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SUMMARY

This work introduces the weighted radial basis collocation method for boundary value problems. We first
show that the employment of least-squares functional with quadrature rules constitutes an approximation of
the direct collocation method. Standard radial basis collocation method, however, yields a larger solution
error near boundaries. The residuals in the least-squares functional associated with domain and boundary
can be better balanced if the boundary collocation equations are properly weighted. The error analysis
shows unbalanced errors between domain, Neumann boundary, and Dirichlet boundary least-squares terms.
A weighted least-squares functional and the corresponding weighted radial basis collocation method are
then proposed for correction of unbalanced errors. It is shown that the proposed method with properly
selected weights significantly enhances the numerical solution accuracy and convergence rates. Copyright
q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the past two decades, there have been many applications for the radial basis functions, such as
surface fitting, turbulence analysis, neural network, meteorology, partial differential equations and
so forth. The originator of the radial basis function (RBF) is due to Hardy [1] for interpolation
problems. Hardy [2] showed that multiquadrics RBF is related to a consistent solution of the
biharmonic potential problem and thus has a physical foundation. Buhmann and Micchelli [3]
and Chiu et al. [4] have shown that RBF are related to prewavelets (wavelets that do not have
orthogonality properties). Madych and Nelson [5] proved that multiquadrics RBF and its partial
derivatives have exponential convergence. The concept of solving partial differential equations
using RBF was first introduced by Kansa [6, 7]. Franke and Schaback [8] provided some theoretical
foundation of RBFmethod for solving PDE.Wendland [9] derived error estimates for the solution of
smooth problems. Hu et al. [10] presented a radial basis collocation method including the combined
and alternative schemes for singularity problems. Cecial et al. [11] proposed a numerical scheme
for Hamilton–Jacobi equations. Li [12] developed a mixed method for fourth-order elliptic and
parabolic problems by using radial basis functions.

Most RBFs with collocation lead to very ill-conditioned discrete systems. Wong et al. [13]
suggested the use of multi-zone decomposition of domain. Kansa and Hon [14] observed that
the condition numbers of the discrete system of direct collocation method can be greatly reduced
by the domain decomposition. The shape parameter of RBF determines the locality of the RBF
function and thus greatly influences the linear dependency and thus the condition number of the
discrete system as reported by Schback and Hon [15]. Localized RBF have been introduced by
Wendland [16] and truncated multiquadrics RBF have been proposed by Kansa and Hon [14] to
reduce the bandwidth of the discrete system. Global and local RBFs have been investigated by
Fasshauer [17] and smoothing methods and multilevel algorithm have been suggested.

Motivated by the aforementioned works, we are interested in the performance of radial
basis collocation method in linear elasticity problems subjected to mixed Neumann and Dirichlet
boundary conditions. In this work we first discuss how direct collocation method is related to the
discrete least-squares method and the continuous least-squares method integrated by quadrature
rule. The numerical results show that the standard collocation yields large numerical error on
the boundaries. This is caused by the unbalanced least-squares residuals associated with domain
and boundaries. To circumvent this deficiency, we propose to increase the weights of boundary
collocation equations for enhanced numerical solution. The numerical investigation demonstrates
that when proper weights on the boundary collocation equations are introduced, a much improved
solution accuracy can be achieved.

This paper is organized as follows. In Section 2 we give a brief introduction of radial basis
functions and their numerical properties. In Section 3, the direct collocation method of elasticity
problem is introduced first. We then present the discrete least-squares method as an approxima-
tion of the overdetermined direct collocation equations. We also show that the discretization of
continuous least-squares functional integrated with quadrature rule can yield the same discrete
equation obtained from the discrete least-squares method with weighted inner product. To improve
solution accuracy near the boundaries of the elasticity problems, the use of higher weights on the
boundary collocation equations is also discussed in this section. Numerical examples are presented
in Section 4, in which the effects of weights for domain and boundary collocation equations are
studied, and the influence of RBF shape parameters on numerical solution is also investigated.
Concluding remarks are given in Section 5.
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2. INTRODUCTION TO RADIAL BASIS FUNCTIONS (RBF)

