1. The error norms and condition numbers by combination of FEM-CM using
the Legendre-Gauss points as collocation nodes.

M, L, Ny 4, 3,2 8, 5, 4 16, 7, 6

lv =} [lo,s, 4.06(—2) | 1.15(—2) | 2.92(-3)

fu—uy s, | 587(-1) | 2.53(=1) | 1.26(-1)

le—urllos, | 417(=2) | 1.29(=3) | 2.05(-4)

lu—urll,s, | 1.42(—1) | 5.83(—3) | 9.67(—4)

let —e~llor | 1.92(-2) | 1.80(=3) | 4.83(—4)

Cond. (A) 8.59(4) 1.63(6) 1.22(7)

Table 2. The error norms and condition numbers by combination of FEM-CM using
the trapezoidal points as collocation nodes.

M, L, Ny 4,3, 4 8, 5 6 16, 7, 8

flw —uy llo,s, 6.92(~2) | 1.15(=2) | 2.92(-3)

flu—uplls, | 7.88(-1) | 2.53(-1) | 1.26(-1)

fu~urllos, | 164(=2) | 4.27(-4) | 2.23(-4)

lu—urllys, | 1.09(=1) | 4.24(=3) | 1.04(-3)

llet —e oo | 271(=2) | 2.81(-3) | 5.12(-4)

Cond. (A) 8.59(4) 1.54(6) 1.16(7)

where v; is the piecewise linear functions on S1, d;; are unknown coefficients to be determined,
and T;(z) are the Chebyshev polynomials, Tx(z) = cos(k cos™}(z)). .

We choose the Legendre-Gauss and the trapezoidal rules in Section 3 for [f S (Avt)2. Hence,
the optimal convergence rate O(h) in H! norms is obtained based on the analysis made. Since v*
do not satisfy the boundary conditions on 8S,NI, the additional collocation equations, v+ (P;) =0
where P; € 8S; N T, are also needed. After trial computation, choose P, = 50. Let h = 1/M,
where M denotes the number of partitions along the y-direction in S; in Figure 2.

We choose Method I in Section 3, and the error norms are listed in Tables 1 and 2, where Ny

denotes the number of collocation nodes along one direction in Sy in Figure 2, e~ = v — u; and
et =4 —uy. The following asymptotic relations are observed from Tables 1 and 2,

u—unllo,s, = (W), Jlu—ullvs, = O(h), (6.4)

lu—urflos, = O(h°),  [lu—urls, = OR®), (6.5)

let — e llo.r, = O(R?), Cond.(A) = O(h™3). (6.6)

Equations (6.4),(6.5) indicate that the numerical solutions have the optimal convergence rate
O(h) in H! norms. The different integration rules used in Sz do not influence upon the errors
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Table 3. The error norms and condition numbers by combination of FEM-CM using
the trapezoidal rule with M = 16 and L = 7.

Ny 2 4 6 8 10

llu—uyllo,s, | 2:91(=3) | 2.91(=3) | 2.92(—3) | 2.92(-3) | 2.93(-3)

e —will,s, | 1.26(-1) | 1.26(~1) | 1.26(=1) | 1.26(—1) | 1.26(-1)

llu—uLllo,s, 46.5 6.80 2.47(—4) | 2.23(-4) | 2.11(-4)

llw —urll,s, 244.0 52.3 1.13(-3) | 1.04(-3) | 9.86(—4)

let — e~ llo,ro 28.9 4.25 5.69(—4) | 5.12(—4) | 4.70(—4)
Cond. (A) 1.14(7) 2.87(6) 1.27(6) 7.25(5) 4.80(5)

Table 4. The error norms and condition numbers by combination of FEM-CM using
the Newton-Cotes rules with different orders on M =16, L = 7, and Ny = 7.

Order r=1 r=2 r=4 r=8

e — s llos, | 291(=3) | 2.91(-3) | 2.92(~3) | 2.92(~3)

o —uylls, | 1.26(-1) | 1.26(-1) | 1.26(-1) | 1.26(~1)

lu—upllos, | 1.93(-4) | 2.00(—4) | 1.99(—4) | 1.97(-4)

flu—ugllys, | 1.05(=3) | 1.03(=3) | 1.03(=3) | 1.12(~3)

let —e~llor, | 6.64(—4) | 7.03(~4) | 6.97(—4) | 6.72(~4)

Cond. (A) 6.59(5) 7.69(5) 8.22(5) 2.86(6)

of the solutions of combinations of FEM-CM, as long as the number of collocation equations in
quasiuniform distribution is large enough.

