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Abstract--In this paper, we provide a framework of combinations of collocation method (CM) 
with the finite-element method (FEM). The key idea is to link the Galerkin method to the least 
squares method which is then approximated by integration approximation, and led to the CM. The 
new important uniformly Vh0-elliptic inequality is proved. Interestingly, the integration approximation 
plays a role only in satisfying the uniformly Vh0-elliptic inequality. For the combinations of the finite- 
element and collocation methods (FEM-CM), the optimal convergence rates can be achieved. The 
advantage of the CM is to formulate easily linear algebraic equations, where the associated matrices 
are positive definite but nonsymmetric. We may also solve the algebraic equations of FEM and 
the collocation equations directly by the least squares method, thus, to greatly improve numerical 
stability. Numerical experiments are also carried for Poisson's problem to support the analysis. Note 
that the analysis in this paper is distinct from the existing literature, and it covers a large class of 
the CM using various admissible functions, such as the radial basis functions, the Sinc functions, etc. 
(~) 2006 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - C o l l o c a t i o n  method, Least squares method, Poisson's equation, Finite.element me- 
thod, Combined method. 

1. I N T R O D U C T I O N  

Since the  f in i te -e lement  m e t h o d  ( F E M )  t o d a y  is t h e  mos t  i m p o r t a n t  m e t h o d  a m o n g  all  numer ica l  

approaches ,  owing  to  wide app l ica t ions  and  deep theo re t i ca l  analysis ,  we e m p l o y  t h e  FEM t heo ry  

in [1,2], to  deve lop  the  theore t i ca l  f r amework  of  t he  co l loca t ion  m e t h o d s  (CM).  I f  t he  admiss ib le  

funct ions  are  chosen to  be  ana ly t i ca l  funct ions ,  e.g., t r i g o n o m e t r i c  or  o the r  o r t hogona l  funct ions ,  

we m a y  enforce  t h e m  to  sa t is fy  exac t ly  t he  par t i a l  d i f ferent ia l  equa t ions  (PDEs) at  ce r ta in  collo- 

ca t ion  nodes,  by l e t t ing  the  residuals  to  be  zero. Th is  leads t o  t he  co l loca t ion  m e t h o d .  Since the  
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PDEs and the boundary conditions are copied straightforwardly into the collocation equations, 
the methods of the paper cover a large class of the collocation method, e.g., those using radial 
basis functions, the Sinc functions, etc. 

The CM is described in a number of books, [3-8]. Here, we also mention several important 
studies of CM. Bernardi et al. [9] provided a coupling finite-element method and spectral method 
with two kinds of matching conditions on interface. Shen [10-12] gave a series of research study 
on spectral-Galerkin methods for elliptic equations. Haidvogel [13] applied double Chebyshev 
polynomials to Poisson's equation. Yin [14] used the Sinc-collocation method to singular Poisson- 
like problems. Other reports on CM are given by Arnold and Wendland [15], Canuto et al. [16], 
Pathria and Karniadakis [17], and Sneddon [18]. 

In this paper, we follow the ideas in [6], and provide the combination of the finite-element and 
collocation methods (FEM-CM). The advantages of this combination are threefold, 

(1) flexibility of applications to different geometric shapes and different elliptic equations, 
(2) simplicity of computer programming by mimicking the PDEs and the boundary conditions, 
(3) varieties of CM using particular solutions, orthogonal polynomials, radial basis functions, 

the Sinc functions, etc. 

Moreover, optimal error bounds are derived, mainly based on the uniformly V~-elliptic inequali- 
ties, which are also proved in Sections 4 and 5. Note that the analysis of the CM in this paper 
is distinct from the existing literature of CM. 

This paper is organized as follows. In the next section, the combinations of FEM-CM are 
described, and in Section 3, linear algebraic equations are formulated, and the solution methods 
are provided. In Sections 4, the important uniformly Vh0-elliptic inequality is derived, and in 
Section 5, the CM involves approximation integrals, and error bounds are derived. In the last 
section, numerical experiments including a singularity problem are carried out to support the 
analysis made. 

2. C O M B I N A T I O N S  OF F E M S  

Consider Poisson's equation with the Dirichlet condition, 

- - A u  = - \ O x 2  + Oy2. ] = f ( x , y ) ,  in S, (2.1) 

u[r = 0, on F, (2.2) 

where S is a polygon, and F is its boundary. Let S be divided by F0 into two disjoint subregions, 
$1 and $2 (see Figure 1): S = $1 U $2 U F0 and Sx N $2 = 0. On the interior boundary r0, there 
exist the interior continuity conditions, 

u + = u - ,  u + = u ~ ,  onF0,  (2.3) 

Ou U+ where u~ = b-~, = u on F0 U $2 and u -  = u on F0 U $1. Assume that the solution u in $2 
is smoother than u in $1. We choose the finite-element method in $1 and least squares method 
in $2, whose discrete forms lead to the CM (see Section 3). Let $1 be partitioned into small 
triangles: ~ i j ,  i.e., Sx = LAij/kij. Denote hij  the boundary length of/ki j .  The/~i j  are said to be 

Figure 1. Partition of a polygon. 
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quasiuniform if h / m i n { h i j }  <_ C, where h = max{hij}, and C is a constant independent of h. 
Then, the admissible functions may be expressed by 

{ ~)-- = V k, in S 1, 

, = L (2.4) 
v + :  ~ d ~ i ,  inS2, 

i = l  

where ~i are unknown coefficients, and Vk are piecewise k-order Lagrange polynomials in $1. 
Assume that @i E C2($2 U 0S2) so that v + e C2($2 U 0S2). Therefore, we may evaluate (2.1) 
directly, 

+ = 0, for Q, s2 ,  (2.5) 

at certain collocation nodes Qi E $2. Note that v in (2.4) is not continuous on the interior 
boundary F0. Hence, to satisfy (2.3) we have the interior collocation equations, 

v + (Qi) = v -  (Qi) ,  for Pi e F0, (2.6) 

v + (Qi) = v~ (Q~), for Pi E F0. (2.7) 

Equations (2.5)-(2.7) axe straightforwardly and easy to be formulated. In this paper, we choose 
the total number of collocation nodes (e.g., Pi) to be larger (or much larger) than the number of 
unknown coefficients di. Hence, we may seek the solutions of the entire CM by the least squares 
method (LSM) in [19], see Remark 2.1 below. 

oo We assume that the solution expansion: u = ~-~i=1 ai@i in $2 where ai are the true coefficients. 
Denote 

L 

UL = E a i ~ ,  in $2. (2.8) 
i = l  

Then, u = UL + RL, and the remainder, 

oo 

RL--- E aiqYi" (2.9) 
i=L+l 

Assume that (2.8) converges exponentially which implies 

ai~ i  IRLI = ~=L+I = 0 ( e - eL) ,  in $2, (2.10) 

where ~ > 0 and L > 1. 
Denote by V ° the finite-dimensional collections of (2.4) satisfying vlr -- 0, where we simply 

assume ~ilos2nr = O. If such a condition does not hold, the corresponding collocation equations 
on 0S2 n F are also needed, and the arguments can be provided similarly. The combination of 
the FEM-CM is designed to seek the approximate solution uh E V ° such that  

a (Uh, V) ----- f (v) ,  Yv e V ° ,  (2.11) 

where 

a(u , . )=/ f  s wvv+  1 o 2 
(2.12) 

(2.13) 
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" o~ o4 o~ and n is the unit outward normal to 0S2. where V u  = ux-( + uuj ,  uz = ~-~, Uy = -~,  un = ~-~ , 

h is the maximal boundary length of/~ij  or Oij in $1, and Pc > 0 is chosen to be suitably large 
but still independent of h. 