Conventional finite element methods rely on the mesh topology to construct approximation func-
tions. The numerical solution of these methods is extremely sensitive to the quality of mesh,
and the construction of good quality mesh in complicated domain is a time consuming task.
Hardy [1] first investigated multiquadric RBF for interpolation problem, and Franke [18] showed
good performance in scattered data interpolation using multiquadric and thin-plate spline radial
basis functions. Since then, the advances of RBF to various problems have been progressed con-
stantly. A few commonly used radial basis functions are listed below:

Multiquadrics (MQ): gI (x) = (r2I + c2)n−3/2 (1)

Gaussian: gI (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

exp

(
−r2I
c2

)

(r2I + c2)n−3/2 exp

(
− r2I
a2

) (2)

Thin plate splines: gI (x) =
⎧⎨
⎩
r2nI ln rI

r2n−1
I

(3)

Logarithmic: gI (x) = rnI ln rI (4)

where x= (x1 x2), rI = ((x1 − x1I )2 + (x2 − x2I )2)1/2 in R2, and xI = (x1I x2I ) is called the
source point of RBF. The constant c involved in Equations (1) and (2) is called the shape parameter
of RBF. In MQ RBF function in Equation (1), the function is called reciprocal MQ RBF if n = 1,
linear MQ RBF if n = 2, and cubic MQ RBF if n = 3, and so forth.

Madych [19] established several types of error bounds for multiquadric and related interpolators,
Wu and Schaback [20] investigated local errors of scattered data interpolation by RBF in suitable
variational formulation, and Yoon [21] regarded the convergence of RBF in an arbitrary Sobolev
space. All of these studies show that there exists an exponential convergence rate in RBF. Moreover,
one may consider RBF with variant shape parameter c in forms (1)–(2). Buhmann and Micchelli [3]
showed that the convergence rate is accelerated for monotonically ordered c.

Assume �⊂ R2 is a closed region with boundary ��. Let S be a set of Ns source points

S=[x1, x2, . . . , xNs ] ⊆� ∪ �� (5)

For a smooth function u(x), the approximation, denoted by v(x), is expressed by

v(x)=
Ns∑
I=1

gI (x)aI (6)

where aI is the expansion coefficient. There exists an exponential convergence rate of RBF given
by Madych [19]

|u(x) − v(x)| ≈ O(�c/h) (7)
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where 0<�<1 is a real number, c is the shape parameter, and h is the radial distance
defined as

h := h(�, S) = sup
x∈�

min
xI∈S

((x1 − x1I )
2 + (x2 − x2I )

2)1/2 (8)

Note that � = exp(−�) with �>0. The accuracy and rate of convergence of MQ-RBF approximation
is determined by the number of basis functions (the number of source points) Ns and the shape
parameter c.

The application of RBF to partial differential equation is natural as the RBF are infinitely
differentiable (gI (x)∈C∞)

dnv(x)
dxn

=
Ns∑
I=1

dngI (x)
dxn

aI (9)

3. DISCRETIZATION OF BOUNDARY VALUE PROBLEMS
BY RBF COLLOCATION METHOD

3.1. Strong form

Consider the following general form of a boundary value problem:

Lu= f in �

Bhu= h on ��h

Bgu= g on ��g

(10)

where � is the problem domain, ��h is the Neumann boundary, ��g is the Dirichlet boundary,
and ��h ∪ ��g = ��, L is the differential operator in �, Bh is the differential operator on ��h ,
and Bg is the operator on ��g .

For Poisson problem, L= �,Bh = �/�n, Bg = 1 and u, f,h, and g are scalars. In linear elasticity,
the governing equations are given as

(Ci jklu(k,l)), j + bi = 0 in �

Ci jklu(k,l)n j = hi on ��h

ui = gi on ��g

(11)

where Ci jkl = ��i j�kl + �(�ik� jl + �il� jk) is the elasticity tensor, � and � are Lame’ constants,
u(i, j) = (ui, j + u j,i )/2, ui, j = �ui/�x j , bi is the body force, n j is the surface normal, hi is the
surface traction, and gi is the prescribed displacement. The operators L, Bh , Bg and vectors
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u, f, g,h corresponding to (11) in 2-dimensional elasticity are

L=

⎡
⎢⎢⎢⎢⎢⎣

(� + 2�)
�2

�x21
+ �

�2

�x22
(� + �)

