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Abstract

This paper presents a superconvergence analysis for the Shortley–Weller finite difference approximation of Poisson’s equation
with unbounded derivatives on a polygonal domain. In this analysis, we first formulate the method as a special finite element/volume
method. We then analyze the convergence of the method in a finite element framework. An O(h1.5)-order superconvergence is
derived for the solution derivatives in a discrete H 1 norm.
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1. Introduction

In this paper, we continue the study in [9,6] on superconvergence of solution derivatives of the Shortley–Weller
finite approximations to the Poisson equation with the Dirichlet boundary condition

−�u = −
(

∂2u

∂x2
+ ∂2u

∂y2

)
= f (x, y), (x, y) ∈ S, (1.1)

u = g(x, y), (x, y) ∈ Γ, (1.2)

where S ⊂ R2 is a polygonal domain, Γ denotes the boundary of S and f and g are given functions. The supercon-
vergence rates of orders O(h2) and O(h1.5) of the solution derivatives in a discrete H 1 norm have been established
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for smooth problems on, respectively, rectangular and polygonal domains (cf. [9]). For problems with unbounded
derivatives near Γ , the O(h2)-order superconvergence of solution derivatives in the discrete energy norm has been
achieved only for rectangular domains (cf. [6]). It is clear that in practice, rectangular domains are very restrictive,
and polygonal domains are more desirable. In this paper we shall extend the analysis in [6] to problems on polygonal
domains. In this investigation, two challenging problems become apparent: (1) how to find suitable local refinements
near the boundary using triangles and rectangles, and (2) how to estimate error bounds resulting from rectangular and
triangular elements in a suitable partition.

For the first question, we adopt the ideas of combination in [5] to split a polygonal domain, S, into several non-
overlapped subpolygons. Each sub-polygon can be partitioned into a mesh by a system of difference grids. To make
the global partition consistent, the mesh points along an interior boundary segment need to be common to the partitions
of the two neighboring subpolygons. Since the piecewise bilinear and linear admissible functions are continuous on
the entire domain, no errors result from the interior boundary segments, i.e., the method is conforming. Obviously, the
combined difference grids used make the finite difference method (FDM) more flexible.

As to the second problem, because no errors occur from the divergent integrals on triangular elements involving
the unbounded derivatives, we simply need to estimate the errors from the divergent integrals on rectangular elements.
New analysis is needed only to estimate errors from the approximate integrals on triangular elements involving the
non-homogeneous term of the equation. By following the arguments in [6], an O(h1.5) superconvergence can be
achieved for the Shortley–Weller difference approximation.

This rest of paper is organized as follows. In the next section, we will first present the Shortley–Weller difference
scheme for the Poisson equation. We will then formulate the method as a special finite element method (FEM) and
a finite volume method (FVM). In Section 3, an error analysis for the numerical method is presented and the su-
perconvergence of order O(h1.5) in a discrete norm is obtained. In Sections 4 and 5, we estimate the errors due to
the non-homogeneous term of equation on triangular elements and the those of the divergent integrals on rectangular
elements respectively.

Before further discussion, we first formulate (1.1) and (1.2) as a variational problem.
Let L2(S) be the space of square integrable functions on S, and let H 1(S) be the usual Sobolev space. We put

H 1
0 := {v: v ∈ H 1(S), v|Γ = 0}. The variational problem corresponding to (1.1)–(1.2) can be expressed by: Find

u ∈ H 1(S) such that

ah(u, v) = fh(v), ∀v ∈ H 1
0 (S),

where the bilinear and linear forms are defined respectively by

ah(u, v) =
∫ ∫
S

∇u∇v ds, fh(v) =
∫ ∫
S

f v ds.

2. The finite difference methods

In this section we will progressively construct the Shortley–Weller scheme [1,13] on various difference meshes.
We will start with the basis Shortley–Weller scheme.

2.1. The basis Shortley–Weller difference approximation

To construct the finite difference scheme, we first define a finite difference mesh for the solution domain S and
its boundary Γ as follows. Since S is polygonal, we assume that it is divided into a mesh containing rectangles and
triangles with the mesh lines either parallel to one of the axes or on Γ . In this mesh, all the triangles have at least one
side on Γ . Let I be the (double) index set of this mesh and X = (xi, yj ), ∀(i, j) ∈ I be the set of mesh nodes on S.
We now split the nodal set X into two disjoint subsets: the set containing nodes in S, denoted by Sh, and that on Γ ,
denoted by Γh. The index subsets of I corresponding to Sh and Γh are denoted by IS and IΓ , respectively. For any
feasible indices i and j , let hi = xi+1 − xi and kj = yj+1 − yj be the step sizes along the two directions, respectively.
We put h = maxi,j {hi, kj }. In what follows we use �ij and �ij to denote respectively the rectangular and triangular
element associated with (i, j) as shown in Fig. 1. For these elements, we have
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Fig. 1. A rectangle �ij and a �ij .