Denote the the space 

H* = { v , v  c L2(S), v C H I ($1), v C H1($2), Av E L2($2), and vlr = 0}, (2.14) 

accompanied with the norm 

ii]vlll=(l]v[l~,s,+p~[ivli~,s~+p ~ HAV[lo,s ,2 Pc ii 112 Ii i i / 2  \1/2 
. (2.15) 

\ 

where HVlll,S, and l[vHl,s2 are the Sobolev norms. Obviously, V~ c H*. For the true solution u 
to (2.1), we have a(u - Uh,V) = O, Vv  • V ° .  By means of a traditional argument in [1,20], we 
have the following theorem easily. 

THEOREM 2.1. Suppose that  there exist two inequalities, 

a(u,v)  _< cIIMII × Illvllt, v,., • v ° ,  (2.16) 

a(v ,v)  >_ Col[Ivlll 2, Vv • v ° ,  (2.17) 

where Co > 0 and C are two constants independent  of  h and L. Then, the solution of  combina- 
tion (2.11) has the error bound, 

I l l~-~hl l l  = c inf I l lu-~l l l .  (2.18) 
v~V o 

The proof for (2.17) is important but complicated, and is deferred to Section 4. Choose an 
auxiliary function, 

l U I, in S 1, 

UI,L = L (2.19) 
aiffYi, in $2, 

i = 1  

where ul  is the piecewise k-order Lagrange interpolant of the true solution u, and ai are the true 
coefficients. Then, u = ~L=I a~ff~ + RL in $2. By means of the auxiliary function (2.19), we 
obtain the following corollary easily. 

COROLLARY 2.1. Let  all conditions in Theorem 2.1 hold. Suppose that  

u • Hk+l(S1)  and u • Hk+l(Fo). (2.20) 

Then, there exists the error bound, 

[[lu- uhl[I- C {hklulk+l,s, + IIRLII2,s~ 
k 

(2.21) 

1 IlRLllo,ro + II(RL).ll0,ro) } +V~ ( hk+l/2 lulk+l,ro + ~ 

Also suppose that  the number L of  v + in (2.4) is chosen such that  

IlaLII2,s~ = O (hk), 

IIRLIIo,ro = 0 (h k+1/2) (2.22) 

II (RLL IIo,ro = O (hk). 
Then, there exists the optimal convergence rate, 

II1~- ~hlll = o (h~).  (2.23) 

REMARK 2.1. The combination (2.11) is nothing new (cf., [6]), except the proof of (2.17) is 
challenging. Our goal is the CM used in $2, which can be obtained from (2.11) involving ap- 
proximation integration. Hence, the combination of Pdtz-Galerkin-FEM is a basis for the study 
in this paper, but more justification will be provided below. 
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3. L I NE AR ALGEBRAIC EQUATIONS 
OF C O M B I N A T I O N  OF F E M  A N D  CM 

Let ~ s 2  and f ro  denote the approximations ffs2 and f ro  by some integration rules, respec- 
tively. The combination of FEM-CM of (2.11) involving integration approximation is given by 
the following. To seek the approximation solution Uh E V ° such that 

(~h, v) = / @), Vv e V °, (3.1) 

where 

+-cPc/ ~o @+- ~-)(v+- v-)+ Pc/.~o @+ - < )  (v+ - < )  ' 

Equation (3.1) can be described equivalently, 

a*(Z~h,V) = fl(v), Vv E V2, 

(3.2) 

(3.3) 

(3.4) 

where 

s1 Fo S1 

J F o  

fl(V) : i S  IV. 
S1 

In $2, we choose the integration rules, 

(3.5) 

(3.6) 

A 

i j  g2 = E Q~j E (3.7) c~jg2(Qij), s:, 
$2 ij 

J g2 Qj e (3.8) F0, 
Fo j 

where aij and aj  are positive weights. In fact, we may formulate the collocation equations at 
Qij E $2, and Qj E F0 directly. The collocation equations at Qis, and Qj are given by 

(Av + -t- f )  (Qij) --- 0, Qij e $2, (3.9) 

(v + - v - )  (Qj) = o, Qj E Fo, (3.10) 

(v + - v~-) (Qj) -- 0, Qj E Fo. (3.11) 

By introducing suitable weight functions, we rewrite the equations (3.9)-(3.11) as 

(Av + + f)  (Q,j) = 0, Qo e 82, (3.12) 

~ (v + - v-)  (Qj) = 0, Qj e F0, (3.13) 

~/P-~--~ (v + - v~) (Qj) = 0, Qj e Fo, (3.14) 
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where a O are positive weights, and Qj are the interior element nodes of F0. We give some rules 
of integration with explicit weights aj  and aij in (3.12). First, choose the trapezoidal rule, 

A 

f H g2 g2 = Q~Q2 (g2 (Q1) + g2 (Q2)) = 5 (as (Q~) + (Q2)) " 
QxQ2 2 

(3.15) 

The weights aj  = H / 2  or H when Qj is at a corner of OS or not. Let $2 be a rectangular 
subdomain of S, and be divided into uniformly difference grids with the meshspacing H, where 
Qij denote the collocation nodes (i, j).  Hence, the weights aij in (3.12) have the following values, 

H , (i,j) • $2, 

1 2 aij = -~ H , ( i , j )  • 0S2 excluding corners of 0S2, (3.16) 

H , ( i , j )  • corners 0S2. o f  

We may choose more efficient rules, such as the Legendre-Gauss rule with two boundary nodes 
fixed in [7,21], 

n 

/ ~  g2(x) dx = E wjg2(xj) '  (3.17) 
1 j = l  

where xj is the j t h  zero of P,,(x), and P,,(x) are the Legendre polynomials defined by 

(-1) '~ d n [( n] 
P,~(x)- -  2nnl dx,~ 1 - x  2) , n > l .  (3.18) 

The weights are given by 
2 (3.19) wj 

(1 - zj)  [P- (xA] 

Then when choosing the collocation nodes Q~j = (xi, yj), the weights in (3.12) are obtained as 

oqj = wiwj ,  (i, j) • $2. (3.20) 

Let f = g2 and f • C2'~[-1, 1], then the remainder of (3.17) is given by 

22"+1 [n[] a f2n 
E ( S )  = f = g 2 ,  - 1 < ~ < 1 .  (3.21) 

Let g in [-1, 1] be polynomials of order L. Then, f ( =  g2) is polynomials of order 2L. Choose 
n = L + 1, then the derivatives f2,,(~) = f(2L+2) _~ 0 and E ( f )  - O. Therefore, when $2 is a 
rectangle, the functions v + in S~ are chosen to be polynomials of order L. Functions Av + are 
polynomials of order L - 2. The Legendre-Gauss rule with n = L - 1 in (3.7) and (3.20) offers 

h 

no errors for f f s 2  ( Av+)2' i.e., 

A 

Now, let us establish the linear algebraic equations of combination (3.4) of FEM-CM. First, 
consider the entire FEM in St only, 

al(~Zh,V) = fl(V), Vv C Vh, (3.23) 
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where 

al(u,v)=// VuVv+ f u,~v , fl(V)= ff fv. (3.24) 
S 1 1~0 S 1 

We obtain the linear algebraic equations, 

A1~I = b*l, (3.25) 

where Xl is a vector consisting of vii only, and mat r ix  A1 is nonsymmetr ic .  
Next,  equations (3.12)-(3.14) in $2 U F0 are denoted by 

