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SUMMARY

Standard radial basis functions (RBFs) offer exponential convergence, however, the method is suffered from
the large condition numbers due to their ‘nonlocal’ approximation. The nonlocality of RBFs also limits
their applications to small-scale problems. The reproducing kernel functions, on the other hand, provide
polynomial reproducibility in a ‘local’ approximation, and the corresponding discrete systems exhibit
relatively small condition numbers. Nonetheless, reproducing kernel functions produce only algebraic
convergence. This work intends to combine the advantages of RBFs and reproducing kernel functions
to yield a local approximation that is better conditioned than that of the RBFs, while at the same time
offers a higher rate of convergence than that of reproducing kernel functions. Further, the locality in the
proposed approximation allows its application to large-scale problems. Error analysis of the proposed
method is also provided. Numerical examples are given to demonstrate the improved conditioning and
accuracy of the proposed method. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Radial basis function (RBF) was originally constructed for interpolation [1], and the multiquadrics
RBF was shown to be related to the solution of the biharmonic potential problem and thus has a
physical foundation [2]. RBF performs very well in interpolating highly irregular scattered data
compared with many interpolation methods [3], and it has been introduced in high-dimensional
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interpolation in neural networks [4]. The work by Buhmann and Micchelli [5] showed that RBFs are
prewavelets (wavelets without orthogonality properties), and certain RBFs are effective projectors
in multiresolution analysis, particularly when the data structure is scattered [6]. RBF was first
applied to solving partial differential equations (PDEs) in [7, 8], and the theoretical foundation
of the RBF method for solving PDEs has been well studied [9, 10]. Applications of RBF for
solving PDEs include, for example, singularity problems [11], Hamilton–Jacobi equations [12],
fourth-order elliptic and parabolic problems [13], approximation in boundary element method for
nonlinear elliptic PDEs [14], hyperbolic conservation laws [15], and by employment of smoothed
multilevel approach [16]. The RBF collocation method is shown to be more effective if boundary
conditions are properly weighted [17].

If the approximated function and the RBFs satisfy certain regularity conditions, RBFs exhibit
exponential convergence in interpolation [18, 19]. However, while enjoying the exponential conver-
gence, the RBF collocation method yields a full discrete system and consequently ill-conditioned
as the discrete dimension increases. This leads to a convergence problem in addition to the high
CPU in dealing with a full matrix, and it constitutes the major bottleneck in applying RBF to
large-scale computation. The shape parameter of RBF greatly influences the linear dependency
and consequently the condition number of the discrete system as reported in [20]. Several attempts
have been made to resolve this difficulty. The block partitioning method takes the advantage of
better conditioning of each sub-block [21]. The multizone method was applied to transient problem
where the transient solution of each smaller nonoverlapping zone is better conditioned [22]. An
adaptive algorithm [23] has been proposed to properly select suitable new test and trial spaces
iteratively. Alternatively, the ill-conditioning of the RBF collocation method has been enhanced
by introducing a compactly support RBF truncated from polynomials that are strictly positive
definite [24]. However, reasonable accuracy of these truncated functions can be achieved only
when sufficiently large support is employed.

In contrast to the global approximation in RBF collocation method based on strong form, mesh-
free local approximations have been introduced in solving PDEs based on weak form and Galerkin
approximation, for example, moving least-squares (MLS) approximation [25, 26], reproducing
kernel (RK) approximation [27, 28], and partition of unity [29, 30]. In these methods, the locality
and smoothness of the approximation are defined in the kernel function with compact support,
and basis functions are introduced either intrinsically or extrinsically to the kernel function to
achieve certain order of completeness or to embed certain characteristic functions of the PDEs in
the approximation. A dilemma in the mesh-free method based on Galerkin weak form is the need
to perform domain integration. Introducing collocation method to the weak form yields spatial
instability, while the Gauss integration consumes considerable CPU. A compromised approach is
to introduce a stabilization to the nodally integrated weak form [31, 32]. Imposition of Dirichlet
boundary conditions is another time-consuming process in the Galerkin-based mesh-free methods
[33, 34]. Although the employment of MLS or RK approximations yields algebraic convergence
regardless of the locality of the approximation, these methods with localized approximation yield
very well conditioned discrete equations, and the solution remains stable as the discretization is
refined.

In this work, we introduce a combined RK and RBF approximation to achieve a local approx-
imation that has the similar convergence property as that of the RBF collocation method while
yielding a banded and better-conditioned discrete system. The essential idea is to correct RBF
with a compactly supported kernel function that reproduces polynomials. Localizing RBF with
polynomial reproducibility yields a convergence between RBF exponential convergence and RK
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algebraic convergence. Several numerical examples are analyzed to examine the performance of
the proposed method.

This paper is organized as follows. In Section 2, the fundamental properties of RBFs are reviewed.
In Section 3, the basic equations of RK approximation are introduced, the construction of RK-
enriched RBF is presented, and the convergence properties are discussed. The implementation of
localized RBF with collocation method for solving boundary value problems is given in Section 4.
Numerical examples demonstrating the effectiveness of the proposed method are presented in
Section 5. Conclusion remarks are given in Section 6.

2. RADIAL BASIS FUNCTIONS

Let �⊂ Rd , d�1, be a closed region with boundary ��, and let S be a set of Ns source points,

S=[x1,x2, . . . ,xNs ]⊆�∪�� (1)

For a smooth function u(x), the approximation, denoted by v(x), is expressed as

v(x)=
Ns∑
I=1

gI (x)aI + p(x) (2)

where aI is the expansion coefficient, p(x)∈ Pt is a polynomial of degree less than t on Rd , and
gI (x) is the RBF, for example, the multiquadrics (MQ) RBF:

gI (x)=(r2I +c2)n−3/2, n=1,2,3, . . . (3)

where rI =‖x−xI‖, and the constant c involved in Equation (3) is called the shape parameter of
RBF. The convergence of RBF has been studied by Madych [35], and it has been shown that there
exists an exponential convergence rate if RBF is globally analytic or band limited

|u(x)−v(x)|≈O(�c/h) (4)

where 0<�<1, �=exp(−�) with �>0, and h is the radial distance defined as

h :=h(�,S)= sup
x∈�

min
xI∈S

‖x−xI‖ (5)

Accuracy and rate of convergence of MQ-RBF approximation are determined by the number of
basis functions (the number of source points) Ns and the shape parameter c. The use of variable
shape parameters may enhance the accuracy, see Kansa and Hon [21].