S = S� ∪ S� :=
(⋃

ij

�ij

)
∪
(⋃

ij

�ij

)
. (2.1)

As constructed, all elements in S� are right-angled triangles and located near the boundary Γ . Therefore, the two
nodes other than (xi, yj ) of �ij ∈ S� are in Γh. Obviously, the total number of triangles is much less than the number
of rectangles in this mesh. As shown in [5], the conventional finite difference method can be formulated as a special
finite element method using piecewise bilinear and linear interpolating functions, v(x, y), on �ij and �ij defined
respectively by,

v(x, y) = 1

hikj

{
(xi+1 − x)(yj+1 − y)vi,j + (x − xi)(yj+1 − y)vi+1,j

+ (xi+1 − x)(y − yj )vi,j+1 + (x − xi)(y − yj )vi+1,j+1
}
, (x, y) ∈ �ij , (2.2)

and

v(x, y) = vi,j + (x − xi)

hi

(vi+1,j − vi,j ) + (y − yj )

kj

(vi,j+1 − vi,j ), (x, y) ∈ �ij , (2.3)

where vk,� denotes the nodal value of v at (xk, y�). Let Vh ⊆ H 1(S) denote a finite dimensional space of the piecewise
bilinear and linear functions v of (2.2) and (2.3) satisfying (1.2), and we denote by V 0

h the subset of Vh satisfying
v = 0 on Γ . The FDM with the quadrature approximations to the line and area integrals are defined by: Find uh ∈ Vh

such that

âh(uh, v) = f̂h(v), ∀v ∈ V 0
h , (2.4)

where

âh(u, v) =
∫̂ ∫
S

∇u∇v ds =
∑
ij∈IS

[ ∫̂ ∫
�ij

∇u∇v ds +
∫̂ ∫
�ij

∇u∇v ds

]
, (2.5)

f̂h(v) =
∫̂ ∫
S

f v ds =
∑
ij∈IS

[ ∫̂ ∫
�ij

f v ds +
∫̂ ∫
�ij

f v ds

]
, (2.6)

where ij ∈ IS means the grids (xi, yj ) = (i, j) ∈ Sh. The approximate integrals in (2.5) and (2.6) over rectangles �ij

are evaluated by the following quadrature rules∫̂ ∫
�ij

∇u∇v ds =
∫̂ ∫
�ij

uxvx ds +
∫̂ ∫
�ij

uyvy ds, (2.7)

∫̂ ∫
�

uxvx ds = hikj

2

[
ux

(
i + 1

2
, j

)
vx

(
i + 1

2
, j

)
+ ux

(
i + 1

2
, j + 1

)
vx

(
i + 1

2
, j + 1

)]
, (2.8)
ij
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∫̂ ∫
�ij

uyvy ds = hikj

2

[
uy

(
i, j + 1

2

)
vy

(
i, j + 1

2

)
+ uy

(
i + 1, j + 1

2

)
vy

(
i + 1, j + 1

2

)]
, (2.9)

∫̂ ∫
�ij

f v ds = hikj

4

[
fij vij + fi+1,j vi+1,j + fi,j+1vi,j+1 + fi+1,j+1vi+1,j+1

]
, (2.10)

where wij = w(xi, yj ) for any w and ij and

ux

(
i + 1

2
, j

)
= ui+1,j − uij

hi

, uy

(
i, j + 1

2

)
= ui,j+1 − uij

kj

with the mesh nodes being defined in Fig. 1. Similarly, the integrals over a triangle �ij used in (2.5) and (2.6) are
approximated by∫̂ ∫

�ij

∇u∇v ds = hikj

2

[
ux

(
i + 1

2
, j

)
vx

(
i + 1

2
, j

)
+ uy

(
i, j + 1

2

)
vy

(
i, j + 1

2

)]
, (2.11)

∫̂ ∫
�ij

f v ds = hikj

8

[
2fij vij + fi+1,j vi+1,j + fi,j+1vi,j+1

]
. (2.12)

From (2.4) and (2.7)–(2.12), the traditional Shortley–Weller difference scheme centered at the grid (i, j) ∈ Sh is given
by

− (kj−1 + kj )

2hi

(ui+1,j − ui,j ) − (kj−1 + kj )

2hi−1
(ui−1,j − ui,j ) − (hi−1 + hi)

2kj

(ui,j+1 − ui,j )

− (hi−1 + hi)

2kj−1
(ui,j−1 − ui,j ) = (hi−1 + hi)(kj−1 + kj )

4
fi,j .

Dividing both sides of the above equation by
(hi−1+hi)(kj−1+kj )

4 gives the Shortley–Weller approximation to the equa-
tion.

For clarity, we will, in this paper, concentrate on the basic feature of the FDM in which the derivatives ux and uy

are replaced approximately and straightforwardly by the divided differences. Hence, basic elements in the FDM must
be rectangles �ij and right angled triangles �ij . More general partitions of S into rectangles �ij and triangles �ij

are also possible if we use the ideas of combined methods in [5]: Let S be divided by an interior boundary Γ0 into
several non-overlapped subdomains Si, i = 1,2, . . . ,N . Each Si is further partitioned into rectangles and triangles.
We assume that the grid points (i, j) on Γ0 are common to the meshes on both sides of Γ0. In this case our method is
conforming because there is no discontinuity across Γ0 in the piecewise linear and bilinear interpolating functions.

2.2. Reformulation of the FDM as a FVM

From the previous subsection we see that the FDM can be regarded as a special FEM. This formulation has the
following three characteristics:

(1) Based on the partition (2.1), we see that the right-angled triangles in the mesh are located only near exterior
boundary Γ and interior boundary Γ0. Hence, the partition contains predominantly rectangles.

