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Abstract

In this paper, we provide an analysis on the collocation methods (CM), which uses a large scale of admissible functions such as
orthogonal polynomials, trigonometric functions, radial basis functions and particular solutions, etc. The admissible functions can be
chosen to be piecewise, i.e., different functions are used in different subdomains. The key idea is that the collocation method can be
regarded as the least squares method involving integration approximation, and optimal convergence rates can be easily achieved based
on the traditional analysis of the finite element method. The key analysis is to prove the uniformly Vh-elliptic inequality and some inverse
inequalities used. This paper explores the interesting fact that for the collocation methods given in this paper, the integration rules only
affect on the uniformly Vh-elliptic inequality, but not on the solution accuracy. The advantage of the CM is to formulate easily the asso-
ciated algebraic equations, which can be solved from the collocation equations directly by the least squares method, thus to greatly
reduce the condition number of the associated matrix. Moreover, the new effective condition number is proposed to provide a better
upper bound of condition number, and to show a good stability for real problems solved by the collocation methods. Note that the
boundary approximation method in Li [Z.C. Li, Combined Methods for Elliptic Equations with Singularities, Interfaces and Infinities,
Kluwer Academic Publishers, Boston, London, 1998] is a special case of the CM, where the admissible functions satisfy the equations
exactly. Numerical experiments are also carried for Poisson�s problem to support the analysis made.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

If the admissible functions are chosen to be analytical functions, e.g., trigonometrical or other orthogonal functions, we
may enforce them to satisfy directly the partial differential equations (PDEs) at certain collocation points, by letting the
residuals to be zero. This leads to the collocation method (CM). The CM is a popular method in engineering computation,
because the algebraic equations can be easily formulated. For CM method, there are many reference books, see in Bernardi
and Maday [4], Canuto et al. [6], Gottlieb and Orszag [11], Quarteroni and Valli [20] and Mercier [18]. There have been
several important studies of CM: Bernardi et al. [3], Shen [21–23], Arnold and Wendland [1], Canuto et al. [5], Pathria
and Karniadakis [19], and Sneddon [24].
0045-7825/$ - see front matter � 2005 Elsevier B.V. All rights reserved.
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In this paper, we present a new analysis of CM by following the ideas in Li [13] that other numerical methods can be
regarded as a special kind of the Ritz–Galerkin method. The CM is, indeed, the least squares method, which can be treated
as the Ritz–Galerkin method involving integration approximation. The advantages of the CM are twofold: (1) flexibility of
application to different geometric shapes and different elliptic equations, (2) simplicity of computer programming. The
optimal error bounds can be easily derived, based on the uniformly Vh-elliptic inequality which is proved in detail in this
paper.

This paper is organized as follows. In the next section, the collocation method with an interior boundary is described,
and in Section 3 an analysis is given. In Section 4 the CM for the Robin boundary conditions is discussed, and in Section 5,
some inverse inequalities are provided. In Section 6, the numerical experiments including singularity problems are carried
out to support the analysis made, and some discussions are also provided. In the last section, a few remarks are made.

2. Description of collocation methods

Consider Poisson�s equation on domain S with the mixed type of the Dirichlet and Neumann conditions,

� Du ¼ � o
2u

ox2
þ o

2u
oy2

� �
¼ f ðx; yÞ in S; ð2:1Þ

ujCD
¼ g1 on CD; ð2:2Þ

umjCN
¼ g2 on CN ; ð2:3Þ

where S is a polygon, oS = C = CD [ CN is its boundary, um ¼ ou
om, and m is the outnormal to oS. Let S be divided by C0 into

two disjoint subregions, S1 and S2 (see Fig. 1): S = S1 [ S2 [ C0 and S1 \ S2 = ;. We give a few assumptions.

A1: The solutions in S1 and S2 can be expanded as

v ¼
v� ¼

X1
i;j¼1

aijUiðxÞUjðyÞ in S1;

vþ ¼
X1
i;j¼1

bijWiðxÞWjðyÞ in S2;

8>>>><>>>>: ð2:4Þ

where {Ui(x)Uj(y)} and {Wi(x)Wj(y)} are complete and independent bases in S1 and S2 respectively, and aij and bij are the
expansion coefficients.

A2: The basis functions

UiðxÞUjðyÞ 2 C2ðS1Þ \ C1ðoS1Þ; WiðxÞWjðyÞ 2 C2ðS2Þ \ C1ðoS2Þ. ð2:5Þ
Γ0

1

S2

S

Fig. 1. Partition of a convex polygon.
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A3: The expansions in (2.4) converge exponentially to the true solutions u±,

u� ¼ u�m þ R�m ; uþ ¼ uþn þ Rþn ; ð2:6Þ
where u� ¼ ujS1

and uþ ¼ ujS2
, and

u�m ¼
Xm

i;j¼1

aijUiðxÞUjðyÞ; uþn ¼
Xn

i;j¼1

bijWiðxÞWjðyÞ; ð2:7Þ

R�m and Rþn are the remainders, and aij and bij are the true expansion coefficients. Then

max
S1

jR�m j ¼ Oðe��cmÞ; max
S2

jRþn j ¼ Oðe��cnÞ; ð2:8Þ

where �c > 0;m > 1 and n > 1.
Based on A1–A3 we may choose the piecewise admissible functions,

v ¼
v� ¼

Xm

i;j¼1

~aijUiðxÞUjðyÞ in S1;

vþ ¼
Xn

i;j¼1

~bijWiðxÞWjðyÞ in S2;

8>>>><>>>>: ð2:9Þ

where ~aij and ~bij are unknown coefficients to be sought. Since v on C0 are not continuous, v± have to satisfy the interior
continuity conditions

uþ ¼ u�; uþm ¼ u�m ; C0; ð2:10Þ
where um ¼ ou

om, and m is the outward unit normal of oS2.
Based on A2 we may seek the coefficients ~aij and ~bij by satisfying (2.1)–(2.3) and (2.10) directly at nodes Qij and Qi,

ðDv� þ f ÞðQ�ij Þ ¼ 0; Q�ij 2 S�; ð2:11Þ
ðv� g1ÞðQiÞ ¼ 0; Qi 2 CD; ð2:12Þ
ðvm � g2ÞðQiÞ ¼ 0; Qi 2 CN ; ð2:13Þ
ðvþ � v�ÞðQiÞ ¼ 0; Qi 2 C0; ð2:14Þ
ðvþm � v�m ÞðQiÞ ¼ 0; Qi 2 C0; ð2:15Þ

where v± also denotes v�jC0
, S� = S1 and S+ = S2. Eqs. (2.11)–(2.15) can be written in a matrix form

F~x ¼~b; ð2:16Þ
where~x is the unknown vector consisting of ~aij and ~bij,~b is the known vector, and F 2 RM�ðm2þn2Þ, where M (Pm2 + n2) is
the total number of all collocation nodes Q�ij 2 S�, and Qi 2 CD [ CN [ C0. In this paper, we always choose M > (m2 + n2)
and even M� (m2 + n2). Consequently, we obtain an overdetermined system which can be solved by the least square
method (i.e., the QR decomposition or the singular value decomposition), see Golub and Loan [10].

Below, let us view the CM as the least squares method involving integration approximation. Denote by Vh the finite
dimensional collection of the admissible functions (2.9). We give one more assumption.

A4: Suppose that there exists a positive constant l (>0) such that

kv�m k0;CD\S� 6 CLlkv�k1;S� ; v 2 V h; ð2:17Þ
kvþm k0;C0\Sþ 6 CLlkvþk1;Sþ ; v 2 V h. ð2:18Þ

For polynomials v of order L, we will prove (2.17) and (2.18) with l = 2 in Section 5.