A2Z2 = b2, (3.26) 

where x2 is a vector consisting of 5i, v U and v0j, and v0j and "vii are the unknowns on the two 
boundary  layer nodes in St close to F0 if the linear FEM is used. Denote by M1 the number  of all 
collocation nodes in $2 and 0S2, and by N1 the number  of vi i  and v0y. Matr ix  A2 E R Mlx(L+NI). 
Therefore, we can see 

lzTATA Z A T  b2:~2 c' 2 ~ 2 ~ 2  2 -  + 

Pc Pc '. 
(3.27) 

Combining (3.25) and (3.27) yields explicitly 1 

AZ" = b, (3.28) 

A = A1 + ATA2 ,  b' = b'l + ATb*2, (3.29) 

where ~ is a vector consisting of the coefficients 5i and vii in $1 LA F0. Denote by N the  number  
of nodes on $1 U r0 ,  then the vector ~ in (3.28) has N + L dimensions. The  mat r ix  A is 
nonsymmetr ic ,  bu t  positive definite, based on Theorem 5.1 given later. 

Let  us briefly address the solution methods  for (3.28). When  Pc is chosen large enough, mat r ix  
A E R (L+N)x(L+N) in (3.28) is positive definite, nonsymmetr ic  and sparse when N >> L. When  
L + N is not huge, we may  choose the Gaussian elimination without  pivoting to solve (3.28), 
see [19]. 

Also, since 5(u - Uh, v) = 0, Vv E V~, we obtain the following theorem. 

THEOREM 3.1. Suppose that there exist two inequalities, 

a(~,v)  ~ c[llulll x I]lvlll, 

a(v,v) ~ co[llvlll 2, 

Vv E V ° ,  (3.30) 

Yv e Vff, (3.31) 

where Co > 0 and C are two constants independent of h and L. Then, the solution of combina- 
tion (3.1) has the error bound, 

]l]U-~h]Jl < C inf IIlu-vJ]]. 
- -  vEVh 

(3.32) 

Moreover, the optimal convergence ra te  (2.23) holds i f  the conditions (2.20) and (2.22) are satis- 
fied. 

lIn (3.29), (3.34), and (3.40), the dimensions of matrices may not be consistent, where the equality means that 
the matrices of less dimensions should expand by filling up more zero entices. 
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The proof of inequality (3.31) is deferred to Section 5. 

REMARK 3.1. Note that equation (3.28), called Method I, presents exactly combination (3.4). 
There arises a question. Since (3.28) results from (3.25) and (3.26), should we solve (3.25) and 
(3.26) directly (i.e., together) by the least squares method? The following arguments give a 
positive justification. 

METHOD I. We rewrite (3.28) and (3.29) as 

i.e., 

Af t  = b, (3.33) 

AHT+ A~A2ff = b~ + A~-b2. 

METHOD II. THE LEAST SQUARES METHOD DIRECTLY. Solve 

Al:Z= b~, A2x= g ,  

(3.34) 

(3.35) 

by 

where 

I (£ )=minI (z - ) ,  (3.36) 

I(z-) = I IA I~ ' -  b~ll 2 + HA2z'- b2112, 

and rl  II is the Euclidean norm. 

(3.37) 

PROPOSITION 3.1. 
with the relative error bound, 

IJx- g[-------~[ < Cond. (A "~ jlr~] < Cond. (A) (i + IIA2[I) e (3.38) 
Ilgll - ' J 6 - 6 '  

where the error of Method II  is 

e = (  A I ~ - ~  2 +  A2:~-b2 2) 1/2 , 

Cond. (A) denotes the condition number of A:  

/ m x(ATA) 
Cond. (A) = W~min 

and Amax(ATA) and Amax(ATA) are the maxima/and minimal eigenvalues of ATA, respec- 
tively. 

PROOF. Denote I(£) = s 2, we then obtain (3.36) 

AI~- b~ <_ e, A22 - b2 _< s. (3.39) 

Consider the remainder of (3.34) when £ replaces ~7: 

7 v -= A f  - 6 = A I : ~  - b~ q- A - ] - 2 A 2 ; ~  - AT2b~. (3.40) 

We have from (3.39) 

Let ~ and ~7 be the solutions from (3.35) and (3.33) respectively, then ~ .~ g 

(3.41) IIr-'ll ~ A1~-b~ +I[A2[I A2~-b~ ~ (I+IIA2II)E. 

Moreover, we have from equations (3.33) and (3.40) 

A(~-  g) = ~ .  
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Since lJ~TJl >- lJb[l/JJAJl from (3.33), the desired result (3.38) is obtained by following [19,21]. 
Since ~ is very small, the solution ~ of Method II is the solution ff of Method I approximately. 

This completes the proof of Proposition 3.1. | 

4. U N I F O R M  V ~ - E L L I P T I C  I N E Q U A L I T Y  

The key analysis of combinations (2.11) and (3.1) is to prove the uniform V°-elliptic inequali- 
ties (2.17) and (3.31), since the proof for (2.16) and (3.30) is much simpler. We shall prove (2.17) 
in this section and then (3.31) in the next section. 

First, we consider a(v, v) without the term fro v~v- .  Define the norms 

ilvllE ( 2 Pc 2 )1/2 
= Iv lx , s l  + Pc II~vllo~,s2 + W I1"+ - ' - IIo ,ro  + Pc IIv: - <l12o,ro , ( 4 . 1 )  

and 

IIv+ - v - l l e , r o  = 11,3 ÷ - . - I1 , ,~o ,  (4.2) 

where g = 0,1/2, and ,3 + is the piecewise k-order polynomial interpolant of v + in $2. Then, we 
have the following lamina. 

LEMMA 4.1. Suppose that there exists a positive constant u(> 0) such that 

I1.÷11,,~o _< CL'" IIv÷llo,ro , e = 1 , 2 , . .  (4.3) 

Then, there exists the bound for v E V °, 

C Cha/2L2V II .+  - ~-  111/2,~o <- ~ II ~÷ - ~-  IIo,~o + I1~÷111,s2 • (4.4) 

PROOF. We have from triangle inequalities, 

II v+ - " -  111/2,.o -< II " +  - "-  IIl/~,ro + II ,3+ - " + l l ~ / 2 , r o ,  
(4 .5 )  

I I v +  - v-lloxo -< II .÷  - . -  llo,ro + II ,3+ - ~÷llo,ro • 

Then from the inverse inequality for pieeewise polynomials, there exists the bound, 

II "+ - . -  IIl/=,ro -< II "+  - . -  IIx/=,ro + P+ - " +  II~/~,ro 
C 

<_ ~ l l v +  - v-IIO,ro + 11,3 + - v+ll,/=o (4.6) 

C C 
<- ~ II "°+ - v- IIo,r.o + ~ II ,3+ - v +  Iio,,-o + 11,3 + - v + l l , . / ~ , , . o  • 

Moreover, from (4.3) we have 

h - ' / '  11,3 + - v+ IIo,ro + II ,3+ - "+111/~,~o -< ch~/~ I1"+ II,,ro (47) 
<_ ch~/=L=" Ik+llo,~o <_ ch~/'L~" I1~+11,,~ 

Combining (4.6) and (4.7) yields the desired result (4.4). This completes the proof of Lem- 
ma 4.1. | 
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LEMMA 4.2. There  exist the  bounds for v E V.h °, 

IIv+lll,s2 < C(IfAv+ll_l,s2 + ll~+ilv~,os~}, (4.8) 
IIv+ll_l/~,ro < C{llAv+ll_~,s ~ + II~+llv~,os~}, (4.9) 

where C is a constant independent of h and L. 