(2) In the FEM formulation, we use bilinear and linear basis functions corresponding to �ij and �ij respectively, and
thus it is a combination of bilinear and linear elements.

(3) Special quadrature rules approximating the integrals are used to facilitate formulation of difference equations. In
this formulation, the derivatives are approximated by the divided differences.

As will be demonstrated later in this subsection, it is also possible to reformulate the FDM as a finite volume method
which enables us to write down the difference equations straightforwardly. Merits and drawbacks are twins. Compared
with FEMs, the merit of the FDM is the facile formulation of linear algebraic equations, but the drawback is it is less
flexible than the linear FEM in which rather arbitrary �ij can be chosen.
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Fig. 2. A control regions Sij .

Let us consider two kinds of FEMs: find uh and uE
h ∈ Vh such that∫̂ ∫

S

∇uh∇v =
∫̂ ∫
S

f v, ∀v ∈ V 0
h , (2.13)

∫ ∫
S

∇uE
h ∇v =

∫̂ ∫
S

f v, ∀v ∈ V 0
h , (2.14)

where uh and uE
h are the solutions from the Shortley–Weller approximation and the linear FEM, respectively.

Rule (2.12) for �ij is used in the Shortley–Weller approximation. the domain S may be partitioned into a mesh
containing right angled triangles �ij only, i.e., S = S�, which can be done by splitting each �ij ∈ S� into two tri-
angles �+

ij and �−
ij by a diagonal of �ij . Note that the integral

∫∫
S
∇uE

h ∇v, can be evaluated exactly because both

uE
h and v are the linear functions. However,

∫∫
�ij

f v is usually evaluated approximately by some quadrature rules
because f may be arbitrary. Let us take the triangle �ij as an example. A possible quadrature rule is∫̂ ∫

�ij

f v ds = hikj

6
[fij vij + fi+1,j vi+1,j + fi,j+1vi,j+1].

Note that for the linear FEM, even �ij ’s are not right angled triangles, the integral
∫∫

S
∇uE

h ∇v, can still be evaluated
exactly (cf., for example, [2,10]).

It is easy to show that the linear systems associated with (2.13)–(2.14), are respectively

A
x = 
b1, and A
xE = 
b2,

where A is the system matrix arising from both (2.13) and (2.14) and the unknown vectors 
x and 
xE consist of the
nodal values of uh and uE

h , respectively. The above explanation links the FDM to the FEM.
Next, we make a link between the FDM and a special FVM. In [8], the finite volume method can also be viewed

as a special FEM based on a Delaunay triangulation. To formulate the FDM as a finite volume scheme, we define
a partition of domain S dual to the original by the bisectors of the edges of each �ij and �ij . We denote this dual
partition by

S = SC :=
(⋃

ij

Sij

)
, (2.15)

where each Sij is called the control region of (xi, yj ), see Fig. 2. Integrating the left-hand side of (1.1) by parts on Sij ,
we have

−
∫

∂Sij

∂u

∂n
=
∫ ∫
Sij

f,

where n denotes the unit vector outward normal to ∂Sij and ∂Sij denotes the boundary of Sij . Applying the one-point
quadrature rule and a proper quadrature rule (to be defined later) to the right-hand and left-hand sides of the above
equation, respectively, gives
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Fig. 3. Typical local refinements of difference grids.

−
∫̂

∂Sij

∂u

∂n
= |Sij |fij , (2.16)

where |Sij | denotes the area of Sij . To define the approximation on the left-hand side of (2.16), we take tile in Fig. 2 as
an example. In this case, we have |Sij | = 1

4 (hi−1 +hi)(kj−1 +kj ). Since ∂Sij consists of four segments, the right-hand
side of (2.16) can be approximated by the following finite difference scheme∫̂

∂Sij

∂u

∂n
=
∫̂

AB

∂u

∂n
+
∫̂

BC

∂u

∂n
+
∫̂

CD

∂u

∂n
+
∫̂

DA

∂u

∂n
,

where ∫̂
AB

∂u

∂n
= ui,j−1 − uij

kj−1

(
hi−1 + hi

2

)
,

∫̂
BC

∂u

∂n
= ui+1,j − uij

hi

(
kj−1 + kj

2

)
,

∫̂
CD

∂u

∂n
= ui,j+1 − uij

kj

(
hi−1 + hi

2

)
,

∫̂
DA

∂u

∂n
= ui−1,j − uij

hi−1

(
kj−1 + kj

2

)
.

Clearly, Eq. (2.16) with the above quadrature rules becomes the Shortley–Weller difference approximation.

2.3. Difference scheme for problems with singularities

In this subsection we will modify the previous numerical method for (1.1) with unbounded derivatives on ΓU ⊆ Γ .
This includes a meshing technique and a modification of the difference scheme, as given below.

To mesh S, we follow the following rules.

• We divide S into several subdomains by an interior boundary Γ0, and mesh each of the subdomain separately.
• For the subdomain containing part of ΓU , we mesh it mesh using mesh lines parallel or perpendicular to that part

of ΓU . The mesh lines parallel to ΓU are normally graded according to a rule to be defined.
• Make sure that all the mesh nodes on Γ0 are common to the meshes on both sides of Γ0 to avoid the case of

non-conformity.