Then the approximate coefficients ~aij and ~bij can be obtained by the least squares methods: To seek the approximation
solution um,n 2 Vh such that

Eðum;nÞ ¼ min
v2V h

EðvÞ; ð2:19Þ

where

EðvÞ ¼ 1

2

Z Z
S1

ðDv� þ f Þ2þ
Z Z

S2

ðDvþ þ f Þ2þ L2l

Z
C0

ðvþ � v�Þ2þ
Z

C0

ðvþm � v�m Þ
2þ L2l

Z
CD

ðv� g1Þ
2 þ
Z

CN

ðvm� g2Þ
2

� �
;

ð2:20Þ
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where L = max{m,n}, and m is also the outward unit normal to oS2. Eq. (2.20) can be described equivalently

aðum;n; vÞ ¼ f ðvÞ; 8v 2 V h; ð2:21Þ
where

aðu; vÞ ¼
Z Z

S1

DuDvþ
Z Z

S2

DuDvþ L2l

Z
C0

ðuþ � u�Þðvþ � v�Þ þ
Z

C0

ðuþm � u�m Þðvþm � v�m Þ þ L2l

Z
CD

uvþ
Z

CN

umvm;

ð2:22Þ

f ðvÞ ¼ �
Z Z

S1

f Dv�
Z Z

S2

f Dvþ L2l

Z
CD

g1vþ
Z

CN

g2vm. ð2:23Þ

The integrals in (2.22) can be approximated by some rules of integration:cZZ
S�

g ¼
X

ij

a�ij gðQ�ij Þ; Q�ij 2 S�;

bZ
C0

g ¼
X

i

aigðQiÞ; Qi 2 C0;

bZ
CD

g ¼
X

i

aD
i gðQiÞ; Qi 2 CD;

bZ
CN

g ¼
X

i

aN
i gðQiÞ; Qi 2 CN ;

ð2:24Þ

where a�ij , ai, aD
i and aN

i are positive weights, and Q�ij and Qi are integration nodes. The least squares method (2.21) is then
reduced to

âðûm;n; vÞ ¼ f̂ ðvÞ; 8v 2 V h; ð2:25Þ
where

âðu; vÞ ¼
cZZ

S1

DuDvþ
cZZ

S2

DuDvþ L2l
bZ
C0

ðuþ � u�Þðvþ � v�Þ þ
bZ
C0

ðuþm � u�m Þðvþm � v�m Þ þ L2l
bZ
CD

uvþ
bZ
CN

umvm;

ð2:26Þ

f̂ ðvÞ ¼ �
cZZ

S1

f Dv�
cZZ

S2

f Dvþ L2l
bZ
CD

g1vþ
bZ
CN

g2vm. ð2:27Þ

We can see that by the rules (2.24), the following algebraic equations can be obtained from (2.25) directly,ffiffiffiffiffiffi
a�ij

q
ðDv� þ f ÞðQ�ij Þ ¼ 0; Q�ij 2 S�; ð2:28Þffiffiffiffi

ai
p

Llðvþ � v�ÞðQiÞ ¼ 0; Qi 2 C0; ð2:29Þffiffiffiffi
ai
p ðvþm � v�m ÞðQiÞ ¼ 0; Qi 2 C0; ð2:30Þffiffiffiffiffi

aD
i

p
Llðv� g1ÞðQiÞ ¼ 0; Qi 2 CD; ð2:31Þffiffiffiffiffiffi

aN
i

q
ðvm � g2ÞðQiÞ ¼ 0; Qi 2 CN . ð2:32Þ

Compared with (2.11)–(2.15), Eqs. (2.28)–(3.32) can be denoted by

WF~x ¼W~b; ð2:33Þ
where F is given in (2.16), and W 2 RM·M is the diagonal weight matrix, consisting of the weights,

ffiffiffiffiffiffi
a�ij

q
, Ll ffiffiffiffi

ai
p

,
ffiffiffiffi
ai
p

, Ll
ffiffiffiffiffi
aD

i

p
and

ffiffiffiffiffiffi
aN

i

p
. We may also obtain the coefficients (i.e.,~x) by solving the normal equations:1

A~x ¼~b�; ð2:34Þ
1 Eqs. (2.34) and (2.21) are used only for error analysis in this paper.
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where matrix A = FTWTWF is symmetric and positive definite, and the known vector~b
� ¼ FTWTW~b. In real computation,

when M > (m2 + n2), we always solve (2.33) directly by the least squares method using the QR method, and the condition
number is defined in [10] by

Cond. ¼ kmaxðAÞ
kminðAÞ

� �1
2

; ð2:35Þ

where kmax(A) and kmin(A) are the maximal and the minimal eigenvalues of A, respectively. Note that Eq. (2.35) is square
root of the condition number by solving the normal equation (2.34). A new effective condition number is proposed in Sec-
tion 6.4 later.

3. Error analysis

We will provide the error bounds for the solutions from (2.21)–(2.25). Denote the space

H � ¼ fv; v 2 L2ðSÞ; v� 2 H 1ðS�Þ;Dv� 2 L2ðS�Þg; ð3:1Þ
accompanied with the norm

kvkH ¼ fkvk
2
1 þ kDvk2

0;S1
þ kDvk2

0;S2
þ L2lkvþ � v�k2

0;C0
þ kvþm � v�m k

2
0;C0
þ L2lkvk2

0;CD
þ kvmk2

0;CN
g1=2

; ð3:2Þ

where

kvk1 ¼ fkvk
2
1;S1
þ kvk2

1;S2
g

1
2; jvj1 ¼ fjvj

2
1;S1
þ jvj21;S2

g
1
2; ð3:3Þ

and kvk1;S1
, kvk0;C0

, etc. are the Sobolev norms. Obviously, Vh � H�. Then

kvk2
H ¼ kvk

2
1 þ aðv; vÞ. ð3:4Þ

Now we have a theorem.

Theorem 3.1. Suppose that there exist two inequalities

aðu; vÞ 6 CkukH � kvkH ; 8v 2 V h; ð3:5Þ
aðv; vÞP C0kvk2

H ; 8v 2 V h; ð3:6Þ

where C0 > 0 and C are two constants independent of m and n. Then, the solution of the least squares method (2.21) has the

error bound,

ku� um;nkH ¼ C inf
v2V h

ku� vkH 6 e1 ¼ kR�mk2;S1
þ kRþn k2;S2

þ LlkRLk0;CD[C0
þ kðRLÞmk0;CN[C0

; ð3:7Þ

where jRLj ¼ jR�m j þ jRþn j.

Proof. For the true solution, we have a(u,v) = f(v), "v 2 Vh. Then

aðu� um;n; vÞ ¼ 0; 8v 2 V h. ð3:8Þ
Denote the projection solution on Vh

uI ¼
u�I ¼

Xm

i¼1

aijUiðxÞUjðyÞ in S1;

uþI ¼
Xn

i¼1

bijWiðxÞWjðyÞ in S2;

8>>><>>>: ð3:9Þ

where aij and bij are the true expansion coefficients. Then uI 2 Vh. Let v 2 Vh, and w = um,n � v 2 Vh. We have from (3.6),
(3.8) and (3.5)

C0kwk2
H 6 aðum;n � v;wÞ ¼ aðu� v;wÞ 6 ku� vkHkwkH . ð3:10Þ

This leads to

kum;n � vkH ¼ kwkH 6 Cku� vkH . ð3:11Þ
Then we obtain

kum;n � ukH 6 kum;n � vkH þ ku� vkH 6 Cku� vkH ð3:12Þ



4144 H.-Y. Hu, Z.-C. Li / Comput. Methods Appl. Mech. Engrg. 195 (2006) 4139–4160
and

kum;n � ukH 6 C inf
v2V h

ku� vkH . ð3:13Þ

Let v = uI we have

kum;n � ukH 6 C inf
v2V h

ku� vkH 6 Cku� uIkH 6 kR�mk2;S1
þ kRþn k2;S2

þ LlkRLk0;CD[C0
þ kðRLÞmk0;CN[C0

. ð3:14Þ

This completes the proof of Theorem 3.1. h.

Since the solution u in (2.1)–(2.3) satisfies the finite dimensional collocation equations (2.28)–(2.32) exactly, then

âðu; vÞ ¼ f̂ ðvÞ; 8v 2 V h. ð3:15Þ
We can also prove the following theorem, see Ciarlet [9] and Strang and Fix [25].

Theorem 3.2. Suppose that there exist two inequalities

âðu; vÞ 6 CkukH � kvkH ; 8v 2 V h; ð3:16Þ
âðv; vÞP C0kvk2

H ; 8v 2 V h; ð3:17Þ

where C0 > 0 and C are two constants independent of m and n. Then, the solution of the collocation method (2.25) has the error
bound,

ku� ûm;nkH ¼ C inf
v2V h

ku� vkH 6 e1; ð3:18Þ

where e1 is given in (3.7).

Note that for the FEM, FDM, etc., the true solution does not satisfy (3.15), then Theorem 3.2 may not hold. Also, the
analysis in this paper is different form the traditional analysis in collocation method in [4,6,11,20], where only the zeros of
polynomials are used as the collocation nodes.

Below we prove the uniformly Vh-elliptic inequalities (3.6) and (3.17). We cite a lemma from [14].