In Table 3, we choose M = 16 and L = 7, but change the number N; used in the trapezoidal
rule in S5. From Table 3, we can see that good solutions can be obtained when Ny > 6; this fact
perfectly verifies the conclusions in Theorem 5.1. In Table 4, we choose M = 16, L = 7, and
N = 7, but use the Newton-Cotes rule with difference order . When r = 1, the Newton-Cotes
rule is just the trapezoidal rule. From Tables 1, 2, and 4, we can see that the different integration
rules used in S5 do not influence the optimal convergence rate, either.

6.2. Motz’s Problem
Counsider Motz’s problem,

v 0%
= e o —— = i 6.7
A’U. 61,'2 + 6y2 0, n Sy ( )

where S = {(z,y)| -1 <z < 1, 0 < y < 1}, with the mixed type of Dirichlet-Neumann
conditions,

Uy =0, onz=-1A0<y<1,

u = 500, onz=1A0<y<1,

Uy =0, ony=1A-1<z<1, (6.8)

u=0, ony=0A-1<z2<0,

uy =0, ony=0A0<z<1.
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"
S - N

! r
0

S,

Figure 3. Partition of Motz’s problem with M = 4.

The origin (0,0) is a singular point, since the solution behaviour u = O(r1/2) as r — 0 due to
the intersection of the Dirichlet and Neumann conditions. Divide S by I'g into S; and S5, where
Sy = {(z,y)| —1/2 <z < 1/2, 0 < y < 1/2}. The subdomain S; is again split into uniform
square elements [J;; with the the boundary length h, shown in Figure 3.

The admissible functions are chosen as

vT =1,
v= L (6.9)
+ 1) l+1/2 1
vt =3 Der cos €+§ 8,
=0

where vy is the piecewise bilinear functions in S;, D, are unknown coefficients to be determined,
and (r, 8) are the polar coordinates with origin (0,0).

Since the particular solutions r¢+1/2 cos(£ + 1/2)8 satisfy (6.7) in S, and the boundary condi-
tions,

u=0, ony=0A-1<z<0, (6.10)
uy =0, ony=0A0<z <1, (6.11)
the collocation equations (3.9)—(3.11) are reduced to
(vF=v7) (@) =0, (vf-v;)(Q;)=0, QjeTo. (6.12)
Then, the collocation equations with weights on I'g are given by

P,
2h

(vt —=v7) (Q;) =0, P;gj (U: -v7)(Q;) =0, Qj €T, (6.13)

where P, is a penalty constant. In computation, we choose P, = 50.

We choose Method II, where (3.26) represents (6.13). We adopt the trapezoidal and the
Simpson’s rules for integrals, (Pe/h) [p, (ut —u™)(vt —v7) and P fi (ut —u;) (v} —v;). The
error norms and the condition numbers are listed in Tables 5 and 7, where M denotes the number
of partitions along the y-direction in S; in Figure 3, and L denotes the term number of the
expansion (6.9) in S5. Cond. denotes the condition numbers of the over-determined system (3.35).
The following asymptotic relations are observed from Tables 5 and 7,

lu —unlly,s, + v —ullys, = O(h), (6.14)
Jur —unlys, + u—uglly s, = 0 (A7), 0<d<l, (6.15)
et —e[lo.r, = O (A%, Cond. =0 (h71). (6.16)

We can see that equations (6.14) and (6.15) coincide with the optimal convergence rates. The
approximate coeflicients are given in Tables 6 and 8. When M = 12 and L = 4, the approximate
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Table 5. The error norms and condition numbers for Motz’s problem by combination
of FEM-CM using the trapezoidal rule for fr‘g'

M, L 2,2 ] 43 6, 3 8, 4 12, 4

flu—unllo,s, | 745 | 132 | 0960 | 0342 | 0.231

flu—unlls, | 566 | 209 | 139 103 6.92

lur —unllo,s, | 698 | 1.14 | 0913 | 0299 | 0.218

fur —unll,s, | 256 | 351 | 253 1.01 0.767

llu—wurllo,s, | 1.32 | 0424 | 0.358 | 0.0396 | 0.0320

flw—urll,s, | 450 | 1.08 | 0930 | 0330 | 0.272

let —e~llor, | 607 | 169 | 0753 | 0.426 | 0.189

Cond. 57.4 131 201 265 396

Table 6. The approximate and exact coefficients for the Motz’s problem by combi-
nation of FEM-CM using the trapezoidal rule for fr‘o'