Let us demonstrate this using the subdomain in Fig. 3(a), in which the solution derivatives are assumed to be
unbounded on two edges, CD and DB . For this case, we split this subdomain into two subsubdomains, denoted S1
and S2, by Γ0 = DE that is chosen such that � CDE ≈ � EDB . Then two local Cartesian coordinate systems are used
in S1 and S2 respectively, and the local non-uniform meshes are used along CD and BD. Fig. 3(b) also illustrates a
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Fig. 4. The control region Sij .

Table 1
Comparisons of FDM with FVM and FEM

Methods FDM FVM FEM

Basic elements Rectangles and Delaunay triangles Triangles
Right triangles

Formation of Simplest Modest Complicated
difference equations
Applications Limited Modest Wide

partition used for a problem which has unbounded derivative along the edge BD. Clearly, a mesh constructed in this
way contains mostly rectangular elements. Triangular elements are needed only near Γ and Γ0.

Since the above meshing technique normally creates pairs of triangular element sharing a common edge on Γ0
the numerical scheme in Sections 2.1 or 2.2 needs to be modified. Let us take a typical case shown in Fig. 4 for
demonstration which contains two rectangular and four triangular elements. Based on the FVM interpretation (2.16)
and using the local index notation, we construct the difference scheme associated with Node 0 as follows

1

2

{
k1 + k3

h1
(v0 − v1) + k2 + k4

h2
(v0 − v2) + h2 + h3

k2
(v0 − v3) + h1 + h4

k1
(v0 − v4)

}
= 1

8

{
(h1 + h4)(k1 + k3) + (h2 + h3)(k2 + k4)

}
f0,

where v0 denotes the vij and vk , k = 1,2,3,4, are the nodal values of v at the neighboring grids. Difference schemes
for other cases can be constructed similarly to the above.

A linkage is explored for three popular methods, the FDM, the FDM and the FVM, as given in Table 1. For different
problems or different requirements, different numerical methods may be chosen [5]. As indicated in Table 1, the FDM
has a limitation of grid partition for arbitrary domains because it is based on rectangles and right triangles. If such
characteristics can not be retained, such a method is not of FDM. For the corner singularities, the FEM is obviously
superior to the FDM. However, for line singularities, the FDM outperforms the FEM due to its simplicity, and due to
the error analysis given in this paper. Each method has its own merits and drawbacks. The purpose of this research is
to explore the merits, particularly the superconvergence phenomenon, of the FDM for PDEs with line singularities.

3. Error analysis of the method

In this section we present the main results of the paper on the superconvergence of the solution of the finite
difference method in discussed Section 2. This error analysis is carried out using the following discrete H 1 norm:

‖v‖2
1 := ‖v‖2

1,S = |v|2
1,S + ‖v‖2

0,S, ∀v ∈ H 1(S)
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where |v|1,S and ‖v‖0,S are defined respectively by

|v|2
1 = |v|2

1,S =
∑
ij∈IS

[∫̂ ∫
�ij

(∇v)2 ds +
∫̂ ∫
�ij

(∇v)2 ds

]
,

‖v‖2
0 = ‖v‖2

0,S =
∑
ij∈IS

[∫̂ ∫
�ij

v2 ds +
∫̂ ∫
�ij

v2 ds

]
.

Here the quadrature rules,
∫̂∫

�ij
(∇v)2 ds,

∫̂∫
�ij

(∇v)2 ds,
∫̂∫

�ij
v2 ds and

∫̂∫
�ij

v2 ds are given in Section 2.1.
It has been shown in [2], p. 196, that

‖u − uh‖1 � C

{
‖u − uI‖1 + sup

w∈V 0
h

|(∫∫
S
−∫̂∫

S
)∇uI∇w ds|

‖w‖1
+ sup

w∈V 0
h

|(∫∫
S
−∫̂∫

S
)f w ds|

‖w‖1

}
, (3.1)

where uI is the Vh-interpolant of the true solution u. Since both uI and w are linear on �ij , it is easy to verify that∫ ∫
�ij

∇uI∇w ds −
∫̂ ∫
�ij

∇uI∇w ds = 0.

Splitting each integral on the right-hand side of (3.1) into one over the union of rectangular elements and another over
the union of the triangular elements and using the above equality, we have from (3.1)

‖u − uh‖1 � C

{
sup

w∈V 0
h

|(∫∫
S� −∫̂∫

S�)∇uI∇w ds|
‖w‖1

+
(

‖u − uI‖1 + sup
w∈V 0

h

|(∫∫
S� −∫̂∫

S�)f w ds|
‖w‖1

)
+ sup

w∈V 0
h

|(∫∫
S� −∫̂∫

S�)f w ds|
‖w‖1

}
=: T + T1 + T2. (3.2)

The following assumptions characterize the natures of the singularity in the solution and the right-hand side of the
continuous Poisson equation and the finite difference mesh near the boundary ΓU ⊆ Γ .