The exponential convergence of RBF, however, is overshadowed by its ‘global’ (nonlocal)
approximation in solving PDEs, and it yields a full matrix in discrete equations. Further, under the
collocation framework in solving PDEs, the condition number of matrices in the discrete equations
increases significantly as the number of source points increases. It has been shown [36] that RBF
is capable of reproducing constant and linear functions in infinite domain. However, RBF cannot
reproduce constant and linear functions in finite domain with finite number of source points:

N∑
I=1

(�+�xI )gI (x) �=(�+�x) (6)
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Figure 1. Errors in the reproduction of one-dimensional constant and linear polynomial
functions by RBF and RK function.

On the other hand, some local approximation methods such as RK approximation [27, 28] are
constructed to reproduce polynomials for random point distributions in the finite domain. As shown
in Figure 1, RBF exhibits errors in reproducing constant and linear functions in a finite domain
[0,1], whereas RK function with linear basis (p=1) yields exact reproduction of constant and
linear functions using 11 random points.

Recall RBF given in Equation (2) and let Wk,p(�)={w|D�w∈L p(�), |�|�k} be the Sobolev
space, where D� denotes the �th-order partial derivative operator. If the function u is sufficiently
smooth, u∈Wk,2(�)∩L p(�), k> 1

2 , p∈[2,∞), Madych and Nelson [19] based on the earlier work
by Golomb and Weinberger [37] showed the following algebraic convergence:

‖v−u‖L p(�)�chk−d/2+d/p‖u‖Wk,2(�) (7)

If further restrictive conditions on the approximated function u and the RBF gI are considered as
follows:

∫
�d

|ũ(�)|2
g̃I (�)

d� < ∞ (8)

∫
�d

‖v‖l g̃I (�)d� � �l l! ∀l�2k (9)

where ũ(�) and g̃I (�)are Fourier transformations of u(x) and gI (x), respectively, � is a posi-
tive number, then the following exponential convergence result has been shown by Madych and
Nelson [18]

‖v−u‖L∞(�)�C�c/h‖u‖t (10)
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where C is a constant independent of c and h, 0<�<1 is a real number, and ‖·‖t is induced from
conditions (8) and (9) [18]. The numerical examples given in Hu et al. [11] and Cheng et al. [38]
verified the above exponential convergence.

3. LOCALIZED RBF APPROXIMATION

3.1. Localization of RBF by reproducing kernel

Let T be a set of Np points in �=�∪��

T={x1,x2, . . . ,xNp }, xI ∈�, I =1,2, . . . ,Np (11)

The set is used to define a finite open covering C={�I }Np
I=1 of �, where �⊂⋃N

I=1�I as shown

in Figure 2, and the covering C={�I }Np
I=1of � satisfies an overlapping condition

∃�∈N ∀x∈� card{I |x∈�I }�� (12)

A class of functions {	I (x)}Np
I=1 is called a partition of unity subordinated to the open covering C

if it possesses the following property:

Np∑
I=1

	I (x)=1 ∀x∈� (13)

The partition of unity function can be constructed by

	I (x)=
a(x−xI )b(x) (14)

Figure 2. Discretization of domain by finite covers.
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where 
a(x−xI ) is a kernel function defined on the finite cover �I centered at xI , and a is the
radius of the finite cover �I . Usually, 
a(x−xI )>0 for x∈�I is selected. Here, b(x) is a function
to be thought to meet partition of unity condition

Np∑
I=1

	I (x)=
(

Np∑
J=1


a(x−xJ )

)
b(x)=1 (15)

By obtaining b(x)=1/
∑N

J=1
a(x−xJ ), we have

	I (x)=

a(x−xI )∑Np
J=1
a(x−xJ )

(16)

The partition of unity function in Equation (13) is the Shepard function. To achieve higher-order
approximation, a reproducing kernel (RK) function by modification of Equation (14) has been
proposed [28]

	
I
(x)=
a(x−xI )

[ ∑
|�|�p

(x−xI )�b�(x)

]
(17)

Here, we use the multi-dimensional notation �=(�1, . . . ,�d) with d>1 the integers representing
the dimension. The quantity |�|=∑d

i=1 �i is the length of �, x� = x�1
1 , . . . , x�d

d , {(x−xI )�}|�|�p is
a set of monomial basis functions with degree less than or equal to p, and b�(x)=b�1,...,�d (x),|�|�p, are the coefficients of the basis functions that vary with the location of approximation x.
Coefficients b�(x) are determined from the following reproducing conditions:

∑
I

	I (x)x
�
I =x�, |�|�p (18)

Equation (18) is equivalent to

∑
I

	I (x)(x−xI )� =�|�|,0, |�|�p (19)

or

∑
I

	I (x)H(x−xI ) =H(0) (20)

HT(x−xI ) = [(x−xI )�]|�|�p

= [1, x1−x1I , . . . , xd −xd I , (x1−x1I )
2, . . . , (xd −xd I )

p] (21)

Substituting Equation (17) into Equation (18) to obtain b�(x), and the RK function 	I (x) into
Equation (17) reads

	I (x)=HT(0)M−1(x)H(x−xI )
a(x−xI ) (22)
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where

M(x)=∑
I
H(x−xI )HT(x−xI )
a(x−xI ) (23)

The function 	I (x) is called the RK shape function. Conditions assuring the nonsingularity of the
matrix M(x) as well as good performance of the method are discussed in [39], where rigorous
convergence analysis and error estimates of the method are also provided.