Lemma 3.1. Let CD \ S�5 ;. If v 2 H*, then there exists a positive constant C independent of v such that

kvk1 6 Cfjvj1 þ kvk0;CD
þ kvþ � v�k0;C0

g.

Lemma 3.2. Let A4 be given, and CD \ S1 5 ;. There exists the bound for v 2 Vh,

C0kvk2
1 6 aðv; vÞ; v 2 V h; ð3:19Þ

where C0 (>0) is a constant independent of m and n.

Proof. We have

jvj21 ¼
Z Z

S1

jrvj2 þ
Z Z

S2

jrvj2 ¼ �
Z Z

S1

vDv�
Z Z

S2

vDvþ
Z

oS1

v�m v� þ
Z

oS2

vþm vþ

¼ �
Z Z

S1

vDv�
Z Z

S2

vDvþ
Z

C0

ðvþm vþ � v�m v�Þ þ
Z

CD

vmvþ
Z

CN

vmv; ð3:20Þ

where m is the unit outnormal to oS or oS2. Below, we give the bounds of all terms in the right hand side in the above
equation.

First we have from (2.18)Z
C0

ðvþm vþ � v�m v�Þ
���� ���� 6 Z

C0

ðvþ � v�Þvþm
���� ����þ Z

C0

ðvþm � v�m Þv�
���� ����

6 kvþ � v�k0;C0
kvþm k0;C0

þ kvþm � v�m k0;C0
kv�k0;C0

6 CfLlkvþ � v�k0;C0
þ kvþm � v�m k0;C0

gkvk1; ð3:21Þ

where we have used the bounds,

kv�k0;C0
6 kv�k1;S� ; kv�k0;S� 6 kvk1.
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Next, we obtain from (2.17) and (2.18)Z
CD

vmv

���� ���� 6 kvk0;CD
kvmk0;CD

6 CLlkvk0;CD
kvk1; ð3:22ÞZ

CN

vmv

���� ���� 6 kvmk0;CN
kvk0;CN

6 Ckvmk0;CN
kvk1. ð3:23Þ

Moreover, there exist the bounds,Z Z
S1

vDv

���� ���� 6 kDvk0;S1
kvk0;S1

6 kDvk0;S1
kvk1; ð3:24ÞZ Z

S2

vDv

���� ���� 6 kDvk0;S2
kvk1. ð3:25Þ

From (3.19)–(3.25),

jvj21 6 fkDvk0;S1
þ kDvk0;S2

þ CLlðkvþ � v�k0;C0
þ kvk0;CD

Þ þ kvþm � v�m k0;C0
þ kvmk0;CN

gkvk1. ð3:26Þ

Hence we have from Lemma 3.1

kvk2
1 6 Cfkvk2

1 þ kvk
2
0;CD
þ kvþ � v�k2

0;C0
g 6 Cfjvj21 þ ðkvk0;CD

þ kvþ � v�k0;C0
Þkvk1g. ð3:27Þ

Combining (3.26) and (3.27) gives

kvk2
1 6 CfkDvk0;S1

þ kDvk0;S2
þ Llðkvþ � v�k0;C0

þ kvk0;CD
Þ þ kvþm � v�m k0;C0

þ kvmk0;CN
gkvk1. ð3:28Þ

This leads to

kvk1 6 CfkDvk0;S1
þ kDvk0;S2

þ Llðkvþ � v�k0;C0
þ kvk0;CD

Þ þ kvþm � v�m k0;C0
þ kvmk0;CN

g; ð3:29Þ

and then

kvk2
1 6 CfkDvk2

0;S1
þ kDvk2

0;S2
þ L2lðkvþ � v�k2

0;C0
þ kvk2

0;CD
Þ þ kvþm � v�m k

2
0;C0
þ kvmk2

0;CN
g 6 Caðv; vÞ. ð3:30Þ

This is the desired result (3.19), and completes the proof of Lemma 3.2. h

Theorem 3.3. Let A4 and CD \ oS1 5 ; hold. Then there exists the uniformly Vh-elliptic inequality (3.6).

Proof. From Lemma 3.2, we have the bound,

aðv; vÞ ¼ 1
2
aðv; vÞ þ 1

2
aðv; vÞ

P C0kvk2
1 þ 1

2
fkDvk2

0;S1
þ kDvk2

0;S2
þ L2lðkvþ � v�k2

0;C0
þ kvk2

0;CD
Þ þ kvþm � v�m k

2
0;C0
þ kvmk2

0;CN
g

P C0kvk2
H ; ð3:31Þ

where C0 ¼ minf1
2
;C0g. This completes the proof of Theorem 3.3. h

Next, we derive the uniformly Vh-elliptic inequality (3.17). We give a stronger assumption than A4.

A5: Suppose that there exists a positive constant l (>0) such that for v 2 Vh

kv�kk;CD\S� 6 CLklkv�k0;CD\S� ; ð3:32Þ
kv�kk;C0

6 CLklkv�k0;C0
; ð3:33Þ

kv�m kk;CN\S� 6 CLðkþ1Þlkv�k1;S� ; ð3:34Þ
kv�m kk;C0\S� 6 CLðkþ1Þlkv�k1;S� ; ð3:35Þ

where k = 0,1, . . .

We will give an analysis for the integration approximation. Take bR C0
ðvþm � v�m Þ

2 as an example. Choose the integral rule
of order r,bZ

C0

g ¼
Z

C0

ĝ; ð3:36Þ
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where ĝ is the interpolant polynomial of order r on the partition C0 with the maximal meshspacing h. Denote

kvk2

0;C0
¼
bZ
C0

v2. ð3:37Þ

We have the following lemma.

Lemma 3.3. Let (3.35) be given. For rule (3.36) with order r, there exists the bound for v 2 Vh,

jkvþm � v�m k
2

0;C0
� kvþm � v�m k

2
0;C0
j 6 Chrþ1Lðrþ3Þlkvk2

1. ð3:38Þ

Proof. Let g ¼ ðvþm � v�m Þ
2. We have

jkvþm � v�m k
2

0;C0
� kvþm � v�m k

2
0;C0
j ¼

Z
C0

ðĝ � gÞ
���� ���� 6 Chrþ1jgjrþ1;C0

; ð3:39Þ

where

jgjrþ1;C0
¼ jðvþm � v�m Þ

2jrþ1;C0
6 2jðvþm Þ

2jrþ1;C0
þ 2jðv�m Þ

2jrþ1;C0
. ð3:40Þ

From (3.35),

jðvþm Þ
2jrþ1;C0

6 C
Xrþ1

i¼0

jvþm jrþ1�i;C0
jvþm ji;C0

6 C
Xrþ1

i¼0

ðLðr�iþ2Þlkvk1;S2
Þ � ðLðiþ1Þlkvk1;S2

Þ 6 CLðrþ3Þlkvk2
1;S2

. ð3:41Þ

Similarly,

jðv�m Þ
2jrþ1;C0

¼ CLðrþ3Þlkvk2
1;S1

. ð3:42Þ

Combining (3.39), (3.41) and (3.42) gives the desired result (3.38). This completes the proof of Lemma 3.3. h

Similarly, we can prove the following lemma.

Lemma 3.4. Let A5 be given. For the rule (3.36) with order r, there exist the bounds for v 2 Vh,

jkvþ � v�k2

0;C0
� kvþ � v�k2

0;C0
j 6 Chrþ1Lðrþ1Þlkvk2

1;

jkvk2

0;CD
� kvk2

0;CD
j 6 Chrþ1Lðrþ1Þlkvk2

1; ð3:43Þ

jkvmk
2

0;CN
� kvmk2

0;CN
j 6 Chrþ1Lðrþ3Þlkvk2

1.

We give an essential assumption.

A6: Suppose that

kv�kk;S� 6 CLðk�1Þlkvk1;S� ; k P 1; v 2 V h; ð3:44Þ

where l is a constant independent of m and n. Choose the integral rule of order r in S,cZZ
S

g ¼
Z Z

S
ĝ; ð3:45Þ

where ĝ is the interpolant of polynomials of order r. We can also prove the following lemma easily.