A1: The derivatives of the solution u close to ΓU satisfies (cf. [12,3]):

sup
0<d(x,y)�1

di−σ (x, y)

∣∣∣∣ ∂i

∂ni
u(x, y)

∣∣∣∣� C1, i = 1,2,3,4,

for some constants σ > 0 and C1 > 0, independent of u, where d denotes the distance between (x, y) ∈ S and
ΓU and n denotes the unit vector in the direction from (x, y) to the point on ΓU closest to (x, y). Moreover, we
assume that for 0 < r � 1, u satisfies

sup
dist(P,Q)�r

∣∣u(P ) − u(Q)
∣∣� Crσ ,

where P and Q are two arbitrary points in S near ΓU . In this paper, we assume

σ = 1

2
+ μ (3.3)

for some μ > 0. This is necessary for the derivative estimates used in the analysis.
A2: The function f satisfies the following properties (cf. [12,3]):

sup
0<d�1

di−ν(x, y)

∣∣∣∣ ∂i

∂ni
f (x, y)

∣∣∣∣� C2, i = 0,1,2,

sup
∣∣f (P ) − f (Q)

∣∣� Crν, (3.4)

dist(P,Q)�r
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Fig. 5. Partition of xi and yj .

for some constants ν > 0,C2 > 0 and 0 < r � 1. To make ν compatible with (3.3), we assume it satisfies

ν = −3

2
+ μ, μ > 0.

A3: We assume that the difference mesh near ΓU is constructed locally so that the mesh lines are either parallel or
perpendicular to one of the boundary segments in ΓU . Furthermore, we assume that the mesh lines parallel to
one segment of ΓU are constructed non-uniformly according to the distances from the segment d� = ψ(�h),
� = 0,1, . . . , n, for a positive integer n, where h = 1

n
and ψ(·) is the stretching function on [0,1] defined by

ψ(s) = 1∫ 1
0 zp(1 − z)p dz

s∫
0

zp(1 − z)p dz, s ∈ [0,1],

with p > 0 a (proper) constant (cf. [12,3]), whose choice will be given in the following theorems.

A triangulation family with the mesh parameter h, is said to be regular if for each triangle �ij of the mesh we have
if

max{l(1)
ij , l

(2)
ij , l

(3)
ij }

min{l(1)
ij , l

(2)
ij , l

(3)
ij }

� C

for all 0 < h � h0, where l
(k)
ij , k = 1,2,3, denote the lengths of the three sides of �ij , h0 is a positive constant and

C is a positive constant, independent of the mesh sizes. The regularity implies that the interior angles of any �ij are
bounded below by a positive constant when h → 0+. However, for the meshes defined in the previous section some
triangles having at least one side on Γ and Γ0 may satisfy the above inequality because of the stretching function
given in A3. Hence, we make the following assumption.

A4: The family of triangles located on Γ or Γ0, using the local refinements techniques in A3 is regular.

To make our proof notationally simple, we consider a special case of the above problem which has triangular
solution domains of the shape depicted in Fig. 5. We simplify Assumptions A1 and A2 as the following two.

A5: Suppose that the solution u is sufficiently smooth except1 for the derivatives with respect to x at x = 0, which
are unbounded and satisfy

1 This implies that up to and including 4th order derivatives with respect to y used are bounded. However, the derivatives with respect to x are
constrained by (3.5).
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sup
x∈(0,1)

xi−σ

∣∣∣∣ ∂i

∂xi
u(x, y)

∣∣∣∣� C, i = 1,2,3,4,

sup
x∈(0,1)

xi−ν

∣∣∣∣ ∂i

∂xi
f (x, y)

∣∣∣∣� C, i = 0,1,2, (3.5)

where σ = 1
2 + μ, ν = − 3

2 + μ and 0 < μ < 3
2 .

Note that Assumptions A1, A2 and A5 are commonly used for problems with unbounded derivatives near the
boundary, one popular type of boundary singularities (cf., for example, [3,4,14,6,11,12]). For this case, the application
of the meshing technique in A3 results in a mesh depicted in Fig. 5. This is given in the following assumption.

A6: Let both xi and yj of partition in S be chosen as in A3, see Fig. 5.

Finally, we have the following theorem, whose proof is deferred in Sections 4 and 5.

Theorem 3.1. Let S = S� ∪ S� and A1–A6 be fulfilled. For σ = 1
2 +μ and ν = − 3

2 +μ, μ > 0, there exists the error
bound of the solution uh from the Shortley–Weller difference approximation

‖u − uh‖1 � T + T1 + T2 � Chr, r � 1.5,

where r = (p + 1)μ and T ,T1 and T2 are defined in (3.2).

The equation p + 1 = 1.5
μ

from Theorem 3.1 may not reachable, since the condition number Cond = O(h−2
min) =

O(h−2(p+1)). From the error analysis, the solution singularity u = O(r
1
2 +μ) with μ > 0 is allowable to achieve the

optimal convergence rate O(h1.5). However, for stability, μ should be larger than μ0 (> 0) by noting that μ = 0.15
gives p + 1 = 10, leading to the huge condition number Cond = O(h−20).

4. Bounds for T1 and T2

In this section, we will estimate bounds on T1 and T2 in (3.2). Bounds on T will be established in the next section.
The following three lemmas have been established in [9,6].