The concept of partition of unity approximation [29, 30] is introduced herein to localize RBF
with monomial reproducibility:

uh(x)=
N∑
I=1

[	I(x)(aI +gI(x)dI )] (24)

where we assume Np =Ns =N . In general, different RBFs or other basis functions can be employed
in the approximation (24) to yield:

uh(x)=
N∑
I=1

[
	I (x)

(
aI +

M∑
J=1

gJ
I (x)d J

I

)]
(25)

where 	I (x) is the RK function, gJ
I (x) denotes RBFs or other basis functions, for example, the

multiquadrics RBF defined in (3) and aI and d J
I are the corresponding coefficients.

Rewrite the localized RBF approximation in Equation (25) as

uh(x)=
N∑
I=1

	I (x)u
h
I (x) (26)

where

uhI (x)∈VI , VI =span{1,g1I ,g2I , . . . ,gMI } (27)

and

uh(x)∈V, V =
N⋃
I=1

VI (28)

Assume that local approximation space VI has the following property:

‖u−uhI ‖�,�∩�I �T (c,�, I,N ,M)‖u‖t ∀I,uhI ∈VI , ��0 (29)

where ‖·‖�,�∩�I denotes the Sobolev norm, T (· · ·) is a term dependent on some parameters, and
‖·‖t is defined as in Section 2. Note that the there exists an algebraic decay if monomial bases are
chosen and that there exists an exponential decay if Fourier functions or RBFs are used within the
radius of convergence a.

Consider a quasi-uniform support size distribution. By using the condition of partition
of unity,

∑N
I=1	I =1, and thus

∑N
I=1	I (u−uhI )=u−∑N

I=1	I u
h
I , there exists a global
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estimate [29]

‖u−uh‖20,� =
∥∥∥∥ N∑
I=1

	I (u−uhI )

∥∥∥∥
2

0,�

=
∫

�

∣∣∣∣ N∑
I=1

	I (u−uhI )

∣∣∣∣
2

d�

� �
∫

�

N∑
I=1

|	I (u−uhI )|2 d�=�
∫

�

N∑
I=1

|	I |2|u−uhI |2 d�

� �C2∞
N∑
I=1

∫
�∩�I

|u−uhI |2 d�=�C2∞
N∑
I=1

‖u−uhI ‖20,�∩�I

� �2C2∞max
I

T 2(c,0, I,N ,M)‖u‖2t (30)

where � denotes the maximal number of covers for any x∈� defined in Equation (12), and
RK shape function is bounded, that is, |	I |∞�C∞. Moreover, with (29) and the exponential
convergence property of (4), we have

‖u−uh‖0,���C∞�
c/h

0 ‖u‖t (31)

3.2. Inverse inequalities

The inverse inequalities of the proposed localized RBF are presented for the study of convergence
and stability in the following section. Let the approximation uh in Equation (25) be expressed as

v :=uh(x)=
N∑
I=1

	I (x)aI +
N∑
I=1

M∑
J=1


J
I (x)d

J
I =:v1+v2 (32)

where 
J
I (x)=	I (x)g

J
I (x). We have local estimates as follows (see Appendix A for details):

‖v1‖2�,�I
�C1a

−�d p2�d‖v1‖20,�I
for ��1 (33)

‖v2‖2�,�I
� (C2a

−3�d/2 p2�d +C3a
−3�d/2��d)‖v2‖20,�I

for ��1 (34)

where p is the reproducing degree, a is the maximal radius of finite cover �I , d is the space
dimension, � is the maximal number of RBF within cover �I , and Ci are generic constants.
Furthermore, we obtain global estimates as follows:

‖v‖2�,� = ‖v1+v2‖2�,��2‖v1‖2�,�+2‖v2‖2�,�

� c1

{
N∑
I=1

‖v1‖2�,�I

}
+c2

{
N∑
I=1

‖v2‖2�,�I

}

� c3�a
−�d p2�d‖v1‖20,�+(c4�a

−3�d/2 p2�d +c5�a
−3�d/2��d)‖v2‖20,� (35)
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and thus

‖v‖�,��(c6�
1/2a−�d/2 p�d +c7�

1/2a−3�d/4 p�d +c8�
1/2a−3�d/4��d/2)‖v‖0,� for ��1 (36)

where 1<p<�,��N , and ci are generic constants.

4. WEIGHTED COLLOCATION METHOD

4.1. Strong form collocation

Consider the following general form of a boundary value problem:

Lu = f in �

Bhu = h on ��h

Bgu = g on ��g

(37)

where � is the problem domain, ��h is the Neumann boundary, ��g is the Dirichlet boundary,
��h∪��g =��, L is the differential operator in �, Bh is the differential operator on ��h , and Bg

is the operator on ��g .
For a multi-dimensional function u, approximation uh defined at Ns source points is expressed as

uh =UTy (38)

where U is an approximation function and y are the corresponding coefficients. For example, in
two-dimension, we have

uh =
[
uh1

uh2

]
, UT=[U1 U2 · · · UNs ], UJ =

[
	J 0 
J 0

0 	J 0 
J

]
(39)

where 
J =	J gI and

yT=[y1 y2 · · · yNs ], yTJ =[a1J a2J d1J d2J ] (40)

In standard collocation method, the residuals of Equation (37) are enforced to be zeros at the
collocation points. Let P be a set of Np collocation points in �, Q be a set of Nq collocation
points on ��h , and R be a set of Nr collocation points on ��g; we have

P=[p1,p2, . . . ,pNp ]⊆�, Q=[q1,q2, . . . ,qNq ]⊆��h, R=[r1,r2, . . . ,rNr ]⊆��g (41)

The source point set S and the collocation point set P∪Q∪R may or may not have common points.
By enforcing strong form of (37) to be satisfied at the collocation points, we have the following
discrete equation:

Ay=b (42)
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where

A=

⎛
⎜⎜⎝
A1

A2

A3

⎞
⎟⎟⎠ , A1=

⎛
⎜⎜⎜⎜⎜⎜⎝

L(UT(p1))

L(UT(p2))

...