PROOF. We cite the  bound  from [2, pp. 189-192], 

m - - 1  
2 II~ll~s,~m(~) -< C{llA~ll~-~m(~) + ~ IIBk~ll~.-.~-v~(on)}, (4.10) 

k = 0  

where s < 2m, and m is a posit ive integer. The  nota t ions  are: Au = Au, Bou = u, B lu  = u,~, 
g0 = 0 and gl = 1. The  norm on the lef t -hand side in (4.10) is defined in [2, p. 183], 

r - -1  
2 llull/~.,~(r~) = llull~.(~) + Z~ Dku,~ H'-k-t/2(Ofl) ' 2  (4.11) 

k=0  

where r is a posit ive integer, s is an integer, and D k -- ~ is the  k th  normal  derivatives.  In 

(4.10), choosing s = 1, m = 1 and ~ = $2, we obta in  

2 U 2 ll~ll~,,~(s~) -< C{llA,,ll~s-,(s,) + II IIH.~(OS~)}, (4.12) 

where the norm is given in (4.12) wi th  s = 1, r = 2, and ~2 = $2, 

2 _- u 2 2 (4.13) 

Combining (4.10) and (4.13) gives the  following bound,  

2 2 2 ll~ll~,s~ + llullv~,os~ + llu,~ll~-w~,os~ <- C{IIA~II2-1,s~ + llullv~,os~}. (4.14) 

The desired results  (4.8) and (4.9) are obta ined  di rec t ly  from (4.14). This  completes  the  proof  of 

Lemma 4.2. 1 

LEMMA 4.3. Let (4.3) and the [ollowing bound hold, 

h3/2L2~ = o(1). (4.15) 

Then, for v 6 V~ there exists the bound, 

ll.+ll,,s~ < c llv-llv~,,.o + ~ II v+ - v-llo,,.o + ll,"v+llo,s2 , (4.16) 

where C is a constant independent of h and L. 

PROOF. From Lemma 4.1, we have 

II~+llv~,~o -< IIv- IIl/~,~o + II .÷ - v-IIv~ ~o 
C Ch3/2L2~ (4.17) 

-< IIv-IIv~,ro + ~ II v+ - v-IIo,ro + IIv+ll,,~: • 

From Lemma 4.2 and (4.17) 

V + I Iv+l l , ,~:-<c{ l l  IIv~,,,o+llAv+ll_~,~:} 
{ 1 h3/2L2 . } (4.18) 

_< c II"-IIv~,ro + ~ II "+ -"-IIo,Fo + IIv+ll,,~: + IIAv+llo,s: • 
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This leads to 

c { 1 } 
IIv+111,.%, < 1 - CAal2L 2~' II~-II,,=,~o + ~ II ~+ -'-'-Ilo,=o + I1"'~+11o.=,., • (4.19) 

The desired result (4.16) follows from Ch3/2L 2~ < 1/2 by assumption (4.15). This completes the 
proof of Lemma 4.3. | 

LEMMA 4.4. Let F A $I ¢ 0, (4.3) and (4.15) hold, there exists an inequality 

Colil',-,lll-< II~ilE, w • v ° ,  (4.20) 

where II1~111 a~d II~IIE are denned in (2.15) and (4.1) respectively, and Co > 0 has a lower bound 
independent of h and L. 

PROOF. By the contradiction, we can find a sequence {vt} C H* such that 

II1~111 = 1, ilv~llE --* 0, as  o__,  oo.  (4 .21)  

First ,  IlvellE -* 0 implies that for large ~, Iv[ l l , s ,  _< 1 and v [ I s ,  nr = 0, and then I[v2[ll,Sl is 

bounded. Based on the Kandrosov or Rellich theorem [1], there exists a subsequence {v[ } in 
L2(S0 (also written as {v~-}) such that v[ ~ v-  6 L2(S1). Then, ~-  6 HI(SI) ,  since I~-Ix,s, 
are bounded due to tv~ll,s~ < 1. Moreover, LlvdlE -~  0 g ives  I ~ [ I x , s ,  -*  0 as  e --* ~ .  Since 
Hi(S1) is complete, we conclude that I~-Ix,s, = lim~_~¢¢ lv~ Ii,s~ = 0. Hence ~-  is a constant, 
and ~-  = 0 in 5'1 due to ~-Is~nr = 0. 

From the trace theorem [1], 

llv;lll;,,ro <- C I1";111,~,, 

IIv/111/2,ro is also bounded, and 

(4.22) 

lim IIv~-II1,,~ro = 11"~-11,,,2,~o = O. I4.23~ 

Next, consider the sequence v + in $2. We have from Lemma 4.3, 

V + V + I I ,  II,.;.~,,-o -< c II ~ II,,s, 
{ 1 } (4.24) 

< c IIv;ll,.,,~,~o + ~ II-o~ -,i-IIo.~o + I1."~:11o,~,, . 

We conclude t h a t  IIV~-]I1/2,Fo is bounded, and that l imt_~  IIv+H1/2,ro = 0 from (4.24), (4.23) and 
IlvtllE ~ 0. Based on Lemma 4.2, 

~+ V + i l ,  I1,,~, ~ c {ll,",vtll_,.,~, + li ~ 111/2,os~} 
(4.2s) 

< c { l l~vt l l0 , s~  + IIv~+ll,/2,ro} • 
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Hence [Iv~+ill,s2 is also bounded from liveliE --* 0, and then lime-~oo flY+ill,S2 ---- 0. By repeating 
the above arguments, there exists also a subsequence v~- to  converge 9 + E HI($2) .  Moreover, we 
have [[~+[[1,s2 = lime-+oo [ [ V t l ] I , S  2 = 0, alia then 9 + _= 0 in $2. Hence, ~ = 0 in the entire S and 
I1[~1[[ = 0. This contradicts the assumption [[1~[[[ = lime--+oo [[[veii[ = 1 in (4.21), and completes 
the proof of Lemma 4.4. | 

Now, we give the main theorem. 

THEOREM 4.1. Let  F rq 0S1 ~ 9, (4.3) and (4.15) hold, and Pc be chosen to be suitably large 
but still independent of h. Then, the uniformly V ° -  e11iptic inequality holds, 

c01plvJll 2 < a@,~), w ~ y ° ,  (4.26) 

where Co > 0 is a constant independent of h and L. 

PROOF. From Lemma 4.4, we obtain the bound, 

a(v,v) > [ ]vi[~-  [ v~v-  > Clillvil[ 2 -  [ vnv 
JF o J['o ,) c~ NvNl,s, +Pcllvll~,s, +PcllAvll2o,s2 + liv ÷ -- - v  IIo,ro+Pollv~*-vZllo,ro (4.27) 

- - i F  Vn ?3 ' 
o 

where C1 > 0 has a lower bound independent of h and L. Next, we have 

f~o ~ v -  <_ tlv~ll-~12,i'ollv-IIv2,ro. (4.28) 

Moreover, there exist the bounds for v E V, ° ,  

IIv- II,/~,ro -< c II.-II,,~,, (4.29) 
v + I1<11-~.,~o -< II ~ I1-~/~,~o + I1~: - < 11-,/2,=o (4.30) 

_< c {11.+11~,~2 + Ila.+llo,s: + IIv: - <  Ito,ro}, 
where we have used the bound from Lemma 4.2, 

v + I I '+ l l -~/~,ro-<C{l lAv+l l - , ,~:+l l  11112,os,} 
_< c {llA.+llo,~: + I1~+11,,~:}. 