Lemma 4.1. Let u be the exact solution to (1.1)–(1.2), and let uI be the Vh-interpolant of u. Then, we have

‖u − uI‖1 =
{ ∑

ij∈IS

‖u − uI‖2
1,�ij

+
∑
ij∈IS

‖u − uI‖2
1,�ij

} 1
2

,

and

|u − uI |21,�ij
� 1

2

∫ ∫
�ij

κ2
1,i (x)

(
u2

xxx(x, yj ) + u2
xxx(x, yj+1)

)+ κ2
2,j (y)

(
u2

yyy(xi, y) + u2
yyy(xi+1, y)

)
,

|u − uI |21,�ij
�
∫ ∫
�ij

κ2
1,i (x)u2

xxx(x, yj ) + κ2
2,j (y)u2

yyy(xi, y),

where uxiyj = ∂i+j u
∂xi∂yj , and

κ1,i (x) =
{

1
2 (x − xi)

2 for xi � x � xi + hi

2 ,

1
2 (xi+1 − x)2 for xi + hi

2 � x � xi+1,

κ2,j (y) =
{

1
2 (y − yj )

2 for yj � y � yj + kj

2 ,

1
2 (yj+1 − y)2 for yj + kj

2 � y � yj+1.
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Lemma 4.2. There exists the bound:∣∣∣∣∣
(∫ ∫

S�
−
∫̂ ∫
S�

)
f w

∣∣∣∣∣� C‖|f ‖|� × ‖w‖1,S� , w ∈ V 0
h ,

where

‖|f ‖|� =
√√√√ ∑

�ij ∈S�

∫̂ ∫
�ij

p2
ij + ‖qij‖2−1,�ij

,

p2
ij = (f 2

x + f 2
x (x, yj ) + f 2

x (x, yj+1)
)
(x − xi)

2(x − xi+1)
2

+ (f 2
y + f 2

y (xi, y) + f 2
y (xi+1, y)

)
(y − yj )

2(y − yj+1)
2,

q2
ij = (f 2

xx + f 2
xx(x, yj ) + f 2

xx(x, yj+1)
)
(x − xi)

2(x − xi+1)
2

+ (f 2
yy + f 2

yy(xi, y) + f 2
yy(xi+1, y)

)
(y − yj )

2(y − yj+1)
2,

and

‖qij‖−1,�ij
� sup

w∈V 0
h

∫∫
�ij

qijw

‖w‖1,�ij

.

Combining Lemmas 4.1 and 4.2, we have following lemma.

Lemma 4.3. Let A1–A3 be given. There exists the error bound of T1,

T1 � C

n∑
�=1

{
�2μ(p+1)−5 × h2μ(p+1)

} 1
2 ,

where h = 1
N

, as given in A3. Moreover, for σ = 1
2 + μ and ν = − 3

2 + μ, μ > 0, when putting r = (p + 1)μ, we have

T1 =

⎧⎪⎪⎨⎪⎪⎩
O(hr), if r < 2,

O
(
h2
√

ln 1
h

)
= O(h2−δ), 0 < δ � 1, if r = 2,

O(h2), if r > 2.

Next, we estimate bounds on T2 in (3.2). Consider the quadrature rule on �ij ,∫̂ ∫
�ij

f = |�ij |
4

(2f1 + f2 + f3), (4.1)

where 1 denotes the right-angled vertex and 2 and 3 the other two vertices of �ij . We have following lemma, whose
proof is given in Li et al. [7].

Lemma 4.4. Let �ij be a right-angled triangle with the boundary lengths hij and kij forming the right angle satisfying
kij � Chij for a positive constant C, independent of hij and kij . Then, the quadrature rule in (4.1) satisfies∣∣∣∣∣

∫ ∫
�ij

f −
∫̂ ∫
�ij

f

∣∣∣∣∣� Chij

√
hij kij |f |1,�ij

, (4.2)

where |f |k,�ij
denotes the Sobolev norm of f �ij .

From Lemma 4.4 and the Cauchy–Schwarz inequality we have the following lemma (see [7]).
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Lemma 4.5. Let S� =⋃ij �ij , and let hij and kij be the lengths of for the two sides of �ij forming the right angle.
If hij � Ckij for a constant C > 0, independent of the mesh sizes, then there exists the bound,∣∣(∫∫

S� −∫̂∫
S�)f w

∣∣
‖w‖1,S�

� C‖|δ‖|�, w ∈ V 0
h , (4.3)

where w ∈ V 0
h and

‖|δ‖|� =
√√√√∑

ij

{∫ ∫
�ij

h2
ij

(
f̃ij

)2 + ∥∥hij (Df̃ij )
∥∥2

−1,�ij

}
.

Here f̃ij = f (ξij ) with ξij a fixed (but unknown) point in �ij , and Df =
√

f 2
x + f 2

y .

Theorem 4.1. Let A1–A4 be fulfilled. Then, there exists a positive constant C, independent of mesh sizes, such that

T2 � C

n∑
�=1

{
�2μ(p+1)−3 × h2μ(p+1)t�

} 1
2 , (4.4)

where h = 1
n

as given in A3. Moreover, for σ = 1
2 + μ and ν = − 3

2 + μ, μ > 0, we have

T2 =

⎧⎪⎪⎨⎪⎪⎩
O(hr), if r < 1.5,

O
(
h1.5
√

ln 1
h

)
= O(h1.5−δ), 0 < δ � 1, if r = 1.5,

O(h1.5), if r > 1.5,

(4.5)

where r = (p + 1)μ.

Proof. Choose the difference grids (xi, yj ) with the distance d� = O((�h)p+1) to Γ , and let t� = d�+1 − d� =
O(h(�h)p) denote the diameters of �ij and �ij . From Assumption A4, the elements �ij ∈ S� can be re-ordered
according to the distance sequence, d�, to Γ with max{hij , kij } � Ct� and then(

Dkf̃ij

)2 = O
(
d2ν−2k
�

)= O
(
d2σ−4−2k
�

)
.