L(UT(pNp ))

⎞
⎟⎟⎟⎟⎟⎟⎠

, A2=

⎛
⎜⎜⎜⎜⎜⎜⎝

Bh(UT(q1))

Bh(UT(q2))

...

Bh(UT(qNq ))

⎞
⎟⎟⎟⎟⎟⎟⎠

, A3=

⎛
⎜⎜⎜⎜⎜⎜⎝

Bg(UT(r1))

Bg(UT(r2))

...

Bg(UT(rNr ))

⎞
⎟⎟⎟⎟⎟⎟⎠

(43)

and

b=

⎛
⎜⎜⎝
b1

b2

b3

⎞
⎟⎟⎠ , b1=

⎛
⎜⎜⎜⎜⎜⎜⎝

f(p1)

f(p2)

...

f(pNp )

⎞
⎟⎟⎟⎟⎟⎟⎠

, b2=

⎛
⎜⎜⎜⎜⎜⎜⎝

h(q1)

h(q2)

...

h(qNq )

⎞
⎟⎟⎟⎟⎟⎟⎠

, b3=

⎛
⎜⎜⎜⎜⎜⎝

g(r1)

g(r2)

...

g(rNr )

⎞
⎟⎟⎟⎟⎟⎠ (44)

The error analysis [17] shows unbalanced errors between domain, Neumann boundary, and Dirichlet
boundary terms in (42). The unbalanced errors can be better balanced if boundary collocation
equations are properly weighted. Therefore, in the weighted collocation approach, the discrete
equation is constructed as follows:⎛

⎜⎜⎝
A1√
�hA2

√
�gA3

⎞
⎟⎟⎠y=

⎛
⎜⎜⎝

b1√
�hb2

√
�gb3

⎞
⎟⎟⎠ (45)

where �h and �g are weights for Neumann and Dirichlet boundary terms, respectively. In the
Poisson problem, weights

√
�h ≈O(1) and

√
�g ≈O(Ns). In elasticity problem,

√
�h ≈O(1) and√

�g ≈O(max{,�}Ns), where ,� are Lame’s constants [17].
Remarks
To achieve a better accuracy in collocation method, the number of collocation points greater than
the number of source points (Np+Nq +Nr>Ns) should be considered. A detailed discussion is
provided in Section 4.2. Equation (42) is an overdetermined system that is typically solved by a
least-squares method:

AT(Ay−b)=0 (46)

or by a weighted least-squares method:

ATW(Ay−b)=0 (47)

where W is the weight matrix. It can be shown that (47) is equivalent to the minimization of a
least-squares functional with quadrature rule consistent with the collocation points.

Define a functional:

E(v)= 1

2

∫
�

(Lv−f)2 d�+ 1

2

∫
��h

(Bhv−h)2 d�+ 1

2

∫
��g

(Bgv−g)2 d�, v∈V (48)
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where V denotes the finite-dimensional space defined in Section 2.1. Let Ê(·) be the discrete
functional form of E(·):

Ê(uh)=min
v∈V Ê(v) (49)

and it yields the following equation:

ATW(Ay−b)=0 (50)

where W is the weight matrix containing weights associated with the quadrature rules used in
domain and boundary integrals of (48). Same results can be obtained for the weighted collocation
method in (45) with consideration of the following functional [17]:

E(v)= 1

2

∫
�

(Lv−f)2 d�+ �h

2

∫
��h

(Bhv−h)2 d�+ �g

2

∫
��g

(Bgv−g)2 d� (51)

4.2. Convergence properties

Consider an energy norm associated with (51) as

‖v‖E ={‖Lv‖20,�+�h‖Bhv‖2
0,��h +�g‖Bgv‖20,��g }1/2 (52)

We define a bilinear form b(·, ·) and a linear form f (·) as follows:

b(u,v) =
∫

�
Lu·Lvd�+�h

∫
��h

Bhu·Bhvd�+�g
∫

��g
Bgu·Bgvd� (53)

f (v) =
∫

�
f ·Lvd�+�h

∫
��h

h·Bhvd�+�g
∫

��g
g ·Bgvd� (54)

The solution uh in (49) satisfies the following discrete equation:

b̂(uh,v)= f̂ (v) (55)

where b̂(·, ·) and f̂ (·) are the discrete bilinear and linear forms of b(·, ·) and f (·), respectively.
We assume that the following inequalities hold:

b̂(u,v) �Ca‖u‖E‖v‖E , v∈V (56)

Cb‖v‖2E � b̂(v,v), v∈V (57)

where Ca and Cb are constants. To ensure above inequalities, a crucial condition should be fulfilled

|b̂(v,v)−b(v,v)|�T (h̄,a, p,�)=o(1)�1 (58)

where h̄ is the maximal spacing of quadrature points (collocation points), and parameters a, p,�
are defined in Section 3.2. Following the Lax–Milgram lemma, we obtain the error bound

‖u−uh‖E� inf
v∈V ‖u−v‖E (59)
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Furthermore, it can be shown that

‖u−uh‖E�c1‖L(RN )‖0,�+c2
√

�h‖Bh(RN )‖0,��h +c3
√

�g‖Bg(RN )‖0,��g (60)

where RN =u−v is the remainder.
Take a two-dimensional Poisson problem as an example, following [11] and using inverse

inequalities in Section 3, we obtain a bound from Equations (56) and (57):

|b̂(v,v)−b(v,v)|�(c1h̄
q+1a−(q+3) p2(q+3)+c2h̄

q+1a−(q+3)�q+3)‖v‖21,� (61)

where q is the order of quadrature rule. We choose h̄ to satisfy

h̄q+1a−(q+3) p2(q+3) =o(1), h̄q+1a−(q+3)�q+3=o(1) (62)