Lemma 3.5. Let A6 be given and the rule (3.45) be chosen with order r. There exists the bound,

cZZ
S�
�
Z Z

S�

 !
ðDvÞ2

�����
����� 6 Chðrþ1ÞLðrþ3Þlkvk2

1;S� . ð3:46Þ

Theorem 3.4. Let A5–A6 and CD \ oS1 5 ;, hold. We choose h to satisfy

Lðrþ3Þlhrþ1 ¼ oð1Þ. ð3:47Þ
Then there exists the uniformly Vh-elliptic inequality (3.17).
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Proof. We have from Theorem 3.3 and Lemmas 3.3–3.5,

âðv;vÞP aðv;vÞ �CLðrþ3Þlhrþ1kvk2
1 P C0kvk2

H �CLðrþ3Þlhrþ1kvk2
1

P C0 1� C
C0

Lðrþ3Þlhrþ1

� �
kvk2

1þkDvk2
0;S1
þkDvk2

0;S2
þ L2lkvþ � v�k2

0;C0
þkvþm � v�m k

2
0;C0
þ L2lkvk2

0;CD
þkvmk2

0;CN

� �
P

C0

2
kvk2

H ; ð3:48Þ

provided that

C
C0

Lðrþ3Þlhrþ1
6

1

2
; ð3:49Þ

which is valid due to (3.47). h
4. The Robin boundary conditions

In the above sections and [12–14], only the Dirichlet and Neumann boundary conditions are discussed. In this section,
we consider Poisson�s equation involving the Robin boundary condition

� Du ¼ � o2u
ox2
þ o2u

oy2

� �
¼ f ðx; yÞ in S; ð4:1Þ

umjCN
¼ g1 on CN ; ð4:2Þ

ðum þ buÞjCR
¼ g2 on CR; ð4:3Þ

where b P b0 > 0, oS = C = CN [ CR. Assume Meas(CR) > 0 for the unique solution. For simplicity, let C0 = ;. (When
C0 5 ;, a similar analysis can be made easily by following Sections 2 and 3.) We also give two more assumptions.

A7: The solutions in S can be expanded as

v ¼
X1
i¼1

aiUi in S; ð4:4Þ

where Ui (2C2(S) \ C1(oS)) are complete and independent bases in S, and ai are the exact expansion coefficients.

A8: The expansions in (4.4) converge exponentially to the true solutions u,

u ¼ um þ Rm; ð4:5Þ

where

um ¼
Xm

i¼1

aiUi; Rm ¼
X1

i¼mþ1

aiUi; ð4:6Þ

and ai are the true expansion coefficients. Then

max
S
jRmj ¼ Oðe��cmÞ; ð4:7Þ

where �c > 0 and m > 1.

Based on A7–A8 we may choose the uniform admissible functions,

v ¼
Xm

i¼1

~aiUi in S; ð4:8Þ

where ~ai are unknown coefficients to be sought. Denote by Vh the finite dimensional collection of the functions (4.8).
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Choose the integral rules:cZZ
S

g ¼
X

ij

aijgðQijÞ; Qij 2 S; ð4:9Þ

bZ
CN

g ¼
X

i

aN
i gðQiÞ; Qi 2 CN ; ð4:10Þ

bZ
CR

g ¼
X

i

aR
i gðQiÞ; Qi 2 CR. ð4:11Þ

We may seek the coefficients ~ai by satisfying Eqs. (4.1)–(4.3) directly at Qij and Qi,ffiffiffiffiffi
aij
p ðDvþ f ÞðQijÞ ¼ 0; Qij 2 S; ð4:12Þffiffiffiffiffiffi

aN
i

q
ðvm � g1ÞðQiÞ ¼ 0; Qi 2 CN ; ð4:13Þffiffiffiffiffi

aR
i

p
ðvm þ bv� g2ÞðQiÞ ¼ 0; Qi 2 CR. ð4:14Þ

The collocation method described in (4.12)–(4.14) can be written as

b̂ðûm; vÞ ¼ f̂ ðvÞ; 8v 2 V h; ð4:15Þ
where

b̂ðu; vÞ ¼
cZZ

S
DuDvþ

bZ
CN

umvm þ
bZ
CR

ðum þ buÞðvm þ bvÞ; ð4:16Þ

f̂ ðvÞ ¼ �
cZZ

S
f Dvþ

bZ
CN

g1vm þ
bZ
CR

g2ðvm þ bvÞ. ð4:17Þ

The corresponding least squares methods are then denoted by

bðum; vÞ ¼ f ðvÞ; 8v 2 V h; ð4:18Þ
where

bðu; vÞ ¼
Z Z

S
DuDvþ

Z
CN

umvm þ
Z

CR

ðum þ buÞðvm þ bvÞ; ð4:19Þ

f ðvÞ ¼ �
Z Z

S
f Dvþ

Z
CN

g1vm þ
Z

CR

g2ðvm þ bvÞ. ð4:20Þ

Denote the norm

kvkh ¼ fkvk
2
1;S þ kDvk2

0;S þ kvmk2
0;CN
þ kðvm þ bvÞk2

0;CR
g1=2. ð4:21Þ

Now we have a lemma.

Lemma 4.1. Let Meas(CR) > 0. There exists the uniformly Vh-elliptic inequality

bðv; vÞP C0kvk2
1;S ; 8v 2 V h. ð4:22Þ

Proof. We have

jvj21;S ¼
Z Z

S
jrvj2 ¼ �

Z Z
S

vDvþ
Z Z

oS
vmv 6 kDvk0;Skvk0;S þ

Z
CN

vmvþ
Z

CR

ðvm þ bvÞv�
Z

CR

bv2

6 kDvk0;Skvk0;S þ kvmk0;CN
kvk0;CN

þ kvm þ bvk0;CR
kvk0;CR

�
Z

CR

bv2

6 fkDvk0;S þ kvmk0;CN
þ kvm þ bvk0;CR

gkvk1;S �
Z

CR

bv2; ð4:23Þ

where we have used the bounds

kvk0;CN
6 Ckvk1;S ; kvk0;CR

6 Ckvk1;S . ð4:24Þ
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This leads to

jvj21;S þ
Z

CR

bv2
6 fkDvk0;S þ kvmk0;CN

þ kvm þ bvk0;CR
gkvk1;S . ð4:25Þ

On the other hand, for Meas(CR) > 0,

kvk2
1;S 6 Cðjvj21;S þ b0kvk

2
0;CR
Þ. ð4:26Þ

Combining (4.25) and (4.26) gives

kvk2
1;S 6 C jvj21;S þ

Z
CR

bv2

� �
6 CfkDvk0;S þ kvmk0;CN

þ kvm þ bvk0;CR
gkvk1;S . ð4:27Þ

This leads to

kvk1;S 6 CfkDvk0;S þ kvmk0;CN
þ kvm þ bvk0;CR

g; ð4:28Þ

and then

kvk2
1;S 6 CfkDvk2

0;S þ kvmk2
0;CN
þ kvm þ bvk2

0;CR
g ¼ Cbðv; vÞ. ð4:29Þ

This is (4.22) and completes the proof of Lemma 4.1. h

Note that the true solution u also satisfies (4.15) exactly,

b̂ðu; vÞ ¼ f̂ ðvÞ; 8v 2 V h.

A similar argument as in Theorem 3.4 can be given for (4.31): b̂ðv; vÞP C0kvk2
h; 8v 2 V h. We can obtain the following

theorem by following Sections 2 and 3.

Theorem 4.1. Suppose that there exist two inequalities,

b̂ðu; vÞ 6 Ckukh � kvkh; 8v 2 V h; ð4:30Þ
b̂ðv; vÞP C0kvk2

h; 8v 2 V h; ð4:31Þ

where C0 > 0 and C are two constants independent of m. Then, the solution of the collocation method (4.15) has the error

bound,

ku� ûmkh ¼ C inf
v2V h

ku� vkh 6 CfkRmk2;S þ kðRmÞmk0;CN
þ kðRmÞmk0;CR

g. ð4:32Þ

Note that when the admissible functions are chosen to satisfy Poisson�s equation, the boundary approximation method
(BAM) is then obtained from the CM. Hence the BAM is a special case of the CM in this paper. Moreover, in traditional
CM, some difficulties are encountered for the Neumann boundary conditions, see [20]. In this paper, the techniques given
can handle well both the Neumann and the Robin boundary conditions.
5. Inverses inequalities

In the above analysis, we need the inverse estimates in A4, A5 and A6. In fact the inverse estimates in A6 is essential.
Take the norms on C0 for example. We have from assumption A6

kvþkk;C0
6 Ckvþkkþ1;Sþ 6 CLklkvþk1;Sþ ; ð5:1Þ

kvþm kk;C0
6 Ckvþkkþ2;Sþ 6 CLðkþ1Þlkvþk1;Sþ . ð5:2Þ

Hence, A4 and A5 can be replaced by (5.1), (5.2), etc., and the proof for Lemma 3.4 and Theorem 3.4 is similar.
To prove the inverse inequalities, in this paper we confine the smooth solution of (2.1)–(2.3), and choose admissible

functions Ui(x) and Wi(x) in (2.4), and Ui in (4.4) as polynomials of order i, then Theorem 5.1 yields the essential inverse
inequality. As to other admissible functions, such as radial basis functions, the inverse inequality is proven in Hu et al. [12].
As long as the inverse inequalities hold, the uniformly Vh-elliptic inequality holds and then the optimal error estimates can
be achieved.