We have∫ ∫
�ij

h2
ij f̃

2
ij � Ct4

� d2ν
� = Ct3

� d2σ−4
� t� � C�(2σ−1)(p+1)−3 × h(2σ−1)(p+1)t�,

∥∥hij (Df̃ij )
∥∥2

−1,�ij
� C�(2σ−1)(p+1)−3 × h(2σ−1)(p+1)t�.

Hence, we have from Lemma 4.5

T2 � C‖|δ‖|� �
{ ∑

ij∈IS

(∫ ∫
�ij

h2
ij f̃

2
ij + ‖hijDf̃ij‖2−1,�ij

)} 1
2

� C

{
n∑

�=1

�(2σ−1)(p+1)−3 × h(2σ−1)(p+1)t�

} 1
2

� C

{
n∑

�=1

�2μ(p+1)−3 × h2μ(p+1)t�

} 1
2

.

This is (4.4), and Eq. (4.5) follows from r = (p + 1)μ and
∑n

�=1 t� � C. It completes the proof of Theorem 4.1. �
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5. Bounds on T

In this section, we derive some bounds on T in (3.2). To achieve this, we first note(∫̂ ∫
S�

−
∫ ∫
S�

)
∇u∇v ds =

(∫̂ ∫
S�

−
∫ ∫
S�

){
(uI )xvx + (uI )yvy

}

=
∑
ij∈IS

(∫̂ ∫
�ij

−
∫ ∫
�ij

){
(uI )xvx + (uI )yvy

}
. (5.1)

The present analysis has two differences from that in [6]: (1) The Dirichlet boundary condition is not imposed on
∂S� ⊂ S, where S� =⋃ij �ij . (2) Both grids xi and yj along x axis and y axis are chosen to be local refinements.
Let us estimate the bounds of the first term on the right hand side of (5.1). After some manipulations, we obtain∫ ∫

�ij

(uI )xvx = kj

3hi

{
(u4 − u3)(v4 − v3) + (u2 − u1)(v2 − v1)

+ 1

2
(u4 − u3)(v2 − v1) + 1

2
(u2 − u1)(v4 − v3)

}
,

and ∫̂ ∫
�ij

(uI )xvx = kj

2hi

{
(u4 − u3)(v4 − v3) + (u2 − u1)(v2 − v1)

}
,

where subscripts 1, 2, 3 and 4 represent grids (i, j), (i + 1, j), (i, j + 1) and (i + 1, j + 1) respectively. Hence we
have (∫̂ ∫

�ij

−
∫ ∫
�ij

)
(uI )xvx = kj

6hi

(u1 + u4 − u2 − u3)(v1 + v4 − v2 − v3). (5.2)

Using the Taylor expansion we see that u4 can be expanded at the center O at (i + 1
2 , j + 1

2 ) to yield

u4 := u(i + 1, j + 1) = uo +
(

hi

2

∂

∂x
+ kj

2

∂

∂y

)
uo + 1

2

(
hi

2

∂

∂x
+ kj

2

∂

∂y

)2

uo

+ 1

3!
(

hi

2

∂

∂x
+ kj

2

∂

∂y

)3

uo + 1

4!
(

hi

2

∂

∂x
+ kj

2

∂

∂y

)4

ũ,

where ũ = u(ξ, η) for some (ξ, η) ∈ �ij . The other terms, uk , k = 1,2,3, can be derived similarly. Using these
expansions we have

u1 + u4 − u2 − u3 = hikj (uxy)o + k4
j

4 · 4! ũyyyy + b1hik
3
j ũxyyy

+ b2h
2
i k

2
j ũxxyy + b3h

3
i kj ũxxxy + b�h

4
i ũxxxx,

where b�’s are constants independent of hi and kj . Substituting the above equation into (5.2) we have(∫̂ ∫
S�

−
∫ ∫
S�

)
(uI )xvx =

∑
ij∈IS

(∫̂ ∫
�ij

−
∫ ∫
�ij

)
(uI )xvx

=
∑
ij∈IS

kj

6hi

{
hikj (uxy)o + k4

j

4 · 4! ũyyyy +
4∑

�=1

b�h
�
i k

4−�
j ũx�y4−�

}
× (v1 + v4 − v2 − v3). (5.3)
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We will first estimate the bound on the first term on the right-hand side of (5.3). This is given in the following
lemma.

Lemma 5.1. Let A4–A6 hold. The there exists the error bound,∣∣∣∣ ∑
ij∈IS

k2
j (uxy)o(v1 + v4 − v2 − v3)

∣∣∣∣� Ch
3
2 ‖v‖1, ∀v ∈ V 0

h . (5.4)

Lemma 5.2. Let A4–A6 hold. Then we have∣∣∣∣∣
(∫̂ ∫

S�
−
∫ ∫
S�

)
(uI )xvx

∣∣∣∣∣� C
{
h1.5 + h3‖ũxyyy‖0,S + T0

}× ‖v‖1, v ∈ V 0
h ,

where

T0 =
√∑

ij∈IS

∥∥h3
i ũxxxx

∥∥2
0,�ij

+ h

√∑
ij∈IS

∥∥h2
i ũxxxy

∥∥2
0,�ij

+ h2
√∑

ij∈IS

∥∥hiũxxyy

∥∥2
0,�ij

+ h1.5

√√√√∑
ij∈IS

∥∥∥∥k2.5
j

hi

ũyyyy

∥∥∥∥2

0,�ij

(5.5)

and ũ = u(ξ, η) form some (ξ, η) ∈ �ij .