�2

�x1�x2

(� + �)
�2

�x1�x2
(� + 2�)

�2

�x22
+ �

�2

�x21

⎤
⎥⎥⎥⎥⎥⎦

Bh =

⎡
⎢⎢⎢⎢⎣

(� + 2�)n1
�

�x1
+ �n2

�
�x2

�n1
�

�x2
+ �n2

�
�x1

�n2
�

�x1
+ �n1

�
�x2

(� + 2�)n2
�

�x2
+ �n1

�
�x1

⎤
⎥⎥⎥⎥⎦ , Bg = I

(12)

where I denotes the identity matrix and

uT = [u1, u2]
fT = [−b1, −b2]
hT = [h1, h2]
gT = [g1, g2]

(13)

3.2. Direct collocation of strong form

For a multi-dimensional function ui , the approximation by RBF defined at Ns source points,
denoted by vi is

ui (x)≈ vi (x)=
Ns∑
I=1

gI (x)ai I (14)

or

u≈ v=
(

v1

v2

)
=UTa (15)

and

UT = (U1 U2 . . . UNs ), UI =
(
gI 0

0 gI

)

aT = (aT1 aT2 . . . aTNs
), aTI =(a1I a2I ) (16)

In collocation method, the residuals are enforced to be zeros at the collocation points. Let P be a
set of Np collocation points in �, Q be a set of Nq collocation points on ��h , and R be a set of
Nr collocation points on ��g

P=[p1,p2, . . . ,pNp ] ⊆�, Q=[q1,q2, . . . ,qNq ] ⊆ ��h, R=[r1, r2, . . . , rNr ] ⊆ ��g (17)
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WEIGHTED RADIAL BASIS COLLOCATION METHOD 2741

The source points set S and collocation points set P∪Q∪R may or may not have common points.
By enforcing strong form of (10) to be satisfied at the collocation points, we have the following
discrete equation:

Aa=b (18)

where

A=

⎛
⎜⎜⎜⎝
A1

A2

A3

⎞
⎟⎟⎟⎠ , A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

L(UT(p1))

L(UT(p2))

...

L(UT(pNp ))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Bh(UT(q1))

Bh(UT(q2))

...

Bh(UT(qNq ))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

A3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Bg(UT(r1))

Bg(UT(r2))

...

Bg(UT(rNr ))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(19)

and

b=

⎛
⎜⎜⎜⎝
b1

b2

b3

⎞
⎟⎟⎟⎠ , b1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

f(p1)

f(p2)

...

f(pNp )

⎞
⎟⎟⎟⎟⎟⎟⎠

, b2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

h(q1)

h(q2)

...

h(qNq )

⎞
⎟⎟⎟⎟⎟⎟⎠

, b3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

g(r1)

g(r2)

...

g(rNr )

⎞
⎟⎟⎟⎟⎟⎟⎠

(20)

For 2D linear elasticity, the entries of submatrices A1, A2, A3 are given by

A1
I J =LUI (pJ )

=
(

(� + 2�)gI,11(pJ ) + �gI,22(pJ ) (� + �)gI,12(pJ )

(� + �)gI,12(pJ ) (� + 2�)gI,22(pJ ) + �gI,11(pJ )

)
(21)

A2
I J =BhUI (qJ )

=
(

(� + 2�)n1gI,1(qJ ) + �n2gI,2(qJ ) �n1gI,2(qJ ) + �n2gI,1(qJ )

�n2gI,1(qJ ) + �n1gI,2(qJ ) (� + 2�)n2gI,2(qJ ) + �n1gI,1(qJ )

)
(22)

A3
I J =BggI (rJ ) =

(
gI (rJ ) 0

0 gI (rJ )

)
(23)
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The components of subvectors b1, b2, b3 are given by

b1J =
[−b1(pJ )

−b2(pJ )

]
, b2J =

[
h1(qJ )

h2(qJ )

]
, b3J =

[
q1(rJ )

q2(rJ )

]
(24)