First we cite the results in Li [13, pp. 161–163], as two lemmas.

Lemma 5.1. Let qL = qL(x) be an L-order polynomial on [�1,1]. Then there exists a constant C independent of L such that

kq0Lk0;½�1;1� 6 CL2kqLk0;½�1;1�. ð5:3Þ
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Lemma 5.2. Suppose that C0 is made up of finite sections of straight lines, and that the admissible function wh in S2 is an

L-order polynomial. Then there exists a constant C independent of L such that

sup
wh2V h

jwþh jkþ1;C0

kwhk1

6 CL2ðkþ1Þ. ð5:4Þ

Lemma 5.3. Let h = {(x,y), �1 6 x 6 1, �1 6 y 6 1}, and choose

wL ¼
XL

i;j¼0

aijT iðxÞT jðyÞ; ðx; yÞ 2 �; ð5:5Þ

where aij are expansion coefficients, and Ti(x) are the Chebyshev polynomials of order i. Then there exist the inverse

inequalities,

o

ox
wL

���� ����
0;�

6 CL2kwLk0;�; ð5:6Þ

o

oy
wL

���� ����
0;�

6 CL2kwLk0;�; ð5:7Þ

where C is a constant independent of L.

Proof. We prove (5.6) only, since the proof for (5.7) is similar. We may express wL by the Legendre polynomials

wL ¼
XL

i;j¼0

bijP iðxÞP jðyÞ; ðx; yÞ 2 �; ð5:8Þ

where the coefficients bij from (5.5) are uniquely determined. We have from the orthogonality of the Legendre polynomials,

kwLk2
0;� ¼

Z Z
�

XL

i;j¼0

bijP iðxÞP jðyÞ
 !2

¼
XL

i;j¼0

4b2
ij

ð2iþ 1Þð2jþ 1Þ ¼
XL

j¼0

2

2jþ 1

XL

i¼0

2b2
ij

2iþ 1
¼
XL

j¼0

2

2jþ 1
kzjk2

0;½�1;1�; ð5:9Þ

where zj are polynomials of order L,

zj ¼ zjðxÞ ¼
XL

i¼0

bijP iðxÞ; x 2 ½�1; 1�. ð5:10Þ

On the other hand, we have

o

ox
wL

���� ����2

0;�

¼
Z Z

�

XL

i;j¼0

b2
ijP
0
iðxÞP jðyÞ

 !2

¼
XL

j¼0

2

2jþ 1

Z 1

�1

XL

i;�i¼0

bijb�ijP
0
iðxÞP 0�iðxÞdx ¼

XL

j¼0

2

2jþ 1
kz0jðxÞk

2
0;½�1;1�; ð5:11Þ

where the polynomials zj(x) are given in (5.10). Based on Lemma 5.1, we have from (5.9) and (5.11)

o

ox
wL

���� ����2

0;�

¼
XL

j¼0

2

2jþ 1
kz0jðxÞk

2
0;½�1;1� 6 CL4

XL

j¼0

2

2jþ 1
kzjðxÞk2

0;½�1;1� ¼ CL4
XL

i;j¼0

4b2
ij

ð2iþ 1Þð2jþ 1Þ ¼ CL4kwLk2
�

. ð5:12Þ

This is the desired result (5.6) and completes the proof of Lemma 5.3. h

A9: Let S be an polygon shown in Fig. 2. Then S can be decomposed of finite quasiuniform parallelogram Xi : S = [iXi,
where overlap of Xi is allowed, see Babuska and Guo [2]. By the diagonal line, Xi is split into two triangles, Mþi and M�i .
Suppose that all M�i are quasiuniform, e.g., c0 6 q�i , where q�i denotes the radius of the largest inscribed ball of M�i , and c0

is a positive constant. We have the following lemma.

Theorem 5.1. Let A9 be given. For the polynomial wL in (5.5). Then there exists a constant C independent of L such that

kwLkk;S 6 CL2kkwLk0;S . ð5:13Þ

Proof. Consider the parallelograms Xi in Fig. 3, where ai and bi are the lengths of two edges, and ai are the angles between
Xi and the y-axis. From the quasiuniform parallelograms, where exist the bounds,
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Fig. 2. A polygon decomposed of finite parallelograms Xi.
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Fig. 3. A parallelogram Xi.
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0 < ai; bi < C;
maxfai; big
minfai; big

6 C; 0 6 ai 6 aM <
p
2

. ð5:14Þ

The parallelograms Xi can be transformed to h by the linear transformation T : ðx; yÞ ! ðx̂; ŷÞ, where

x̂ ¼ 2

ai
ðx� ðtan aiÞyÞ � 1;

ŷ ¼ 2

bi
y � 1.

Denote ŵ ¼ T ðwÞ. We have

ow
ox
¼ 2

ai

oŵ
ox̂
;

ow
oy
¼ � 2

ai
ðtan aiÞ

oŵ
ox̂
þ 2

bi

oŵ
oŷ

.

Through the linear transformations T, we obtain

jwj21;Xi
¼
Z Z

Xi

ðw2
x þ w2

yÞdxdy ¼ aibi

4

Z Z
�

2

ai

oŵ
ox̂

� �2

þ � 2

ai
ðtan aiÞ

oŵ
ox̂
þ 2

bi

oŵ
oŷ

� �2
( )

dx̂dŷ

6
aibi

4

Z Z
�

4

a2
i
ð1þ 2tan2aiÞ

oŵ
ox̂

� �2

þ 2
4

b2
i

oŵ
oŷ

� �2
( )

dx̂dŷ 6 C
Z Z

�

oŵ
ox̂

� �2

þ oŵ
oŷ

� �2
( )

dx̂dŷ; ð5:15Þ
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where the constant

C ¼ max
i

bi

ai
ð1þ 2tan2aiÞ þ

2ai

bi

� �
.

The constant C is independent of i due to assumption (5.14). Under the linear transformation T, the polynomials of order L

remain as well. Based on Lemma 5.3, we have for w = wL.Z Z
�

oŵ
ox̂

� �2

þ oŵ
oŷ

� �2
( )

dx̂dŷ 6 CL4

Z Z
�

ðŵÞ2 dx̂dŷ. ð5:16Þ

Moreover, through the inverse transformation T̂ , we obtain for w = wLZ Z
�

ðŵÞ2 dx̂dŷ ¼ 4

aibi

Z Z
Xi

w2 dxdy 6 Ckwk2
0;Xi

. ð5:17Þ

Combining (5.15) and (5.17) gives

jwj1;Xi
6 CL2kwk0;Xi

;

and

kwk1;Xi
6 CL2kwk0;Xi

.

Consequently, for parallelograms Xi we have

kwLkk;Xi
6 CðL� kÞ2kwLkk�1;Xi

6 CL2kwLkk�1;Xi
6 CL2kkwLk0;Xi

.

From A9 we obtain

kwLk2
k;S 6

X
i

kwLk2
k;Xi
6 CL4k

X
i

kwLk2
0;Xi
6 CL4kkwLk2

0;S ;

by noting finite overlaps of Xi. This completes the proof of Theorem 5.1. h
6. Numerical experiments and discussions

In the section, we carry out three computational models by using the collocation methods.

6.1. Radial basis functions for different boundary conditions

When the radial basis functions are chosen as the admissible functions, the analysis (in particular the inverse inequal-
ities) is made in Hu et al. [12]. Here, we only provide numerical experiments, to show the effectiveness of the CM in this
paper. The radial basis functions are discussed in [16,17].

First, we consider Poisson�s equation on domain S with the mixed type of boundary conditions

� Du ¼ 2p2 sinðpxÞ cosðpyÞ; in S; ð6:1Þ
u ¼ 0 on x ¼ 1 ^ 0 6 y 6 1; ð6:2Þ
ux þ 2u ¼ �p cosðpyÞ on x ¼ �1 ^ 0 6 y 6 1;

uy ¼ 0 on y ¼ 1 ^ �1 6 x 6 1;

u ¼ sinðpxÞ on y ¼ 0 ^ �1 6 x 6 1.

where S is a rectangle, S = {(x,y)j �1 6 x 6 1, 0 6 y 6 1}, oS is its boundary. Choose the solution

uðx; yÞ ¼ sinðpxÞ cosðpyÞ. ð6:3Þ
The purpose of this experiment is to apply the collocation methods using the radial basis functions for different boundary
conditions.