Since Cab < ca 2 + (C214e)b 2 for any e > 0, we obtain from (4.29) and (4.30) 

Lo vZ-v - _< c IIv-IIl,~, (11,+111,~: + II,',v÷llo,~: + IIv+ - < l lo , ro }  
Cl 2 C 2 )2 
_7_ iiv-ii,,~ + ~c_T (llv+lll,~ + ila.+llo,~2 + i1.+ _ <l lo,r  ° _ (4.31) _< 

_ 2 <-- ~61N v -  II 1,$12 q- ~3C 2 . .~livTli21,Sz"~-NAvTIl~,S2"~t-li'U+n--Vnilo'F°)' 

where C1 is given in (4.27). Combining (4.27) and (4.31) gives 

C1 2 
a (v,.) > -7-Ilvlll,s, 

2 _ 2  Pc _ 5  + c,s'~-3c2"/(llvll,,~: + IIA,ilo~: +llv. + - . °  I Io,ro)+C'~ II v+ - v  IIo,ro (4.32) 2C1 ) 

> -~lll~lll 2, 

provided that  C1P¢ - (3C2/2C1) >_ (1/2)C1P~. This leads to Pc >_ 3(C2/C~), which is suitably 
large but  still independent of h and L. Then the uniformly Vh°-elliptie inequality (4.26) holds 
with Co = C1/2. This completes the proof of Theorem 4.1. I I  
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5. UNIFORM vO-ELLIPTIC INEQUALITY 
INVOLVING INTEGRATION APPROXIMATION 

In this section, we prove the uniformly V°-elliptic inequality, (3.31). Choose the integration 

rule, 

= = llvll0,ro, (5.1) 
J r o  ro 

where 0 is the k-order interpolant of v. First, we give a few lemmas. 

LEMMA 5.1. Let  (4.3) and 

ilvtlil,ro -< cL2~ IIv+lll,S~, v~ c v2 (5.2) 

hold, where v (>  0) is a positive constant. There  exist the bounds for v C V ° ,  

,iv + - v-tio,ro >__ air + - v-lio,ro - C h 2 L  2~" laY+ilLs2, (5.3) 

iiv + - v~-I{o,ro >_ [Iv + - v ; i lo , r  ° - C h L  2v lay+HI,s2, (5.4) 

where C is a constant independent of  h and L. 

PROOF. We have 

[Iv + - v-ilo,ro < IIv + - v-[to,ro + ]10 + - v+ilo,ro , (5.5) 

and from (4.3) 

[[0+ - v+JJo,ro _< Ch 2 [v+J2,r ° < Ch2L 2" [[V[]o,ro < Ch2L 2~ ] ] V H I , S  2 . (5.6) 

T h e n  combining (5.5) and  (5.6) gives the  first desired bound  (5.3), 

] ] v + -  v-[[o,ro >_ [Jr + - v - [ [ o , r o -  Ch2n 2~ []v[ll,s . (5.7) 

Similarly, we obta in  from (5.2) 

il ~+ - < L , r o  > - l i<  - < L , ~ o  - l i <  - ~:I[o ~o 

> live+ - v; I]o,ro - c h  IFv.ll,,~o (5.8) 

>- ][v+ - v ;  [[o,ro - ChL2" II~[I,,s~ • 

This is the  second desired bound  (5.4), and  completes  L e m m a  5.1. I 

LEMMA 5.2. Le t  a11 conditions in L e m m a  5.1 hold. Then, 

2 1 _ 2 Ch4L4,  + 2 
- - v  ][o,ro ' ][ v +  v - { Io ,ro  >- ~11 ~+ - I1~ II~,s= (5.9) 

t l ~ -  <ll: ,ro >- ~ -Ch~L~ ~,~ IIo,ro I1~+11~,~ (5.10) 

where C is a cons tan t  independent  of h and L. 

PROOF. Denote  
x = I{v + - v-llo,ro , 

y = II ~+ - v -  IIo,ro, 

z = llv+lll,s~, 
(5.11) 

w ": Ch2L 2v. 
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Equation (5.3) is written simply as x >_ y - wz  >_ O. We have 

x 2 > (y _ wz)2 --_ y2 _ 2wyz ÷ w2z 2. (5.121 

Since 2wyz <<_ y2/2 Jr 2w2z 2, we obtain 

x 2 > y 2  +2w2z 2 + w 2 z  2 - - - w 2 z  2. (5.131 
- 2 

This is the desired result (5.9) by noting (5.111. The proof for (5.101 is similar, and this completes 
the proof of Lemma 5.2. 

Second, let us consider integration approximation for ffs: t, where t -- t(x,  y) = ( A u - t - f )  
(Av -t- f ) .  Let $2 be divided into small triangles Aij and small rectangles K]ij, 

Denote by ~ the piecewise r-order interpolant of t on $2, i.e., 

~ = p~(x,y) = ~ a~,~x'y j, (x,y) •/x~j, (5.15) 
i+j=o 

or 

~ = Q~(x,y) = ~ ai,jxiy j,  (x ,y)  • K],j, (5.16) 
i,j=O 

where ai,j are the coefficients. Then, the integration rule in (3.7) can be viewed as 

Z~jg2(P~j) = f ]  g~ 
ij $2 

s: (5.17/ 

= i f  s 5  

~3 ij  

The partition in (5.141 is regular if max~j(H~j/p~y) <_ C, where H~j is the maximal boundary 
length of Aij and [3ij, Pij is the diameter of the incircle of Aij and Klij, and C is constant 
independent of H(= maxij Hij). The partition (5.141 is quasiuniform if H/min i j  Hij <_ C. Then 
we have the following lemma from the Bramble-I-Iilbert lemma [1]. 

LEMMA 5.3. Let partition (5.141 be regular and quasiuniform. Then, the isltegratiosl rule (5.171 
has the error bound, 

77 /is - s2t = (t < C H  r+l Itl .+l,s ~ , (5.181 

where C is a constant independent of H. 
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The integration rule on Aij can be found in Strang and Fix [20], and the rule on [3ij can be 
formulated by the tensor product of the rule in one dimension, such as the Newton-Cotes rule 
or the Gaussian rule. The Legendre-Gauss rule given in (3.17)-(3.20) is just one of Gaussian 
rules with two boundary nodes fixed. For the Newton-Cotes rule, we may choose the uniform 
integration nodes. When r = 1 and 2, the popular trapezoidal and Simpson's rules are given. 
When v + in $2 are polynomials of order L and choose r = 2L, the exact integration holds, 

ff = ff,  = (5.19) 

Below, we consider the approximate integration 

by the rule with integration orders r < 2L - 1. We have the following lemma. 

LEMMA 5.4. Let v + in $2 be polynomials of order L, and the rule (5.17) with order r < 2L - 1 

be used for ffs=(Au + f ) (Av  + f).  Also assume 

II +ll,,s= _ CL('-')" II +ll,,s=, e_> 1, v °, (5.21) 

where u > 0 is a constant independent of L. Then, there exists the bound, 

- Ilvlh,s2, (5.22) 
2 $2 

where H is the meshspacing of uniform integration nodes in $2, and C is a constant independent 
of H and L. 