In collocation method, typically the number of collocation points Np + Nq + Nr is larger than
the number of source points Ns , and hence the method yields an overdetermined system in
Equation (18). This overdetermined system can be solved by QR decomposition, singular value
decomposition, or least-squares method. For the least-squares approach, the overdetermined system
is solved by minimizing the square of the Euclidean norm of the residual e=Aa − b

�= 1
2‖e‖2 = 1

2e
Te= 1

2 (Aa − b)T(Aa − b) (25)

Minimizing � requires

��

�a
=AT(Aa − b) = 0 (26)

or

ATAa=ATb (27)

Here, solution of Equation (27) is the least-squares approximation of the original solution of
collocation method in Equation (18). One can further consider a weighted inner product as

(c,d)W = cTWd (28)

where W is a weight matrix:

W =

⎛
⎜⎜⎜⎜⎜⎜⎝

w1

w2

. . .

w(Np+Nq+Nr )

⎞
⎟⎟⎟⎟⎟⎟⎠

(29)

The weighted norm is defined as ‖ ·‖W = (·, ·)1/2W . Minimizing the weighted norm � = ‖e‖2W leads
to the following equation:

ATWAa=ATWb (30)

Remark 3.1
Let a and a be the solution of Equation (18) and Equation (30), respectively. There exists a relative
error

‖a − a‖
‖a‖ �� · cond(ATWA) · ‖ATW‖

‖ATWb‖ (31)

where �= ‖Aa − b‖, and cond(·) is the condition number of a given matrix in which the matrix
norm is induced by the vector norm.
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3.3. Least-squares functional

The discrete equation of original problem (10) can be obtained equivalently by discretization of
the following functional:

E(v) = 1

2

∫
�

(Lv − f)T(Lv − f) d� + 1

2

∫
��h

(Bhv − h)T(Bhv − h) d�

+1

2

∫
��g

(Bgv − g)T(Bgv − g) d� (32)

The variational equation is obtained by the stationary condition of this functional to yield∫
�

(L�v)T(Lv − f) d� +
∫

��h
(Bh�v)T(Bhv − h) d� +

∫
��g

(Bg�v)T(Bgv − g) d�= 0 (33)

By introducing approximation of u using RBF in Equation (15), and performing integration of
Equation (33) by quadrature rules in � and on ��h and ��g using collocation points, we have

Np∑
I=1

�aTL(UT(pI ))
T[L(UT(pI ))a − f(pI )]w1

I

+
Nq∑
I=1

�aTBh(UT(qI ))
T[Bh(UT(qI ))a − h(qI )]w2

I

+
Nr∑
I=1

�aTBg(UT(rI ))T[Bg(UT(rI ))a − g(rI )]w3
I

= �aT[A1TW1(A1Ta − b1) + A2TW2(A2Ta − b2) + A3TW3(A3Ta − b3)]
= �aT[ATW(Aa − b)] = 0 (34)

where A and b are given in Equations (19) and (20), w1
I , w2

I , and w3
I are the integration weights

in �, and on ��h and ��g , respectively, and

W=

⎛
⎜⎜⎜⎝
W1

W2

W3

⎞
⎟⎟⎟⎠ , W1 =

⎛
⎜⎜⎜⎜⎝

w1
1

. . .

w1
Np

⎞
⎟⎟⎟⎟⎠ , W2 =

⎛
⎜⎜⎜⎜⎝

w2
1

. . .

w2
Nq

⎞
⎟⎟⎟⎟⎠

W3 =

⎛
⎜⎜⎜⎜⎝

w3
1

. . .

w3
Nr

⎞
⎟⎟⎟⎟⎠

(35)
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For arbitrary admissible �a, the variational equation (34) yields Equation (30). The above
results show that the least-squares residual method is an approximation of the direct strong
form collocation method.