The admissible functions are chosen as

v ¼
XNS

i¼1

aigiðx; yÞ; in S; ð6:4Þ



Table 1
The error norms and condition number by the inverse multiquadric radial basis collocation method with parameter c = 2.0

Nd, L 16, 4 16, 6 16, 8 16, 10

ku � vk0,1,S 1.72 7.27(�2) 5.28(�4) 2.78(�5)
ku � vk0,S 4.83(�1) 2.21(�2) 8.87(�5) 1.26(�5)
ku � vk1,S 2.02 9.09(�2) 9.48(�4) 8.16(�5)
Cond.(A) 2.00(3) 6.36(5) 3.81(8) 1.39(9)

Table 2
The error norms and condition number by the Gaussian radial basis collocation method with parameter c = 2.0

Nd, L 16, 4 16, 6 16, 8 16, 10

ku � vk0,1,S 1.53 8.25(�2) 7.46(�4) 1.37(�5)
ku � vk0,S 4.80(�1) 2.43(�2) 1.60(�4) 3.44(�6)
ku � vk1,S 1.92 1.15(�1) 1.30(�3) 3.65(�5)
Cond.(A) 1.08(4) 1.53(8) 1.05(9) 3.69(9)
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where ai are unknown coefficients to be determined, and gi(x,y) are the radial basis function. First, we choose the inverse
multiquadric radial basis functions (IMQRB)

giðx; yÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
i þ c2

p ; ð6:5Þ

where c is a parameter constant, ri ¼ fðx� xiÞ2 þ ðy � yiÞ
2g

1
2, and (xi,yi) are the source points which may not be necessarily

chosen as the collocation nodes. Suitable additional functions may be added into (6.4), such as some polynomials and the
singular functions if necessary. Next, we may choose the Gaussian radial basis functions (GRB)

giðx; yÞ ¼ exp � r2
i

c2

� �
. ð6:6Þ

We use the collocation equations (4.12)–(4.14) on the uniform interior collocation nodes, and choose the trapezoidal
rules for (4.9)–(4.11). The error norms are listed in Tables 1 and 2 for IMQRB and GRB, respectively, where Nd denotes
the number of partition along the y-direction in S. Let the source points of radial basis functions also be the collocation
nodes. And let NS = L2 in (6.4). From Table 1, we can see the following asymptotic relations for IMQRB

ku� vk0;1;S ¼ Oðð0:16ÞLÞ; ð6:7Þ
ku� vk0;S ¼ Oðð0:17ÞLÞ; ð6:8Þ
ku� vk1;S ¼ Oðð0:19ÞLÞ. ð6:9Þ

And from Table 2 we can see for GRB,

ku� vk0;1;S ¼ Oðð0:15ÞLÞ; ð6:10Þ
ku� vk0;S ¼ Oðð0:14ÞLÞ; ð6:11Þ
ku� vk1;S ¼ Oðð0:16ÞLÞ. ð6:12Þ

Eqs. (6.7)–(6.12) indicate that the numerical solutions have the exponential convergence rates. Note that the GRB collo-
cation method converges slightly faster than the IMQRB collocation method.

6.2. Piecewise admissible functions

Next, consider Poisson�s equation,

Du ¼ o
2u

ox2
þ o

2u
oy2
¼ 0; in S; ð6:13Þ

where S = {(x,y)j �1 < x < 1, 0 < y < 1}, with the following boundary conditions:



Table 3
The error norms and condition number by combination of CMs with the different expansion terms L and M used in S1 and S2, respectively, and the
number N of collocation nodes along y-axis in a uniform distribution

L, M, N 3, 5, 6 4, 6, 8 5, 7, 10 6, 8, 12 7, 9, 14

ku� v�k0;1;S1
3.41(�1) 1.39(�1) 9.23(�3) 1.86(�3) 2.29(�4)

ku� v�k0;S1
6.92(�2) 3.75(�2) 2.12(�3) 4.54(�4) 5.31(�5)

ku� v�k1;S1
5.23(�1) 1.85(�1) 1.69(�2) 3.82(�3) 3.33(�4)

ku� vþk0;1;S2
3.09(�1) 1.46(�1) 8.15(�3) 1.83(�3) 2.06(�4)

ku� vþk0;S2
6.26(�2) 3.59(�2) 1.91(�3) 3.59(�4) 4.72(�5)

ku� vþk1;S2
4.74(�1) 1.74(�1) 1.43(�2) 3.30(�3) 2.86(�4)

keþ � e�k0;C0
1.23(�3) 9.34(�4) 1.56(�5) 8.59(�6) 2.64(�7)

Cond.(A) 7.96(2) 1.52(3) 2.82(3) 4.82(3) 7.80(3)
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u ¼ cosðpyÞ on x ¼ �1 ^ 0 6 y 6 1;

u ¼ coshð2pÞ cosðpyÞ on x ¼ 1 ^ 0 6 y 6 1;

u ¼ � coshððxþ 1ÞpÞ on y ¼ 1 ^ �1 6 x 6 1;

uy ¼ 0 on y ¼ 0 ^ �1 6 x 6 1.

uþ ¼ u�; uþm ¼ u�m on C0.

ð6:14Þ

The exact solution is u(x,y) = cosh(p(x +1))cos(py). Divide S by C0 into S1 and S2, where S1 = {(x,y)j �1 < x < 0,
0 < y < 1} and S2 = {(x,y)j 0 < x < 1, 0 < y < 1}. The admissible functions are chosen as

v ¼
v� ¼

XL

i;j¼0

aijT ið2xþ 1ÞT jð2y � 1Þ; in S1;

vþ ¼
XM

i;j¼0

dijT ið2x� 1ÞT jð2y � 1Þ; in S2;

8>>>><>>>>: ð6:15Þ

where aij and dij are unknown coefficients to be determined, and Ti(x) are the Chebyshev polynomials Tk(x) =
cos(kcos-1(x)).

Then, we use the collocation equations, (2.28)–(2.32), and choose the trapezoidal rules for (2.24). Since v± do not satisfy
the boundary conditions, some additional collocation v±(Pi) = 0, Pi 2 oS, are also needed. The error norms are listed in
Table 3, the different expansion terms L and M are used in S1 and S2, respectively, and N is the number of collocation
nodes along y-axis in a uniform distribution. The following asymptotic relations are observed:

ku� v�k0;1;S1
¼ Oðð0:161ÞLÞ; ku� vþk0;1;S2

¼ Oðð0:161ÞMÞ; ð6:16Þ
ku� v�k0;S1

¼ Oðð0:166ÞLÞ; ku� vþk0;S2
¼ Oðð0:166ÞMÞ; ð6:17Þ

ku� v�k1;S1
¼ Oðð0:159ÞLÞ; ku� vþk1;S2

¼ Oðð0:157ÞMÞ; ð6:18Þ
keþ � e�k0;C0

¼ Oðð0:121ÞLM Þ; Cond.ðAÞ ¼ Oðð1:78ÞLM Þ; ð6:19Þ

where LM = max{L,M}. Above equations indicate that the numerical solutions satisfy (2.8), to have justified the analysis in
Section 3.

6.3. Motz’s problem

Finally, consider Motz�s problem,

Du ¼ o2u
ox2
þ o2u

oy2
¼ 0; in S; ð6:20Þ

where S = {(x,y)j �1 < x < 1, 0 < y < 1}, with the following mixed type of Dirichlet–Neumann conditions, see Fig. 4,
where un ¼ ou

on, and n is the outnormal to oS.

ux ¼ 0 on x ¼ �1 ^ 0 6 y 6 1;

u ¼ 500 on x ¼ 1 ^ 0 6 y 6 1;

uy ¼ 0 on y ¼ 1 ^ �1 6 x 6 1;

u ¼ 0 on y ¼ 0 ^ �1 6 x < 0;

uy ¼ 0 on y ¼ 0 ^ 0 < x 6 1.