Approx. Coeffs. Do Dy D, D3 Dy
AL4 = 22 397.6500 | 91.0576 | 16.1292 / /
M=4
L3 399.8047 | 88.1314 | 16.8330 | —7.57220 /
M=6
o3 400.0200 | 88.0077 | 16.8798 | —7.39917 /
M=28
o4 401.1672 | 87.5345 | 167077 | —7.49616 | 1.32179
M=12
L4 401.1649 | 87.5318 | 16.8247 | —7.56824 | 1.29397
Exact

. . : —8.07 44027
Coefs 6] 401.1624 | 87.6559 | 17.2379 8.07121 | 1.4402

value of Dy is 401.1649, and the relative error is given by

|Do — Do| _ 401.1649 — 401.1624

= =6.2x1075
Dol 401.1624 2x

Note that such an accuracy is higher than that given in [6], where the relative error of Dy is
about 10~4 when M = 12.

From Tables 5-8, we can see that the trapezoidal and the Simpson’s rules provide almost the
same results, to indicate again that different integration rules for the integrals, (P./h) fI‘o (ut —
uw”)(vt —v7) and P, [ (ut — ug)(vf —vy), do not influence upon the convergence rates of
the numerical solutions if the integration nodes (i.e., the collocation nodes) are large enough.
Obviously, the condition numbers given in Tables 5 and 7 are significantly smaller than those in
Tables 1 and 2. Hence, Method II (i.e., the least squares method in (3.36)) is also recommended
for the combinations of the collocation methods due to better numerical stability.
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Table 7. The error norms and condition numbers for Motz’s problem by combination
of FEM-CM using the Simpson’s rule for fFo'

M, L 4, 3 6, 3 8, 4 12, 4

llw ~ wlio,s, 1.32 | 0960 | 0342 | 0.231

Il — unll1,s, 209 | 139 10.3 6.92

llur —unllo,s, | 114 | 0913 | 0200 | 0.218

flur —unll,s, | 351 | 253 1.01 0.767

flu—uillo,s, | 0.422 | 0.358 | 0.0396 | 0.0320

= ugll1,s, 1.07 | 0930 | 0330 | 0.272

llet — e~ llo,re 1.69 0.753 0.426 0.189

Cond. 165 263 350 527

Table 8. The approximate and exact coefficients for the Motz’s problem by combi-
nation of FEM-CM using the Simpson’s rule for [, .

Approx. Coeffs. Do D, Do Ds [54

M=4

L3 399.8122 88.1296 16.8320 —7.57146 /
M=6

L=3 400.0199 88.0077 16.8799 —7.39921 /
M=238

L=4 401.1671 87.5346 16.7077 —7.49609 1.32174
M =12

L=4 401.1649 87.5319 16.8247 -7.56824 1.29395

Exact 401.1624 87.6559 17.2379 -8.07121 1.44027
Coeffs [6]

FINAL REMARKS

To close this paper, let us make a few remarks.

1. This paper provides a theoretical framework of combinations of CMs with other methods.
The basic idea is to interpret CM as a special FEM, i.e., the LSM involving integration
approximation. Equations (3.9)-(3.11) in CM are straightforwardly, and easily incorpo-
rated into the combined methods, see (3.25) and (3.26). The combination of CM in this
paper is also an important development from Li [6].

2. The key analysis for combinations of CM is to prove the new uniform V- elliptic in-
equalities (2.17) and (3.31). The nontrivial proofs in Section 3 are new and intriguing,
which consists of two steps:

Step I for the simple one (4.20) without [ v;v™;

Step II for Theorem 4.1. Note that both (2.6) and (2.7) are required in combinations (2.11)
because the integral P, [/, S AuAwv worked as if for the biharmonic equation in S; in
the traditional FEMs, see [1], where the essential continuity conditions 4+ = u~ and
u} = u; should be imposed on the interior boundary T'g.
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3. In algorithms, the integration approximation leads the LSM to the collocation method. In
error analysis, the integration approximation plays a role only for satisfying the uniformly
VP — elliptic inequality, but not for improving accuracy of the solutions. The algorithms
and the analysis in this paper are distinctive from the existing literature in CM.

4. In Sy, Poisson’s equation and the interior and exterior boundary conditions are copied
straightforwardly into the collocation equations. This simple approach covers a large class
of the CM using various admissible functions, such as particular solutions, orthogonal
polynomials, the radial basis functions, the Sinc functions, see [23].

5. The numerical experiments are carried out to verify the theoretical analysis made. Also
Methods I and II in Section 3 are proven to be effective in computation.
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