When parameters p and � are fixed, it follows that

h̄=o(a1+2/(q+1)) (63)

Since a=(p+1)h, we have

h̄=o(h1+2/(q+1)) (64)

This suggests that the number of collocation points should be chosen much greater than the number
of source points. As such, the two-dimensional Poisson problem has the following error bound:

‖u−uh‖2�,� =
∥∥∥∥ N∑
I=1

	I (u−uhI )

∥∥∥∥
2

�,�

=
∥∥∥∥D�

N∑
I=1

	I (u−uhI )

∥∥∥∥
2

0,�

� 2

∥∥∥∥ N∑
I=1

(D�	I )(u−uhI )

∥∥∥∥
2

0,�

+2

∥∥∥∥ N∑
I=1

	I D
�(u−uhI )

∥∥∥∥
2

0,�

� 2�
∫

�

N∑
I=1

|D�	I |2|(u−uhI )|2 d�+2�
∫

�

N∑
I=1

|	I |2|D�(u−uhI )|2 d�

� 2�
∫

�∩�I

N∑
I=1

|D�	I |2|(u−uhI )|2 d�+2�
∫

�∩�I

N∑
I=1

|	I |2|D�(u−uhI )|2 d�

� 2�C2a−2�
N∑
I=1

‖u−uhI ‖20,�∩�I
+2�C2∞

N∑
I=1

‖u−uhI ‖2�,�∩�I
, ��1 (65)

where D�(v) denotes the �th-order partial derivative, and |	I |∞�C∞ and |D�	I |∞�Ca−� are
used. Finally, we obtain

‖u−uh‖�,��C1��c/h� ‖u‖t +C2�a
−��c/h0 ‖u‖t , ��1 (66)

where ‖·‖t is induced norm defined as in Section 2.
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4.3. Conditioning of discrete equation

In this section, we investigate the condition number of local RB collocation method. The discrete
form of the weighted collocation method (45) can be expressed as

Fy=r (67)

where

F=W1/2A, r=W1/2b (68)

andW is associated with weights �g and �h in the weighted collocation method (45). The condition
number of matrix F is defined as

Cond(F)= �max(F)

�min(F)
= max(FTF)1/2

min(FTF)1/2
(69)

where �max(·) and �min(·) denote the maximal and minimal singular values in the singular value
decomposition for matrix F, and max(·) and min(·) denote the maximal and minimal eigenvalues
for matrix FTF. Matrix FTF is resulting from the discrete norm ‖·‖E defined as

‖v‖2E = ‖Lv‖20,�+�h‖Bhv‖20,��h +�g‖Bgv‖20,��g

= ˆ∫
�

(Lv)2 d�+ �h

2

ˆ∫
��h

(Bhv)2 d�+ �g

2

ˆ∫
��g

(Bg)2 d�= b̂(v,v) (70)

where
∫̂
denotes numerical integration. Equation (70) can be expressed in a quadratic form as

‖v‖2E =yT
[
FT
1 0

0 FT
2

][
F1 0

0 F2

]
y=yTFTFy=:yTGy (71)

where

y=[a1,a2, . . . ,an,d1,d2, . . . ,dN ]T, G=FTF (72)

We have the following inequalities:

min(G)yTy�yTGy�max(G)yTy (73)

From Equation (58), we have

|‖v‖2E −‖v‖2E |=|b̂(v,v)−b(v,v)|�T (h̄,a, p,�) (74)

Thus,

‖v‖2E −T (h̄,a, p,�)�‖v‖2E�‖v‖2E +T (h̄,a, p,�) (75)

and

min(G) =min
yTGy
yTy

�min
‖v‖2E −T (h̄,a, p,�)

yTy
(76)
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max(G) =max
yTGy
yTy

�max
‖v‖2E +T (h̄,a, p,�)

yTy
(77)

Taking the two-dimensional Poisson problem as an example, we have estimates as follows:

C1‖v‖22,� � ‖v‖2E −(c1h̄
q+1a−(q+3) p2(q+3)+c2h̄

q+1a−(q+3)�q+3)‖v‖21,��‖v‖2E (78)

‖v‖2E � ‖v‖2E +(c1h̄
q+1a−(q+3) p2(q+3)+c2h̄

q+1a−(q+3)�q+3)‖v‖21,��C2‖v‖22,� (79)

The eigenvalues are bounded by

max(G)�
C2‖v‖22,�

yTy
�
(
c3

�a−2d p4d

yTy
+c4

�a−3d p4d

yTy
+c5

�a−3d�2d

yTy

)
‖v‖20,� (80)

and

min(G)�
C1‖v‖22,�

yTy
�
c6‖v‖20,�

yTy
(81)

in which inverse inequalities in Section 3.2 are used. Consequently, the condition number is
bounded by

Cond(F)=
(

max(G)

min(G)

)1/2

�C̃1�
1/2a−d p2d +C̃2�

1/2a−3d/2 p2d +C̃3�
1/2a−3d/2�d (82)

Remarks
In two-dimensional case under the collocation framework, the condition number of the standard
RBF is O(N 4), for RK is O(

√
�a−2 p4), and for the proposed local RBF is O(

√
�a−3 p4)+

O(
√

�a−3�2), where 1<p<�,��N . Since a=(p+1)h, h=O(1/
√
N ), and p,�,� are fixed in

computation, we obtain the bounds in condition numbers as follows:

RBF: Cond.≈O(N 4)=O(h−8)

RK: Cond.≈O(�1/2a−2 p4)=O(h−2)

proposed local RBF: Cond.≈O(�1/2a−3 p4)+O(�1/2a−3�2)=O(h−3)

We see that there exists a significant reduction in condition number in the proposed local RBF
compared with the standard RBF.