PROOF. For the rule of order r < 2L - 1, we have from Lemma 5.3 and (5.21), 

<- CH'+I I (Av)2 ~+1,s2 

r + l  

< CHr+l ~ tAvl,,s2 I~vlr+l_,,s~ 
i=0 

r+ l  (5.23) 
<- OH"+1 ~ Ilvlli+=,s= II~llr+3-,,s= 

i=O 

r + l  

< CH r+l 
i=0  

(L (i+l)V Hvlll,s2) (L  (r+2-0V Ilv[ll,s2) 

< cgr+ln(r+a)v 2 IIv[l],s~ • 

This completes the proof of Lemma 5.4. n 
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THEOREM 5.1. Let (5.2) and all conditions of Theorem 4.1 and Lemma 5.4 hold. Suppose 

hL 2v = o(1), (5.24) 

HL (l+2/(r+1))v = o(1). (5.25) 

Then the uniformly V°-elliptic inequality (3.31) holds. 

PROOF. From Lemmas 5.2 and 5.4 and Theorem 4.1, we have 

~(.,v)= ii~ Ivv-I'+ / <~,-+ P. f f  (~.+)' 
1 o J J  $2 

+ -~-IIo,~o + P~II.= + - <  IIo,~o 

iS ivv-? + [ ~,z,,- + Pc//(~,,+)~ 
S] J Fo J J $2 

+ P<ll'+2h - v-II~,Fo + ~ IIv+ - vzll~,ro 

- CPc (h3L 4v + h2L 4v) 2 [Iv[[1,s~ - CHr+IL(~+3)~ [[v[[~,s~ 

(5.26) 
1 C{Pc(h3L4V h2i4v)Hr+lL(r+3)v} 2 >_ -~a (v, v) - + + Itvlll,s: 

Co {pc (haL4~, H~+,L(~+a). } __ -7-111viii: - c + h2L 4v) 4- Ilvll~,s: 

- --2 [[v[[l'sl + 1 - 2 ~ 0  Pc (haL 4~ + h2n 4~) + g r+ln(~+3)~ [[v[[~,s 2 

+ ~c H~v,0~ s~ + ~l lv+-v-I lLo + vollv:- <llL0/oj 

-> -~IIIvlIIL 

provided that 

° c (h3L4  + h L4 )+ _< (5.27) 

which is satisfied by (5.24) and (5.25). This completes the proof of Theorem 5.1. 

When there is no approximation for f fs2Au+Av+, we have the following corollary. 

COROLLARY 5.1. Let (5.2) and all conditions of Theorem 4.1 hold. Also let the integration (5.19) 
in $2 be exact. Suppose 

hL 2v -- o(1). (5.28) 

Then, the uniformly V~-  elliptic inequality (3.31) holds. 

Corollary 5.1 holds for the case that v + in $2 are polynomials of order L(> k), and that the 

Legendre-Gauss rule in (3.17) with n = L - 1  is used for f fs2 A2v+" Next, let us consider a special 
case: The functions v + in 5:2 are chosen to be the particular solutions satisfying --Av + = f in $2 
exactly. The combination of FEM-CM in (3.4) is given by 

5*(~h,V) = ft(v), Vv • V °, (5.29) 
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where 

a*(u,v)=ff ww+f 
S1 J P o  

(5.30) 

f l ( v ) = / /  fv. (5.31) 
$1 

Note that the term, Pelf& (Av) 2, disappears in computation. Obviously, Corollary 5.1 is valid 
for Motz's problem discussed in Section 6.2. 

REMARK 5.1. Different integration rules for ffs2 (Au + f)(Av + f) do not influence upon errors 
of the solutions by combinations of FEM-CM, but guarantee the uniformly Vh°-elliptic inequal- 
ity (3.31), as long as H is chosen so small to satisfy (5.25), e.g., as long as the number of 
collocation nodes Pij in quasiuniform distribution is large enough. This conclusion is a great 
distinctive feature from that in the conventional analysis of FEMs. 

REMARK 5.2. For Theorems 4.1 and 5.1, three inverse inequalities, equations (4.3), (5.2), and 
(5.21), are needed for a polygon $2. For polynomials v + of order L, equation (4.3) holds for 

= 2 in [6]. The proof of (5.2) and (5.21) is given in [22]. 

REMARK 5.3. Equations (3.12)-(3.14) represent the generalized collocation equations using other 
admissible functions, such as radial basis functions, the Sinc functions, etc. The analysis of this 
paper holds provided that the inverse inequalities (4.3), (5.2), and (5.21) are satisfied. In fact, 
these inequalities can be proved for radial basis functions, the Sinc functions, etc. Details of 
analysis and numerical examples appear in [23]. 

6. N U M E R I C A L  E X P E R I M E N T S  

6.1 .  P o i s s o n ' s  P r o b l e m  

Consider Poisson's equation, 

- A u  = 27r 2 sin (Trx) cos (Try), in S, (6.1) 

where S --- { ( x , y ) l -  1 < x < 1, 0 < y < 1}, with the following Dirichlet conditions: 

u=O o n x = + l A 0 < y < _ l ,  

u= - s in (Trx )  o n y = l A - - l < x < l ,  (6.2) 

u=sin(Trx) o n y = 0 A - - l < x <  1. 

The exact solution is u(x, y) = sin(Trx) cos(Try). Divide S by F0 into S1 and $2. The subdomain $1 
again is split into uniform regular triangular elements: $1 -- UqAij, shown in Figure 2. The 
admissible functions are chosen as 

V-- = Vl, in S1, 

V-~ L 

v + Y~ di~Ti (2x - 1) T3 (2y - 1), in $2, 
i,j=O 

(6.3) 
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s , \ \  \ s2 
\ \ \ \  
\ \ \ \ r o  
\ \ \ \  

Figure 2. Partition of a rectangular solution domain with M =- 4, where M denotes 
the numbers of partitions along the y-direction in $1. 

Table 1. The error norms and condition numbers by combination of FEM-CM using 
the Legendre-Gauss points as collocation nodes. 

M, L, Nd 4, 3, 2 8, 5, 4 16, 7, 6 

I1~ -- ~f i  IIo,sl 4.06(--2) 1.15(--2) 2.92(--3) 

Ilu - ~fi IIl,51 5.87(-1) 2.53(-1) 1.26(-1) 

ll~ - '~L llo,s= 4.17(--2) 1.29(--3) 2.05(--4) 

Hu - ULHt,s2 1.42(-1) 5.83(-3) 9.67(-4) 

[[¢+ - ~-[[O,ro 1.92(-2) 1.80(-3) 4.83(-4) 

Cond. (A) 8.59(4) 1 . 6 3 ( 6 )  1.22(7) 

Table 2. The error norms and condition numbers by combination of FEM-CM using 
the trapezoidal points as collocation nodes. 

M, L, Nd 4, 3, 4 8, 5, 6 16, 7, 8 

I[ u - U h  [10,S1 6.92(-2) 1.15(-2) 2.92(--3) 

Ilu - ~ Ih,sl 7.88(-1) 2.53(-1) 1.26(-1) 

[[u - uL[]O,S 2 1.64(--2) 4.27(--4) 2.23(--4) 

H u -- ULIIl,S2 1.09(-1) 4.24(-3) 1.04(-3) 

II~ + - ~-II0,ro 2.71(-2) 2.81(-3) 5.12(-4) 

Cond. (A) 8.59(4) 1 . 5 4 ( 6 )  1.16(7) 

where Vl is the  piecewise l inear functions on $1, d~j are unknown coefficients to  be determined,  

and Ti(x) are the  Chebyshev polynomials ,  Tk (x) = cos(k cos -  1 (x)). 