ð6:21Þ
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Fig. 4. Motz�s problem.
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The origin (0, 0) is a singular point, since the solution behaviour is u ¼ Oðr1
2Þ as r! 0 due to the intersection of the Dirichlet

and Neumann conditions.
The admissible functions are chosen as

v ¼
XL

‘¼0

eD‘r‘þ
1
2 cos ‘þ 1

2

� �
h; ð6:22Þ

where eD‘ are unknown coefficients to be determined, and (r,h) are the polar coordinates with origin (0,0). Note that the
particular solutions r‘þ

1
2 cosð‘þ 1

2
Þh satisfy (6.20) and the boundary conditions exactly:

u ¼ 0 on y ¼ 0 ^ �1 6 x < 0; ð6:23Þ
uy ¼ 0 on y ¼ 0 ^ 0 < x 6 1. ð6:24Þ

The unknown coefficients eD‘ in (6.22) can be determined by satisfying the rest boundary conditions.
Denote by Vh the finite dimensional collocation of (6.22). Then the CM can be denoted by: To seek uL such that

IðuLÞ ¼ min
v2V h

IðvÞ; ð6:25Þ

where

IðvÞ ¼
Z

AB
ðv� 500Þ2 þ w2

1

Z
BC

v2
m þ w2

1

Z
CD

v2
m ð6:26Þ

with w1 ¼ 1
L. Denote

k�kB ¼ ku� uLkB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðu� uLÞ

p
¼

ffiffiffiffiffiffiffiffi
IðvÞ

p
. ð6:27Þ

Then, we use the collocation equations only on the rest of the boundary,ffiffiffiffi
ai
p ðv� 500ÞðQiÞ ¼ 0; Qi on x ¼ 1 ^ 0 6 y 6 1; ð6:28Þ
w1

ffiffiffiffi
ai
p

vmðQiÞ ¼ 0; Qi on x ¼ �1 ^ 0 6 y 6 1; ð6:29Þ
w1

ffiffiffiffi
ai
p

vmðQiÞ ¼ 0; Qi on y ¼ 1 ^ �1 6 x 6 1; ð6:30Þ

where Qi and ai are the nodes and weights of some integral rules, respectively. Note that Eqs. (6.28)–(6.30) are just the
boundary approximation method (BAM) in [14], which is a special case of the CM in this paper. Also note that the col-
location nodes Qi in (6.28)–(6.30) are far from the singular origin. Eqs. (6.28)–(6.30) can be denoted in the form of matrix
and vectors,

F~x ¼~b; ð6:31Þ
where F (2 Rm·n, m P n) is the stiffness matrix,~x ð2 RnÞ is the unknown vector consisting of eD‘, and~b ð2 RmÞ is the known
vector. Eq. (6.31) is the over-determined system, and can be solved by the least squares method using the QR method.

Denote by N the collocation number of oS along axis Y, the total number of all collocation nodes are 4N. First, choose
the centroid rule, errors of the solutions from the BAM and condition number are listed in Tables 4 and 5. Moreover,
choose the Gaussian rule with six nodes and the Gaussian rules with 1, 2, 4, 6, 8 and 10 nodes, the results are listed in
Tables 6 and 7, and the best leading coefficients in Table 8 by the Gaussian rule with six nodes as L = 34 and N = 30.

For the centroid rule, the number of collocation nodes should be large enough to guarantee the uniformly Vh-elliptic
inequality. It can be seen from Table 5 that N should be chosen as N P L

2
for L = 34. From Table 7, we also conclude that



Table 7
The error norms and condition number by BAM with different Gaussian rules as L = 34

Rule N kekB jej1;AB Cond.(A) DD0

D0

���� ���� DD1

D1

���� ���� DD2

D2

���� ���� DD3

D3

���� ����
Gauss(1) 24 0.839(�8) 0.459(�8) 0.606(6) 0.169(�11) 0.121(�10) 0.296(�10) 0.152(�10)
Gauss(2) 24 0.854(�8) 0.369(�8) 0.672(6) 0.708(�13) 0.512(�12) 0.133(�11) 0.106(�11)
Gauss(4) 24 0.610(�8) 0.540(�8) 0.679(6) 0.425(�15) 0.535(�14) 0.641(�13) 0.755(�13)
Gauss(6) 30 0.493(�8) 0.520(�8) 0.679(6) 0a 0.162(�15) 0.124(�14) 0.317(�13)
Gauss(8) 24 0.428(�8) 0.519(�8) 0.679(6) 0.142(�15) 0.648(�15) 0.618(�15) 0.315(�13)
Gauss(10) 20 0.639(�8) 0.521(�8) 0.679(6) 0.142(�15) 0a 0.412(�15) 0.308(�13)

a The error less than computer rounding errors in double precision.

Table 6
The error norms and condition number by the BAM for L = 34 using the Gaussian rule with six nodes

N kekB jej1;AB Cond.(A) DD0

D0

���� ���� DD1

D1

���� ���� DD2

D2

���� ���� DD3

D3

���� ����
12 0.359(�8) 0.721(�8) 0.675(6) 0.531(�13) 0.646(�12) 0.405(�11) 0.868(�11)
18 0.494(�8) 0.629(�8) 0.679(6) 0.468(�14) 0.211(�14) 0.620(�13) 0.352(�14)
24 0.491(�8) 0.530(�8) 0.679(6) 0.567(�15) 0.324(�15) 0.103(�14) 0.337(�13)
30 0.493(�8) 0.520(�8) 0.679(6) 0a 0.162(�15) 0.124(�14) 0.317(�13)
36 0.494(�8) 0.520(�8) 0.679(6) 0.850(�15) 0.324(�15) 0.103(�14) 0.308(�13)

a The error less than computer rounding errors in double precision.

Table 5
The error norms and condition number by the BAM with the centroid rule as L = 34

N kekB jej1;AB Cond.(A) DD0

D0

���� ���� DD1

D1

���� ���� DD2

D2

���� ���� DD3

D3

���� ����
9 0.135(�8) 0.496(�6) 0.267(8) 0.377(�9) 0.266(�8) 0.641(�8) 0.342(�8)
12 0.587(�8) 0.713(�7) 0.992(6) 0.337(�10) 0.239(�9) 0.578(�9) 0.305(�9)
16 0.772(�8) 0.189(�7) 0.679(6) 0.729(�11) 0.520(�10) 0.127(�9) 0.655(�10)
24 0.839(�8) 0.459(�8) 0.669(6) 0.169(�11) 0.121(�10) 0.296(�10) 0.152(�10)
32 0.849(�8) 0.462(�8) 0.669(6) 0.769(�11) 0.550(�11) 0.134(�10) 0.695(�11)

Table 4
The error norms and condition number by the BAM with centroid rule

L N kekB jej1;AB Cond.(A) DD0

D0

���� ���� DD1

D1

���� ���� DD2

D2

���� ���� DD3

D3

���� ����
10 8 0.250(�1) 0.149(�1) 94.3 0.189(�5) 0.491(�5) 0.601(�5) 0.928(�3)
18 12 0.133(�3) 0.811(�4) 0.193(4) 0.158(�7) 0.113(�6) 0.290(�6) 0.502(�6)
26 16 0.973(�6) 0.734(�6) 0.366(5) 0.216(�9) 0.155(�8) 0.380(�8) 0.202(�8)
34 24 0.839(�8) 0.459(�8) 0.666(6) 0.169(�11) 0.121(�10) 0.296(�10) 0.152(�10)
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the Gaussian rules of high order do not reduce the errors k�kB, but do improve accuracy of leading coefficients. For L = 34
and N = 30, the exact leading coefficients eD0 is obtained by the Gaussian rule of six nodes, see Table 8,eD0 ¼ 401:162453745234416. ð6:32Þ
Compared (6.32) with the more accurate value [13] using higher precision by Mathematica, the relative error is less than the
rounding error of double precision! This implies that eD0 in (6.32) has 17 decimal significant digits.