3.4. Modified least-squares functional

Based on [22], we provide an error bound for the radial basis collocation method for elasticity.
Denote VNs = span{g1, g2, . . . , gNs } a finite collection of RBF. This is a finite dimensional space
belongs to a Sobolev space. Since v is a multi-dimensional function with dimension k,

v∈ VNs × VNs × . . .× VNs = (VNs )
k ≡ V (36)

We may define a norm as follows:

‖v‖A = {‖Lv‖20,� + ‖v‖21,� + ‖Bhv‖2
0,��h + ‖Bgv‖20,��g }1/2 (37)

where v is the approximation of u, and

‖v‖21,� =
k∑

i=1
‖vi‖21,� (38)

‖Lv‖20,� =
k∑

i=1
‖Li jv j‖20,� (39)

‖Bhv‖2
0,��h =

k∑
i=1

‖Bh
i jv j‖20,��h (40)

‖Bgv‖20,��g =
k∑

i=1
‖Bg

i jv j‖20,��g (41)

Let uNs be an optimal solution satisfying

E(uNs ) = inf
v∈V E(v) (42)

We can obtain an estimate as follows:

‖u − uNs‖A �C inf
v∈V ‖u − v‖A

�C1‖Lv − f‖0,� + C2‖u − v‖1,� + C3‖Bhv − h‖0,��h

+C4‖Bgv − g‖0,��g (43)

Note that the existence and uniqueness of the solution follows immediately from Lax–Milgram
lemma. The detailed analysis is omitted here. For the case of Poisson’s problem, we refer the
reader to [22].

For Poisson problem for example, L=�, Bh = �/�n, and Bg = 1, we have an error estimate

‖u − uNs‖A � C5‖�(u − v)‖0,� + C6‖u − v‖1,� + C7

∥∥∥∥�v

�n
− h

∥∥∥∥
0,��h

+ C8‖v − g‖0,��g
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WEIGHTED RADIAL BASIS COLLOCATION METHOD 2745

= C5‖�(u − v)‖0,� + C6‖u − v‖1,� + C7

∥∥∥∥ �
�n

(u − v)

∥∥∥∥
0,��h

+ C8‖(u − v)‖0,��g

� C9‖u − v‖2,� + C7‖(u − v)n‖0,��h + C8‖u − v‖0,��g

=: E1 + E2 + E3 (44)

Usually E1, E2
E3. Thus a modified norm is considered

‖v‖B = (‖Lv‖20,� + ‖v‖21,� + �h‖Bhv‖2
0,��h + �g‖Bgv‖20,��g )

1/2 (45)

where

�h‖Bhv‖2
0,��h =

k∑
i=1

�h‖Bh
i jv j‖20,��h (46)

�g‖Bgv‖20,��g =
k∑

i=1
�g‖Bg

i jv j‖20,��g (47)

A corresponding error estimate is

‖u − uNs‖B �C inf
v∈V‖u − v‖B

�C1‖Lv − f‖0,� + C2‖u − v‖1,� + C3

√
�h‖Bhv − h‖0,��h

+C4
√

�g‖Bgv − g‖0,��g (48)

Similarly, for Poisson problem, we have the following error estimate:

‖u − uNs‖B �C5‖u − v‖2,� + C6

√
�h‖(u − v)n‖0,��h + C7

√
�g‖u − v‖0,��g

�C8Ns‖u − v‖1,� + C9

√
�h‖(u − v)n‖2,� + C10

√
�g‖u − v‖1,�

� (C8Ns + C11

√
�hNs + C10

√
�g)‖u − v‖1,� (49)

in which the following inequalities have been used:

‖wn‖0,��h �C‖w‖2,� ∀w ∈ VNs (50)

‖w‖0,��g �C‖w‖1,� ∀w ∈ VNs (51)

‖w‖k,� �CNk−�
s ‖w‖�,�, k>� ∀w ∈ VNs (52)

where C is a generic constant. To get a balance in error, the following relationship should be met:√
�h ≈ O(1),

√
�g ≈ O(Ns) (53)
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For the elasticity, the Lame’ constants � and � should be considered in the error estimates. Letting
� = max{�, �}, we obtain

‖u − uNs‖B�C ′
1�‖u − v‖2,� + C ′

2�
√

�h‖(u − v)n‖0,��h + C ′
3

√
�g‖u − v‖0,��g (54)

Further, this estimate can be rewritten as

‖u − uNs‖B � �Ns(C
′
4‖u1 − v1‖1,� + C ′

5‖u2 − v2‖1,�)

+ �Ns(C
′
6

√
�h‖u1 − v1‖1,� + C ′

7

√
�h‖u2 − v2‖1,�)

+C ′
8

√
�g‖u1 − v1‖1,� + C ′

9

√
�g‖u2 − v2‖1,� (55)