We choose the  Legendre-Gauss  and the  t rapezoida l  rules in Section 3 for f f s 2  (Av+)2" Hence, 

the  opt imal  convergence ra te  O ( h )  in H 1 norms is ob ta ined  based on the  analysis  made.  Since v + 

do not  sat isfy the  bounda ry  condit ions on O S 2 N F ,  the  addi t ional  col locat ion equations,  v + ( P i )  = 0 

where Pi E 0 5 2  n F, are also needed. After  t r ia l  computa t ion ,  choose Pc = 50. Let  h = l / M ,  

where M denotes  the  number  of par t i t ions  along the y-direct ion in $1 in F igure  2. 

We choose Method  I in Section 3, and the error norms are l isted in Tables 1 and 2, where N d  

denotes the  number  of collocation nodes along one direct ion in $2 in F igure  2, 6 -  = u - Uh a n d  

6 + = u - UL.  The  following asympto t ic  relat ions are observed from Tables 1 and 2, 

- u h l l 0 , s l  = O ( h 2 ) ,  -  hIIl,sl = O ( h ) ,  (6.4) 

[]u - ULIIO,S, = 0(h3) ,  [[u - UL[[1,S2 ----- 0 (h3) ,  ( 6 . 5 )  

116 + - E-H0,ro ---- O(h2), Cond . (A)  = O ( h - 3 ) .  (6.6) 

Equat ions  (6.4),(6.5) indicate tha t  the  numerical  solutions have the  op t imal  convergence ra te  

O ( h )  in H 1 norms. The  different in tegrat ion rules used in $2 do not  influence upon the errors 
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Table 3. The error norms and condition numbers by combination of FEM-CM using 
the trapezoidal rule with M = 16 and L = 7. 

Nd 2 4 6 8 10 

I]u - Uh ][O,S 1 2.91(--3) 2.91(--3) 2.92(--3) 2.92(--3) 2.93(--3) 

I[~ - **~ Ih,s~ 1.26(-1) 1.26(-1) 1.26(-1) 1.26(-1) 1.26(-1) 

I1'* - ~ L  II0,82 46.5 6.80 2.47(-4) 2.23(-4) 2.11(-4) 

IN - ULlh,s2 244.0 52.3 1.13(-3) 1.04(-3) 9.86(-4) 

D + - ~-IIo,ro 28.9 4.25 5.69(-4) 5.12(-4) 4.70(-4) 

Cond. (A) 1.14(7) 2.87(6) 1.27(6) 7.25(5) 4.80(5) 

Table 4. The error norms and condition numbers by combination of FEM-CM using 
the Newton-Cotes rules with different orders on M = 16, L = 7, and Nd = 7. 

Order r = l  r = 2  r = 4  r = 8  

[Ju - u h [[0,81 2.91(-3) 2.91(-3) 2.92(-3) 2.92(--3) 

I[U--Uh[[l,s 1 1.26(--1) 1.26(--1) 1.26(--1) 1.26(--1) 

Ilu - ~L IIo,s= 1.93(--4) 2.00(--4) 1.99(--4) 1.97(-4) 

l{** - ~,LHI,s~ 1.05(-3) 1.03(-3) 1.03(-3) 1.12(-3) 

lie + - ¢-[[0,ro 6.64(-4) 7.03(-4) 6.97(-4) 6.72(-4) 

6.59(5) 7.69(5) 8.22(5) 2.86(6) Cond. (A) 
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of  the  solu t ions  of  combina t ions  of  F E M - C M ,  as long as t h e  n u m b e r  of  co l loca t ion  equa t ions  in 

quas iun i fo rm d i s t r i bu t ion  is large enough.  

In  Table  3, we choose M = 16 and L = 7, bu t  change the  n u m b e r  Nd used  in t he  t r apezo ida l  

rule in $2. F r o m  Table  3, we can see t h a t  g o o d  solut ions  can  be  o b t a i n e d  w h e n  Nd > 6; this  fact  

per fec t ly  verif ies t he  conclus ions  in T h e o r e m  5.1. In  Tab le  4, we choose  M = 16, L = 7, and 

Nd = 7, b u t  use t he  N e w t o n - C o t e s  rule  w i th  difference o rder  r .  W h e n  r = 1, t he  N e w t o n - C o t e s  

rule  is j u s t  the  t r apezo ida l  rule. F r o m  Tables  1, 2, and 4, we can  see t h a t  t h e  different  i n t eg ra t ion  

rules used in $2 do no t  inf luence the  o p t i m a l  convergence  ra te ,  e i ther .  

6.2.  M o t z ' s  P r o b l e m  

Cons ider  M o t z ' s  p roblem,  

in S, (6.7) 

< y < 1}, w i th  t he  m i x e d  t y p e  of  D i r i c h l e t - N e u m a n n  

o n x = - - l A 0 < y _ <  1, 

02u  02u  
zxu = + 3 7  = o, 

where  S = { ( x , y ) l -  1 < x < 1, 0 

condi t ions ,  
ux = O, 

(6.8) 

u = 500, on x = 1 A0_< y < 1, 

u y = 0 ,  o n y = l A - - l < x < l ,  

u = 0 ,  on  y = 0 A - - 1  _< x < 0, 

Uy----O, o n y - - - - 0 A 0 < x _ < l .  
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' " F0 S 2  

Figure 3. Partition of Motz's problem with M = 4. 

The origin (0, 0) is a singular point, since the solution behaviour u = O ( r  1/2) as r --* 0 due to 
the intersection of the Dirichlet and Neumann conditions. Divide S by F0 into $1 and $2, where 
$2 = { ( x , y ) l -  1/2 < x < 1/2, 0 < y < 1/2}. The subdomain $1 is again split into uniform 
square elements Dij with the the boundary length h, shown in Figure 3. 

The admissible functions are chosen as 

{ v- ~--vl' ( 2 )  V ~- L 
V + ----- ~ / )~ r  £+1/2c0s  ~ +  O, 

t=O 

(6.9) 

where vl is the piecewise bilinear functions in $1,/)~ are unknown coefficients to be determined, 
and (r, 0) are the polar coordinates with origin (0, 0). 

Since the particular solutions r ~+1/2 cos(l + 1/2)0 satisfy (6.7) in $2 and the boundary condi- 
tions, 

u = 0 ,  o n y = 0 A - - l _ < x < 0 ,  (6.1o) 

u y = 0 ,  o n y = 0 A 0 < x < _ l ,  (6.11) 

the collocation equations (3.9)-(3.11) are reduced to 

(v+ - . - )  (Qj) = 0, (.~+ - , ; )  (Qj) = 0, Q, e r0. (6.12) 

Then, the collocation equations with weights on F0 are given by 

Qj E F0, (6.13) 

where Pc is a penalty constant. In computation, we choose Pc = 50. 
We choose Method II, where (3.26) represents (6.13). We adopt the trapezoidal and the 

Simpson's rules for integrals, (Pc /h )  fro(U + - u - ) ( v  + - v - )  and Pc fr0(U + - u ~ ) ( v  + - vZ) .  The 
error norms and the condition numbers are listed in Tables 5 and 7, where M denotes the number 
of partitions along the y-direction in $1 in Figure 3, and L denotes the term number of the 
expansion (6.9) in $2. Cond. denotes the condition numbers of the over-determined system (3.35). 
The following asymptotic relations are observed from Tables 5 and 7, 

Ilu - u h l l l , s l  + Jl~ - ~LlJ l , s2  = O ( h ) ,  

, , u , -  uhr,,,s, + IJ -  LH,,s2 = o 

II - * -  IIo,,-o = o (h=), 

O<a<<l, 

Cond. = O ( h - l )  . 