6.4. Effective condition number and discussions

In real computation, the over-determined equations (6.31) and (2.33) are solved, which involve only the second and first
order derivatives of the solutions respectively. Usually, the traditional condition number (2.35) for the spectral methods
and the collocation methods is large, see Tables 1–7. To improve the number stability, we may invoke the preconditioning
approaches, such as the preconditioned Krylov space CG methods. However, the real instability of the collocation methods
for the given problems may not be so severe as the large Cond. displays. The new effective condition number is proposed to
provide a better upper bound of condition number, which may be fairly small, to display a good stability.
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The effective condition number was first studied in Chan and Foulser [7] and Christiansen and Hansen [8]. In fact, the
definition of Cond. by (2.35) occurs only at the worst case, which may not happen for the real problems discussed. Let us
take (6.31) as an example. Suppose that the matrix F 2 Rm·n (m P n) is decomposed as [10],

F ¼ URVT; ð6:33Þ
where U 2 Rm·m and V 2 Rn·n are two orthogonal matrices, and R 2 Rm·n is the diagonal matrix with the declined singular
values

r1 P r2 P 	 	 	P rn > 0. ð6:34Þ
Denote bi ¼ ~ui

T~b, where the orthogonal vectors ~ui are given in U ¼ ð~u1; . . . ; ~umÞ. Then the new effective condition number
can be defined from Li et al. [15],

Cond eff ¼ 1

rn

k~bkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

r1

� �2

þ 	 	 	 þ bn

rn

� �2
s ; ð6:35Þ

where k~bk is the Euclidean norm, and k~bk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1b
2
i

q
. Obviously, when there occurs the special case as b2 = 	 	 	 = bm = 0,

Eq. (6.35) leads to the traditional condition number (2.35). Note that the formula in (6.35) is somehow different from that
given in [8], but it is easily computed. Moreover, when bn 5 0 we have from (6.35)

Cond eff 6
k~bk
jbnj

. ð6:36Þ
Table 8
The leading coefficients by the BAM with Gaussian rule of six nodes as L = 34 and N = 30

‘ eD‘

0 401.162453745234416
1 87.6559201950879299
2 17.2379150794467897
3 �8.0712152596987790
4 1.44027271702238968
5 0.331054885920006037
6 0.275437344507860671
7 �0.869329945041107943(�1)
8 0.336048784027428854(�1)
9 0.153843744594011413(�1)
10 0.730230164737157971(�2)
11 �0.318411361654662899(�2)
12 0.122064586154974736(�2)
13 0.530965295822850803(�3)
14 0.271512022889081647(�3)
15 �0.120045043773287966(�3)
16 0.505389241414919585(�4)
17 0.231662561135488172(�4)
18 0.115348467265589439(�4)
19 �0.529323807785491411(�5)
20 0.228975882995988624(�5)
21 0.106239406374917051(�5)
22 0.530725263258556923(�6)
23 �0.245074785537844696(�6)
24 0.108644983229739802(�6)
25 0.510347415146524412(�7)
26 0.254050384217598898(�7)
27 �0.110464929421918792(�7)
28 0.493426255784041972(�8)
29 0.232829745036186828(�8)
30 0.115208023942516515(�8)
31 �0.345561696019388690(�9)
32 0.153086899837533823(�9)
33 0.722770554189099639(�10)
34 0.352933005315648864(�10)



Table 9
The singular values ri and the coefficients bi for the solution in Table 8 resulting from the BAM, where the Cond. = 0.679(6) and Cond_eff = 30.2

i ri bi i ri bi

0 0.158(5) 0.420(2) 18 0.156(1) �0.375(2)
1 0.121(5) 0.610(2) 19 0.126(1) �0.602(1)
2 0.846(4) 0.133(2) 20 0.113(1) �0.101(3)
3 0.595(4) 0.274(1) 21 0.974 0.130(2)
4 0.558(3) 0.584(2) 22 0.827 �0.117(3)
5 0.386(3) 0.246(2) 23 0.720 0.144(3)
6 0.269(3) 0.278(1) 24 0.677 �0.747(2)
7 0.195(3) �0.177(2) 25 0.560 0.295(2)
8 0.513(2) �0.591(2) 26 0.463 0.243(2)
9 0.345(2) �0.544(1) 27 0.368 �0.180(2)
10 0.249(2) 0.146(2) 28 0.305 �0.136(2)
11 0.189(2) �0.320(2) 29 0.249 0.134(2)
12 0.931(1) �0.554(2) 30 0.188 �0.120(2)
13 0.619(1) 0.231(2) 31 0.141 �0.898(1)
14 0.470(1) �0.421(2) 32 0.102 �0.908(1)
15 0.381(1) �0.416(2) 33 0.556(�1) 0.815(1)
16 0.267(1) �0.306(2) 34 0.233(�1) �0.440(1)
17 0.202(1) 0.777(2)
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Hence we define the simplified effective condition number (see [15])

Cond EE ¼ k
~bk
jbnj

; bn 6¼ 0. ð6:37Þ

More exploration on the effective condition number and its applications are given in Li et al. [15].
Let us evaluate the Cond_eff for the solution given in Table 8. The singular values ri of F and the coefficients bi are listed

in Table 9. Based on Table 9, we obtain the effective condition numbers, the traditional condition number, and their ratios,

Cond eff ¼ 30:2; Cond EE ¼ 65:7; Cond. ¼ 0:679ð6Þ;
Cond.

Cond eff
¼ 0:225ð5Þ; Cond.

Cond EE
¼ 0:103ð5Þ.

ð6:38Þ

The fact that the effective condition number is just 30.2 displays a good stability, and explains very well the high accuracy
of the numerical solutions obtained and the leading coefficient eD0 with 17 significant digits. In general, the leading coef-
ficient D0 in Table 7 may have 16 significant digits, and occasionally, D0 has 17 significant digits due to the cancellation of
rounding errors. The above arguments on effective number condition are also valid for the collocation methods used in
Sections 6.1 and 6.2.

To close this section, let us first comment the assumptions A2 and A3.

Remark 6.1. Usually, the solution of (2.1)–(2.3) is highly smooth inside of S, but less smooth on oS. In particular, for
concave corners of polygons or the intersection points of the Dirichlet and Neumann boundary conditions, the solution
near the boundary nodes is singular with infinite derivatives. In this case, some special treatments should be solicited. For
Motz�s problem with the singular origin in Section 6.3, the collocation equations are established at the nodes Qi far from
the singular origin, see (6.28)–(6.30). Hence assumptions A2 in (2.5) can be relaxed to

v� 2 H 1þdðSÞ \ C2ðDÞ; 0 < d < 1; ð6:39Þ
where the subdomain D � S is far from the singularity. Moreover, when the singular functions or singular particular solu-
tion v± are chosen, assumption A3 may also hold. Hence, the collocation methods may also be applied to singularity prob-
lems if suitable treatments are used.
7. Final remarks

1. In this paper, the collocation method is treated as the least squares method involving integration approximation. We
employ the FEM theory to develop the theoretical analysis of CMs, in which the key analysis for the CMs is to prove
the new Vh-elliptic inequality.

2. Three typical boundary conditions, Dirichlet, Neumann and Robin, can be handled well by the techniques of CMs in
this paper. The number of collocation nodes may be chosen to be larger, even much larger than the number of radial
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basis functions (i.e., source points). The collocation nodes are, indeed, the integration nodes of the rules used. Based on
integration approximation, not only can the collocation nodes be easily located, but also the error analysis has been
developed, see Sections 2 and 3.

3. Three computational examples in Section 6 show exponentially convergent rates: ku � vkk,S = O(kL), k = 0, 1, 0 < k < 1,
which verify perfectly the analysis made. Section 6.1 displays that the CM can be applied to many kinds of admissible
functions, such as radial basis functions. The detailed analysis is given in Hu et al. [12].

4. Piecewise admissible functions can be used in the CM, both the analysis and the computation are provided in this paper,
to enable the CM to be more flexible to complicated geometric domains for general PDEs, because different admissible
functions can be chosen in different subdomains. Such an idea is also similar to the p-version of Babuška and Guo [2],
and the analysis of the CM may also be extended to singularity problems by following [2].

5. Note that the real instability of the collocation methods for the given problems may not be so severe as the large Cond.
displays. In Section 6, the new effective condition number is proposed to provide a better upper bound of condition
number. The fairly small defective condition number for the real problems indicates a good stability of the collocation
methods, and explains well the good computed results in our numerical experiments. Of course, some preconditioning
techniques can also be used to improve the numerical stability.

6. In Remark 6.1, Assumptions A2 and A3 are discussed, which may be relaxed for singularity problems if some special
treatments are used.

7. The BAM in [13,14] is a special case of the CM in this paper. The numerical results of Section 6.3 are better than those in
[13,14]. The Gaussian rules with high orders are used to raise the accuracy of the leading coefficient D0 obtained by the
BAM. eD0 in (6.32) is exact, in the sense of the errors less than the rounding errors of double precision, compared with
the more accurate value of eD0 in [13]. This new discovery will change the evaluation of the BAM given in [13], where,
based on the numerical results in [14] using the centroid rule, ‘‘BAM may produce the best global solutions’’, and ‘‘the
conformal transformation method (CTM) is the most accurate method for leading coefficients’’, see [13, p. 133]. Now
we may conclude that for Motz�s problem, the BAM (by the Gaussian rule with six nodes) is the most accurate method
not only for the global solutions but also for the leading coefficient, eD0.
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