To get a balance in errors in elasticity, the following relationship should be met:√
�h ≈ O(1),

√
�g ≈ O(�Ns) (56)

Based on Equation (48), we consider the following modified least-squares functional:

E(v) = 1

2

∫
�

(Lv − f)T(Lv − f) d� + �h

2

∫
��h

(Bhv − h)T(Bhv − h) d�

+ �g

2

∫
��g

(Bgv − g)T(Bgv − g) d� (57)

where �h and �g are weights for Neumann and Dirichlet boundary conditions, respectively.
Stationary condition of Equation (57) gives rise to the following equation:

(A1T
√

�hA2T
√

�gA3T)

⎛
⎜⎜⎜⎝
W1

W2

W3

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

A1

√
�hA2

√
�gA3

⎞
⎟⎟⎟⎠ a

= (A1T
√

�hA2T
√

�gA3T)

⎛
⎜⎜⎜⎝
W1

W2

W3

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

b1√
�hb2

√
�gb3

⎞
⎟⎟⎟⎠ (58)

The direct strong form collocation equation with weighted boundary conditions consistent to the
weighted least-squares functional can be obtained by multiplying square root of weight numbers
to the boundary equations in Equation (10) to yield⎛

⎜⎜⎜⎝
A1

√
�hA2

√
�gA3

⎞
⎟⎟⎟⎠ a=

⎛
⎜⎜⎜⎝

b1√
�hb2

√
�gb3

⎞
⎟⎟⎟⎠ (59)
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4. NUMERICAL EXAMPLES

In the following numerical analysis, we measure the solution accuracy by computing the L2 norm
and H1 seminorm defined in (60) and (61), respectively, as follows:

‖v − u‖0 =
(∫

�
(vi − ui )(vi − ui ) d�

)1/2

(60)

|v − u|1 =
(∫

�
(vi, j − ui, j )(vi, j − ui, j ) d�

)1/2

(61)

4.1. Poisson equation

To examine the treatment of boundary conditions with the proposed method, we first solve the
following Poisson equation:

�u(x, y) = (x2 + y2)exy, �= (0, 1) × (0, 1)

u(x, y) = exy, ��
(62)

The exact solution of this problem is exy . The MQ-RBF is used as basis function

gI (x)= 1√
r2I + c2

(63)

where shape parameter c= 1.6 is used. Uniformly distributed 13× 13 collocation points are used
for 3 discretizations with 6× 6, 8× 8, and 10× 10 source points. The results of direct collocation
method (DCM) and weighted direct collocation method (W-DCM) with various weight �g for the
boundary collocation equations are compared. Note �h = 1 is used for all cases.

Figure 1 shows that W-DCM provides a better accuracy than that of the standard DCM. It is
also shown that W-DCM with weight in the neighbourhood �g = 104 (Ns = 36, 64, 100≈ 102, and√

�g ≈ O(Ns) ≈ 102) yields best results. This weighting value is consistent with the suggested
value given in (53). As presented in Figure 2 where c= 1.6 and 8× 8 source points with 13× 13
collocation points are used, standard DCM leads to larger error near boundaries. The proposed
W-DCM with �g = 104, on the other hand, significantly improves solution accuracy.

We also compare the solutions obtained by the direct collocation method and least-squares
method. Note that the condition number of the least-squares method is the square of the condition
number of the direction collocation method. Thus a better solution accuracy in the direct collocation
method is obtained than that of the least-squares method, especially for finer discretization. The
situation is further magnified when higher weights are used for the boundary conditions in the
weighted direct location method and the weighted least-squares method.

4.2. Cantilever beam problem

Consider 2-dimensional elastic cantilever beam under plain stress condition and subjected to a tip
shear traction as shown in Figure 3.
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Figure 1. Convergence curves of direct collocation method and weighted direct collocation
method with different weights �g .