(6.14) 

(6.15) 

(6.16) 

We can see that  equations (6.14) and (6.15) coincide with the optimal convergence rates. The 
approximate coefficients are given in Tables 6 and 8. When M = 12 and L = 4, the approximate 
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Table 5. The error norms and condition numbers for Motz's problem by combination 
of FEM-CM using the trapezoidal rule for f r o  

M, L 2, 2 4, 3 6, 3 8, 4 12, 4 

l]u - Uh I10,$1 7.45 1.32 0.960 0.342 0.231 

flu -- uull1,,¢ I 56.6 20.9 13.9 10.3 6.92 

IluI - uhHo,sl 6.98 1.14 0.913 0.299 0.218 

Ilui - Uhlll,S 1 25.6 3.51 2.53 1.01 0.767 

H'a - -  U L []0,$2 1.32 0.424 0.358 0.0396 0.0320 

HU -- ULI]I,S 2 4.50 1.08 0.930 0.330 0.272 

II e+ -- ~-- H0,ro 6.07 1.69 0.753 0.426 0.189 

Cond. 57.4 131 201 265 396 

1851 

Table 6. The approximate and exact coefficients for the Motz's problem by combi- 
nation of FEM-CM using the trapezoidal rule for fro" 

Approx. Coeffs. Do 

M =  2 
397.6500 

L = 2 

M =  4 
399.8047 

L = 3 

M =  6 
400.0200 

L = 3 

M =  8 
401.1672 

L = 4  

401.1649 
M = 1 2  
L = 4  

Exact 
Coeffs [6] 

401.1624 

/Jl  

91.0576 

88.1314 

88.0077 

87.5345 

87.5318 

16.1292 / / 

16.8330 --7.57220 / 

16.8798 -7.39917 / 

16.7077 -7.49616 1.32179 

16.8247 --7.56824 1.29397 

17.2379 --8.07121 1.44027 87.6559 

va lue  of  Do is 401.1649, and  the  re la t ive  er ror  is g iven  by 

I/)0 - D01 = 401.1649 - 401.1624 

ID01 401.1624 
= 6.2 x 10 -6.  

No te  t h a t  such an  accuracy  is h igher  t h a n  t h a t  g iven  in [6], where  t h e  re la t ive  er ror  of  Do is 

abou t  10 -4  w h e n  M = 12. 

F r o m  Tables  5-8,  we can  see t h a t  t he  t r apezo ida l  and  t h e  S impson ' s  rules p rov ide  a lmos t  t he  

s a m e  resul ts ,  to  ind ica te  aga in  t h a t  different  i n t eg ra t ion  rules for t he  in tegrals ,  ( P c ~ h ) f r o  (u+ - 

u - ) ( v  + - v - )  and  Pc fro(U + - u ~ ) ( v  + - v ~ ) ,  do no t  inf luence u p o n  t h e  convergence  ra tes  of 

t he  numer ica l  so lu t ions  if  t he  i n t eg ra t ion  nodes  (i.e., t he  co l loca t ion  nodes)  are  large enough.  

Obviously,  t h e  cond i t ion  number s  g iven  in Tables  5 and  7 are  s igni f icant ly  smal le r  t h a n  those  in 

Tables  1 and  2. Hence,  M e t h o d  I I  (i.e., t he  least  squares  m e t h o d  in (3.36)) is also r e c o m m e n d e d  

for t he  combina t ions  of  t h e  co l loca t ion  m e t h o d s  due  to  b e t t e r  numer i ca l  s tabi l i ty .  
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Table 7. The error norms and condition numbers for Motz's problem by combination 
of FEM-CM using the Simpson's rule for fro" 

M, L 4, 3 6, 3 8, 4 12, 4 

Ilu - uh Ito,sl 1.32 0.960 0.342 0.231 

HU --  UhII1,S 1 20.9 13.9 10.3 6.92 

HUl -- UhllO,Sl 1.14 0.913 0.299 0.218 

IluI -- Uhlll,Sl 3.51 2.53 1.01 0.767 

Ilu -- UL tlo,s2 0.422 0.358 0.0396 0.0320 

Ilu - UL[]I,S 2 1.07 0.930 0.330 0.272 

He + -- e-H0,ro 1.69 0.753 0.426 0.189 

Cond. 165 263 350 527 

Table 8. The approximate and exact coefficients for the Motz's problem by combi- 
nation of FEM-CM using the Simpson's rule for fro" 

Approx. Coeffs. /90 /91 

M =  4 
399.8122 88.1296 

L = 3 

M----6 
400.0199 88.0077 

L = 3 

M =  8 
401.1671 87.5346 L = 4 

M =  12 
401.1649 87.5319 

L = 4 

401.1624 87.6559 
Exact 

Coeffs [6] 

/92 /93 

16.8320 -7.57146 

16.8799 -7.39921 

16.7077 -7.49609 

16.8247 -7.56824 

17.2379 -8.07121 

/:i4 

1.32174 

1.29395 

1.44027 

F I N A L  R E M A R K S  

To close this  paper ,  let us make  a few remarks .  

1. Th i s  paper  provides a theore t ica l  f ramework of c o m b i n a t i o n s  of CMs wi th  o ther  methods .  

The  basic  idea  is to in te rp re t  CM as a special  F E M ,  i.e., t he  LS M  involv ing  in teg ra t ion  

approx imat ion .  E q u a t i o n s  (3.9)-(3.11) in  CM are s t ra ightforwardly ,  a n d  easi ly incorpo-  

ra ted  in to  the  combined  methods ,  see (3.25) and  (3.26). The  c o m b i n a t i o n  of CM in this  

paper  is also an  i m p o r t a n t  deve lopment  from Li [6]. 
2. The  key analys is  for combina t i ons  of CM is to prove the  new un i fo rm V ° -  ell iptic in- 

equal i t ies  (2.17) an d  (3.31). T h e  non t r iv i a l  proofs in  Sect ion 3 are new a n d  in t r iguing ,  

which consists  of two steps: 

Step I for the  s imple  one (4.20) w i t h o u t  fro vn v ; 

Step II  for T h e o r e m  4.1. Note  t h a t  b o t h  (2.6) and  (2.7) are requi red  in  c o m b i n a t i o n s  (2.11) 

because  the  in tegra l  Pc  f f s 2  A u A v  worked as if for the  b i h a r m o n i c  equa t i on  in  $2 in 

the  t r ad i t i ona l  FEMs ,  see [1], where  the  essent ia l  c o n t i n u i t y  cond i t ions  u + -- u -  and  

u + = u~  should he imposed  on  the  in ter ior  b o u n d a r y  Fo. 
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3. In algorithms, the integration approximation leads the LSM to the collocation method. In 
error analysis, the integration approximation plays a role only for satisfying the uniformly 
V~-  elliptic inequality, but not for improving accuracy of the solutions. The algorithms 
and the analysis in this paper are distinctive from the existing literature in CM. 

4. In $2, Poisson's equation and the interior and exterior boundary conditions are copied 
straightforwardly into the collocation equations. This simple approach covers a large class 
of the CM using various admissible functions, such as particular solutions, orthogonal 
polynomials, the radial basis functions, the Sinc functions, see [23]. 

5. The numerical experiments are carried out to verify the theoretical analysis made. Also 
Methods I and II in Section 3 are proven to be effective in computation. 
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