5. NUMERICAL EXAMPLES

In the following study, MQ-RBF, Wendland function g5,3 [24] constructed using MQ-RBF, pure
RK function with quadratic basis (p=2) and cubic basis (p=3), and the proposed local RBF
(L-RBF) constructed by MQ-RBF localized with RK function are compared. For RK function
to converge well under collocation approach, sufficiently smooth kernel function is used. In this
study, a B-spline with C5 continuity is employed as the kernel in RK function. In all examples,
the number of collocation points is selected to be four times the number of source points (discrete
points), unless otherwise specified. In the following numerical analysis, we measure the solution
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accuracy by computing the L2 norm and H1 norm defined as

‖uh−u‖0 =
(∫

�
(uhi −ui )(u

h
i −ui )d�

)1/2

(83)

|uh−u|1 =
(∫

�
(uhi, j −ui, j )(u

h
i, j −ui, j )d�

)1/2

(84)

In the following examples, c denotes the shape parameters in RBF, h represents the nodal distance,
a is the size of finite cover in the RK kernel function or Wendland function, and p is the order of
polynomial bases in RK approximation.

5.1. Approximation of a sine function

A function, sin(2�x) for 0�x�1, is approximated by the standard RBF approach, Wendland
function, pure RK function, and the proposed L-RBF function. As shown in Figure 3, the local
approaches such as Wendland function, RK function, and the proposed L-RBF exhibit considerably
better conditioning compared with that of the standard RBF. It is observed that the condition
numbers increase as discretization is refined in both standard RBF and the Wendland function with
large support (a=0.4), whereas the condition numbers in RK, L-RBF, and Wendland function
with small support are quite insensitive to the resolution of discretization. The condition numbers
in L-RBF is in-between those of the standard RBF and the RK approximations. As shown in
Figures 4 and 5, very poor accuracy in L2 and H1 error norms exist in the Wendland function,
whereas the proposed L-RBF achieves about the same level of accuracy and convergence rates as
those of the standard RBF. Further, the standard RBF solution starts to deteriorate after certain
discretization refinement due to ill-conditioning, whereas the L-RBF solution yields a fairly stable
convergence as the discretization is refined. Note that for Wendland function to achieve reasonable
accuracy and convergence rates, very large support size (a=0.4) is needed. This, however, leads
to ill-conditioning as discretization is refined, which is similar to that of the standard RBF.
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Figure 3. Condition numbers change as refinement in approximation problem.
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Figure 4. Convergence of L2 error norm in approximation problem.
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Figure 5. Convergence of H1 error norm in approximation problem.

5.2. Two-dimensional Poisson problem

Consider the following Poisson equation:

�u(x, y) = (x2+ y2)exy, �=(0,1)×(0,1)

u(x, y) = exy, ��
(85)

The condition number and convergence in L2 and H1 error norms are shown in Figures 6–8,
respectively. The results show that L-RBF achieves a much smaller condition number compared
with that of RBF and with comparable accuracy and convergence rates compared with the solution

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 75:600–627
DOI: 10.1002/nme



616 J. S. CHEN, W. HU AND H. Y. HU

-1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8
0

2

4

6

8

10

12

14

16

18

20

log10h

lo
g 10

C
on

di
tio

n 
N

um
be

r

RBF ((r2+c2)(3/2),c=15h)
RK (p=2,a=3h) 
RK (p=3,a=4h) 
L-RBF ((r2+c2)(3/2),c =h/2,p=3,a=4h) 
L-RBF ((r2+c2)(3/2),c =2h,p=3,a=4h) 
L-RBF ((r2+c2)(3/2),c =15h,p=3,a=4h)

-1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8
0

2

4

6

8

10

12

14

16

18

20

log
10

h

lo
g 10

C
on

di
tio

n 
N

um
be

r

Wendland (g
5,3

,a=0.6)

Wendland (g
5,3

,a=4h)

L-RBF ((r2+c2)(3/2),c =h/2,p=3,a=4h)

L-RBF ((r2+c2)(3/2),c =2h,p=3,a=4h)

L-RBF ((r2+c2)(3/2),c =15h,p=3,a=4h)

Figure 6. Condition numbers change as refinement in two-dimensional problem.
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Figure 7. Convergence of L2 error norm in two-dimensional Poisson problem.

of RBFs. Although the Wendland function also yields better conditioning compared with the RBFs,
the condition number increases rapidly as the model is refined when fixed large support (a=0.6)
is used. Further, the accuracy of Wendland function compares poorly with the proposed L-RBF.
In fact, the use of small support (a=4h) in Wendland function does not yield a convergence in
both error norms. For Wendland function to converge, a relatively large support size (a=0.6 in
this example) needs to be used, but this in turn causes the conditioning problem according to
Figure 7. Lastly, the RK functions offer the best conditioning in the discrete system, but they
converge slightly slower than L-RBFs. This example indicates that L-RBF is the best approach
among the tested methods to achieve both exponential convergence and well-conditioned banded
discrete system.
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Figure 8. Convergence of H1 error norm in two-dimensional Poisson problem.

7

Inner radius: 4

Outer radius: 10

100

Young's Modulus 3 10

Poisson Ratio =0.25

p

E

υ

=
= ×P

Figure 9. An infinite long cylinder subjected to an internal pressure.
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Figure 10. (a) Quarter model and (b) distribution of source and collocation points.

5.3. Elastic cylinder problem

An infinite long elastic cylinder subjected to an internal pressure is shown in Figure 9.
Because of symmetry, only a quarter of the model (Figure 10(a)) is considered with proper
symmetric boundary conditions imposed. The corresponding boundary value problem can be
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Figure 11. Condition numbers change as refinement in cylinder problem.

expressed as

�i j, j =0 in � (86)

with boundary conditions:

hi = −Pni on �1

u2 = 0, h1=0 on �2

hi = 0 on �3

u1 = 0, h2=0 on �4

(87)

where �i j =Ci jklu(k,l) is the stress, Ci jkl is the elasticity tensor, ui is the displacement, hi =�i j n j
is the surface traction, P is pressure, and ni is the surface normal. The analytical solution to this
problem is given as

ur (r) = Pa2r

E(b2−a2)

[
1−�+ b2

r2
(1+�)

]

u�(r) = 0

(88)

where E=E/(1−�2), �=�/(1−�), E is Young’s modulus, � is the Poisson ratio, b is the outer
radius, and a is the inner radius.