The corresponding boundary value problem can be expressed as

	i j, j = 0, 0<x<L , −D/2<y<D/2 (64)

with boundary conditions:

(1) at x = 0, y = 0, u1 = u2 = 0

(2) at x = 0, y = ± D/2, u1 = 0, h2 = 0

(3) on x = L , −D/2�y�D/2, h1 = 0, h2 = 6P

D3

(
D2

4
− y2

)

(4) on x = 0, −D/2<y<0, 0<y<D/2, h1 = 12PL

D3
y, h2 = − 6P

D3

(
D2

4
− y2

)

(5) on 0<x<L , y = ± D/2, h1 = h2 = 0

(65)

where 	i j =Ci jklu(k,l) and hi = 	i j n j .
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Figure 2. The error distribution of solution obtained using DCM and W-DCM
with �g = 104: (a) DCM; and (b) W-DCM.

Figure 3. Cantilever beam.
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Figure 4. Convergence of L2 error norm.

The analytical solution of this problem is given as

u1(x, y)=− Py

6E I

[
(6L − 3x)x + (2 + 
)

(
y2 − D2

4

)]

u2(x, y)= P

6E I

[
(3L − x)x2 + 3
y2(L − x) + (4 + 5
)

D2x

4

] (66)

where I = D3/12. Three discretizations with 11× 3, 16× 4, and 26× 6 source points are used.
The collocation points of (2N1 − 1) × (2N2 − 1), where Ni is the number of source points in the
i th direction, are employed for the 3 discretizations. DCM and W-DCM with MQ-RBF are used
in the numerical test, and the shape parameters c for the three discretizations 11× 3, 16× 4, and
26× 6 are 30, 20, and 12, respectively.

In this problem, we have used discretization parameter Ns = 33, 64, 156≈ 102,
and �= max{�, �} ≈ 107. With the guidance of error balance analysis in (56), weights for
Dirichlet collocation equations

√
�g = 109 and Neumann collocation equations

√
�h = 1 are used in

W-DCM. Figures 4 and 5 compare the convergence of L2 norm ‖u − uh‖0 and H1

seminorm |u − uh |1, respectively. An enhanced solution accuracy is obtained using W-DCM.
Next, we compare the numerical solutions by using 3 sets of shape parameters c. Each set

of c parameters are selected to be linearly proportional to the nodal distance. The convergence
properties presented in Figure 6 suggest that there exists an optimal shape parameter for RBF
collocation method.
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Figure 5. Convergence of H1 seminorm.

Figure 6. Convergence in L2 norm for different shape parameters c (three c values in each case are
associated with coarse, medium, and fine discretizations).
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Figure 7. An infinite long cylinder subjected to an internal pressure.

Similar to the Poisson problem, the least-squares method produces a much larger condition
number compared to that of the direct collocation method, and thus generates less accurate solution
compared to the direct collocation method for both unweighted and weighted cases.

4.3. Infinite long cylinder subjected to an internal pressure

An infinite long (plane-strain) elastic cylinder is subjected to an internal pressure as shown in
Figure 7. Due to symmetry, only a quarter of the model (Figure 8(a)) is discretized by the
RBF collocation method with proper symmetric boundary conditions specified. The corresponding
boundary value problem can be expressed as

	i j, j = 0 in � (67)

with boundary conditions

(1) on �1, hi = −Pni

(2) on �2, u2 = 0, h1 = 0

(3) on �3, hi = 0

(4) on �4, u1 = 0, h2 = 0

(68)

where 	i j =Ci jklu(k,l) and hi = 	i j n j . The analytical solution of this problem is given as

ur (r) = Pa2r

E(b2 − a2)

[
1 − 
 + b2

r2
(1 + 
)

]

u�(r) = 0

(69)

where E = E/(1 − 
2) , 
 = 
/(1 − 
), P is the internal pressure, b is the outer radius, and a is
the inner radius.

In this problem, both source points and collocation points are non-uniformly distributed as
shown in Figure 8(b). Three discretizations, 7× 7, 9× 9, and 11× 11 source points, are used, and
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Figure 8. (a) Quarter model; and (b) distribution of source points
and collocation points in cylinder problem.

Figure 9. Convergence of L2 error norm.

the shape parameters c for three discretizations are 10, 7.5 and 6, respectively. The number of
corresponding collocation points is (2N1 − 1) × (2N2 − 1), where N1 is the number of source
points along the radial direction and N2 is the number of source points along the angular direction.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:2736–2757
DOI: 10.1002/nme



2754 H. Y. HU, J. S. CHEN AND W. HU

Figure 10. Convergence of H1 seminorm.