The condition number and convergence in L2 and H1 error norms are shown in Figures 11–
13, respectively. Although Wendland function improves the conditioning of the discrete system
compared with that of RBF, the condition number increases as the model is refined when large
support is used. The L-RBF approach, on the other hand, yields a very well-conditioned system
in all discretizations. Further, L-RBFs offer exceptional convergence rates compared with RK and
RBF methods, whereas Wendland functions converge poorly.
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Figure 12. Convergence of L2 error norm in cylinder problem.
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Figure 13. Convergence of H1 error norm in cylinder problem.

Figure 14. Cantilever problem.

5.4. Cantilever beam problem

Consider a plane-stress elastic cantilever beam subjected to a tip shear traction as shown in
Figure 14 with boundary conditions:

at x = 0, y=0, u1=u2=0

at x = 0, y=±D/2, u1=0, h2=0
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Figure 15. (a) Condition numbers and (b) and (c) convergence of L2 and H1 error norm in beam problem.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 75:600–627
DOI: 10.1002/nme



REPRODUCING KERNEL ENHANCED LOCAL RADIAL BASIS COLLOCATION METHOD 621

on x = L , −D/2�y�D/2, h1=0, h2= 6P

D3

(
D2

4
− y2

)

on x = 0, −D/2<y<0, 0<y<D/2, h1= 12PL

D3
y, h2=−6P

D3

(
D2

4
− y2

)

on 0 < x<L , y=±D/2, H1=h2=0

(89)

where �i j =Ci jklu(k,l) and hi =�i j n j as defined in Example 5.3.
The corresponding boundary value problem can be expressed as

�i j, j =0, 0<x<L , −D/2<y<D/2 (90)

The analytical solution to this problem is given as

u1(x, y) = − Py

6E I

[
(6L−3x)x+(2+n)

(
y2− D2

4

)]

u2(x, y) = P

6E I

[
(3L−x)x2+3ny2(L−x)+(4+5n)

D2x

4

] (91)

where I =D3/12. Four discretizations with 8×36, 9×41, and 10×46 source points are used. The
collocation points of (2N1−1)×(2N2−1), where Ni is the number of source points in the i th
direction, are employed. The condition number and convergence of L2 and H1 error norms are
shown in Figure 15(a)–(c). The results show a consistent conclusion of comparison among these
methods with the previous example problems. The L-RBF approach yields well-conditioned system
and it achieves the best solution accuracy and convergence rates compared with RK function,
Wendland function, and standard RBF. It is also shown that the Wendland function yields very
poor convergence in this problem.

6. CONCLUSION

The simplicity of RBF collocation method makes it an attractive numerical approach for solving
PDEs. The RBFs also offer several appealing features such as the ability to fit through highly irreg-
ular scattered data, high-dimensional interpolation, the prewavelet properties for multiresolution
analysis with scattered data structure, and the exponential convergence property. Nevertheless, the
nature of global approximation in RBFs renders a full matrix and ill-conditioning in the discrete
systems. The ill-conditioning is worsened as the discrete model is refined. Thus, RBF approaches
are less effective in large-scale computation, in problems involving heterogeneity and small-scale
features such as holes and cracks, and in the development of adaptive refinement techniques.

In this work, we formulated a localized RBF (L-RBF) by introducing a reproducing kernel
(RK) as the localizing function. The RBF is localized with an RK that possesses polynomial
reproducibility. This approach intends to combine the advantages of RBF and RK function to yield
a local approximation that is better conditioned than that of RBF, while at the same time offers a
higher rate of convergence than that of the RK approximation. The error analysis shows that if the
error of RK is sufficiently small, the proposed method maintains the exponential convergence of
RBF, while significantly improving the conditioning of the discrete system and yielding a banded
matrix.
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The numerical tests show that the condition number of the proposed L-RBF is in-between the
standard global RBF and the local RK function in coarse discretization. It is observed that the
condition numbers increase as discretization is refined in both standard RBF and the Wendland
function with large support, whereas the condition numbers in RK and L-RBF are quite insensitive
to the resolution of discretization. We observed that for RK and the proposed L-RBF to perform
well under collocation method, the employment of sufficiently smooth kernel is essential. In this
work, a B-pline kernel with C5 continuity is used, and the proposed L-RBF achieves about the
same level of accuracy and convergence rates as those of the standard RBF. It is noted that the
standard RBF solution deteriorates under certain discretization refinement due to ill-conditioning,
whereas the L-RBF solution yields a fairly stable convergence as the discretization is refined. It
is also shown that for Wendland function to achieve reasonable accuracy and convergence rates, a
very large support size is needed. This, however, leads to ill-conditioning as the discretization is
refined; similar to that of the standard RBF.

APPENDIX A

The derivation of the inverse inequalities is given as follows. Let v be a function defined in cover
(support) �I with length 2aI and width 2bI . In a two-dimensional setting shown in Figure A1,
we denote �={(�,�)|−1���1,−1���1} and v(x, y)=v(x(�), y(�))=w(�,�). Cover �I can
be transformed � into by linear transformation w=TI (v) and

�= 1

aI
(x−xI ), �= 1

bI
(y− yI )

Accordingly, it follows that

�v

�x
= �w

��

d�

dx
= 1

aI

�w

��
,

�v

�y
= �w

��

d�

dy
= 1

bI

�w

��

and

dx=aI d�, dy=bI d�

IT
2 Ib

I

2 Ia

x

y

[xI,yI]
•

-1 1

1

-1

Figure A1. Mapping between physical support to referential support.
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We may express any polynomial with a degree of p,w=wp =wp(�,�)=∑p
i, j=0 bi j�

i� j , by
Legendre polynomial, and it possesses the following relationships:∥∥∥∥�w

��

∥∥∥∥
0,�

� c1 p
2‖w‖0,�,

∥∥∥∥�w

��

∥∥∥∥
0,�

�c2 p
2‖w‖0,�

|w|1,� � c3 p
2‖w‖0,�, ‖w‖1,��c4 p

2‖w‖0,�
For a function v defined in �I , we have

|v|21,�I
=
∫∫

�I

(v2x +v2y)dx dy=aI bI

∫∫
�

{(
1

aI

�w

��

)2

+
(

1

bI

�w

��

)2
}
d�d�

= bI
aI

∫∫
�

(
�w

��

)2

d�d�+ aI
bI

∫∫
�

(
�w

��

)2

d�d�

Correspondingly, we have

|v|21,�I
= bI

aI

∥∥∥∥�w

��

∥∥∥∥
2

0,�
+ aI
bI

∥∥∥∥�w

��

∥∥∥∥
2

0,�
�c1

bI
aI

p4‖w‖20,�+c2
aI
bI

p4‖w‖20,�

�
(
c1
bI
aI

+c2
aI
bI

)
p4

1

aI bI
‖v‖20,�I

�
(
c3

1

a2I
+c4

1

b2I

)
p4‖v‖20,�I

Let a=min{aI ,bI }, the above inequality becomes

|v|21,�I
�c7a

−2 p4‖v‖20,�I

Moreover, we have

‖v‖21,�I
�c8a

−2 p4‖v‖20,�I

Thus, the following result is obtained:

‖v‖1,��c

{
N∑
I=1

‖v‖21,�I

}1/2
�c

√
�(a−1 p2)‖v‖0,�I �C

√
�(a−1 p2)‖v‖0,�

In general,
‖v‖1,�I � c1a

−d/2 pd‖v‖0,�I

‖v‖1,� �C1�
1/2a−d/2 pd‖v‖0,�

and

‖v‖�,�I � c2a
−�d/2 p�d‖v‖0,�I for ��1

‖v‖�,� �C2�
1/2a−�d/2 p�d‖v‖0,� for ��1

where d denotes the space dimension.
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For the second case, let v= f g be a function defined in cover (support) �I with length 2aI and
width 2bI , and the cover �I can be transformed into � by linear transformation w=TI (v). Based
on the same transformation as above, we have

�( f g)

�x
= � f

�x
g+ f

�g
�x

,
�( f g)

�y
= � f

�y
g+ f

�g
�y

and

w1=TI ( f ), w2=TI (g)

Moreover,

� f

�x
= �w1

��

d�

dx
= 1

aI

�w1

��
,

� f

�y
= �w1

��

d�

dy
= 1

bI

�w1

��

�g
�x

= �w2

��

d�

dx
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aI

�w2

��
,

�g
�y

= �w2

��

d�

dy
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bI

�w2

��

and

|v|21,�I
= | f g|21,�I

=
∫∫

�I

(( f g)2x+( f g)2y)dx dy�2
∫∫

�I

(( fx g)
2+( f gx )

2+( fyg)
2+( f gy)

2)dx dy

= 2aI bI

∫∫
�

{(
1

aI

�w1

��
w2

)2

+
(

1

bI

�w1

��
w2

)2

+
(

1
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��
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+
(

1
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�w2

��
w1

)2
}
d�d�

There exist the following relationships:

∥∥∥∥�w1

��

∥∥∥∥
0,

� c1 p
2‖w1‖0,,

∥∥∥∥�w1

��

∥∥∥∥
0,

�c2 p
2‖w1‖0,

∥∥∥∥�w2

��

∥∥∥∥
0,

� c3�‖w2‖0,,
∥∥∥∥�w2

��

∥∥∥∥
0,

�c4�‖w2‖0,

where � denotes the number of RBFs within cover �I . It follows that

|v|21,�I
= 2bI

aI

∥∥∥∥�w1

��
w2

∥∥∥∥
2

0,�
+ 2aI

bI

∥∥∥∥�w1
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∥∥∥∥
2

0,�
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)
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aI bI
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+
(
c3
bI
aI

+c4
aI
bI

)
�2
(

1

aI bI

)2

‖ f ‖20,�I
‖g‖20,�I
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(
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1

a3I
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1

b3I

)
p4‖v‖20,�I

+
(
c7

1

a3I
+c8

1

b3I

)
�2‖v‖20,�I

Let a=min{aI ,bI }, the above inequality becomes

|v|21,�I
�(c9a

−3 p4+c10a
−3�2)‖v‖20,�I

Moreover, we have

‖v‖21,�I
�(c11a

−3 p4+c12a
−3�2)‖v‖20,�I

Consequently, the following result is obtained:

‖v‖1,��c
√

�(c1a
−3/2 p2+c2a

−3/2�)‖v‖0,�I �C
√

�(c1a
−3/2 p2+c2a

−3/2�)‖v‖0,�
In d-dimensional space, we have

‖v‖1,�I � (c1a
−3d/4 pd +c2a

−3d/4�d/2)‖v‖0,�I

‖v‖1,� � (C1�
1/2a−3d/4 pd +C2�

1/2a−3d/4�d/2)‖v‖0,�
and

‖v‖�,�I � (c1a
−3�d/4 p�d +c2a

−3�d/4��d/2)‖v‖0,�I for ��1

‖v‖�,� � (C1�
1/2a−3�d/4 p�d +C2�

1/2a−3�d/4��d/2)‖v‖0,� for ��1

where ci and Ci are generic constants. For the case of elliptic and circular covers, similar results
can be obtained.
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