Figure 11. Convergence in L2 norm for different shape parameters c (three c values in each case are
associated with coarse, medium, and fine discretizations).
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DCM and W-DCM with MQ-RBF are used in the numerical test. In this problem, we have
used discretization parameter Ns = 49, 81, 121≈ 102 and � = max{�, �} ≈ 107. Weights for
Dirichlet collocation equations

√
�g = 109 and Neumann collocation equations

√
�h = 1 selected

based on error analysis in (56) are used in W-DCM. The convergence of L2 norm ‖u − uh‖0
and H1 seminorm |u − uh |1 obtained by DCM and W-DCM are compared in Figures 9 and
10, respectively. As is shown in the numerical results, the direct collocation method with proper
weights for Dirichlet and Neumann boundaries offer a much improved solution over the standard
direct collocation method.

We also compare the numerical solutions by using 3 sets of shape parameters c. Due to the use
of non-uniform discrete point distribution in this problem, each set of c parameters are selected
to be linearly proportional to the 1/(

√
Ns − 1), where Ns total number of source points. The

convergence properties presented in Figure 11 again suggest that there exists an optimal shape
parameter for RBF collocation method.

5. CONCLUDING REMARKS

This work introduces a weighted radial basis collocation method for boundary value problems. In
this approach, the unknowns are approximated by the radial basis functions, while the governing
equation and boundary conditions are imposed directly at the collocation points. We first showed
how direct collocation method is related to the discrete least-squares method constructed using
least-squares residual of the discrete collocation equations. We then illustrated that by introducing a
weighted inner product and the associated norm in the discrete least-squares method, the resulting
discrete equation can be made identical to the discrete equation constructed by a continuous
least-squares functional integrated with certain quadrature rule.

Standard collocation method introduces equal weights in the domain and boundary collocation
points. The numerical results showed that with equal weights for the collocation equations asso-
ciated with the domain differential equation and the boundary condition equations, the numerical
error on the boundaries is significantly larger than that in the problem domain. Error analysis
provided in this work indicates that the least-squares residual associated with differential equation
in the domain is scaled by the number of source points compared with the least-squares residual
associated with boundary conditions. By minimizing the total residual, larger error exists on the
boundary than that in the domain. In the case of elasticity, it can be shown that the domain and
Neumann collocation equations are further scaled by the material constants. This existence of
unbalanced errors in the collocation method can be enhanced by introducing the proper scaling
weights for the Neumann and Dirichlet boundary collocation equations. The numerical results
showed that by increasing the weights for the boundary collocation equations, the accuracy and
convergence rates of the numerical solution are improved. In the case of elasticity, in particular,
it is shown that due to the existence of Young’s modulus in the domain and Neumann bound-
ary collocation equations, the weight for the Dirichlet boundary collocation equations should be
proportionally increased.

Since the condition number of least-squares method is the square of the condition number
associated with the direct collocation method, the numerical solution obtained from the direct
collocation method is generally better than that obtained by the least-squares method. This situation
is even more transparent when comparing the weighted least-squares and weighted collocation
methods.
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The shape parameter in RBF plays an important role in the quality of numerical solution.
Due to the use of collocation, employment of flatter (less localized) RBF functions is necessary
for desired accuracy. This is analogous to the meshfree method where a very localized shape
function with a direct nodal integration of weak form yields an unstable solution unless the kernel
functions with large support size are used [23]. On the other hand, over flatted RBF functions
increases dependency between the RBF functions and leads to an ill-conditioned discrete system.
The numerical study showed that the adjustment of the shape parameters proportional to the nodal
distance yields the better solution accuracy.

The main disadvantage of using RBF for solving partial differential equation is due to the non-
locality of the RBF function, which yields a full matrix in the discrete equation and has limitation
in solving problems with local geometry complexity. The computation time associated with the
overdetermined system using least squares method is well documented in [24]. On the other hand,
localized RBF leads to a less accurate solution similar to that observed in meshfree method with
nodal integration [23]. The authors are extending the present approach to a ‘local radial basis
collocation method’ with balanced conditioning and accuracy in a forthcoming paper.
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