The proof Lemmas 5.1 and 5.2 is provided in [7]. Similarly, we can prove the following lemma (see [7]).

Lemma 5.3. Let A4–A6 hold. For σ = 1
2 + μ and ν = − 3

2 + μ, μ > 0, putting r = (p + 1)μ � 1.5, we have∣∣∣∣∣
(∫̂ ∫

S�
−
∫ ∫
S�

)
(uI )yvy

∣∣∣∣∣� C
{
hr + h3‖ũxyyy‖0,S + T ∗

0

}× ‖v‖1, v ∈ V 0
h , (5.6)

where

T ∗
0 =

√∑
ij∈IS

∥∥h3
i ũxxxx

∥∥2
0,�ij

+ h

√∑
ij∈IS

∥∥h2
i ũxxxy

∥∥2
0,�ij

+ h2
√∑

ij∈IS

∥∥hiũxxyy

∥∥2
0,�ij

+
√√√√∑

ij∈IS

∥∥∥∥h4
i

kj

ũyyyy

∥∥∥∥2

0,�ij

(5.7)

and ũ = u(ξ, η) for some (ξ, η) ∈ �ij .

Theorem 5.1. Let A4–A6 hold, and assume that the exact solution, u, is four-times continuously differentiable on S,
except the x-derivatives of u at x = 0. Let σ = 1

2 + μ, μ > 0 and r = (p + 1)μ � 1.5. Then, we have

T = sup
v∈V 0

h

1

‖v‖1

∣∣∣∣∣
(∫̂ ∫

S�
−
∫ ∫
S�

)
∇uI∇v

∣∣∣∣∣= O
(
hr
)
. (5.8)

Proof. We have from Lemmas 5.2 and 5.3,∣∣∣∣∣
(∫̂ ∫

S�
−
∫ ∫
S�

){
(uI )xvx + (uI )yvy

}∣∣∣∣∣� C
{
hr + h1.5 + h3‖ũxyyy‖0,S + T̄ ∗

0

}‖v‖1 (5.9)

for v ∈ V 0, where
h
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T̄ ∗
0 =

√∑
ij∈IS

∥∥h3
i ũxxxx

∥∥2
0,�ij

+ h

√∑
ij∈IS

∥∥h2
i ũxxxy

∥∥2
0,�ij

+ h2
√∑

ij∈IS

∥∥hiũxxyy

∥∥2
0,�ij

+ h1.5

√√√√∑
ij∈IS

∥∥∥∥k2.5
j

hi

ũyyyy

∥∥∥∥2

0,�ij

+
√√√√∑

ij∈IS

∥∥∥∥h4
i

kj

ũyyyy

∥∥∥∥2

0,�ij

. (5.10)

Obviously, we have from σ > 1
2 ,

hr + h1.5 + h3‖ũxyyy‖0,S � Chr . (5.11)

It was proved in [6] that√∑
ij∈IS

∥∥h3
i ũxxxx

∥∥2
0,�ij

+
√∑

ij∈IS

∥∥h2
i ũxxxy

∥∥2
0,�ij

+ h2
√∑

ij∈IS

∥∥hiũxxyy

∥∥2
0,�ij

� Ch1.5. (5.12)

Let us now consider the bounds for the last two terms, denoted by I 1/2 and II1/2 respectively, on the right hand side
of (5.10). Since uyyyyy ∈ C(S), we obtain

I := h3
∑
ij∈IS

∥∥∥∥k2.5
j

hi

ũyyyy

∥∥∥∥2

0,�ij

= h3
∑
ij∈IS

∫ ∫
�ij

k5
j

h2
i

ũ2
yyyyy � Ch3

∑
ij∈IS

k6
j

hi

. (5.13)

Since
N∑

i=1

1

hi

� C
1

iphp+1
,

we have
N∑

i=1

1

hi

� C
1

h2
ln

1

h
for p = 1

and
N∑

i=1

1

hi

� C
1

h2
for p �= 1.

Then, we have

I � Ch3

(
N∑

j=1

h6
j

)(
N∑

i=1

1

hi

)
� Ch8 1

h2
ln

1

h
� Ch6 ln

1

h
. (5.14)

Moreover, we have

II :=
∑
ij∈IS

∥∥∥∥h4
i

kj

ũxxxx

∥∥∥∥2

0,�ij

�
∑
ij∈IS

∫ ∫
�ij

h8
i

k2
j

ũ2
xxxx

�
∑
ij∈IS

h9
i

kj

ũ2
xxxx � C

∑
ij∈IS

h2
i

kj

h7
i x

2σ−8
i � Ch2

(
N∑

i=1

h7
i x

2σ−8
i

)(
N∑

j=1

1

kj

)
. (5.15)

Next, for r � 1.5 we obtain

N∑
i=1

h7
i x

2σ−8
i � C

N∑
i=1

i2σ−1)(p+1)−7h(2σ−1)(p+1) � C

N∑
i=1

i2r−7h2r � C
lnN

N3
h2r . (5.16)

Since
∑N

j=1
1 � C 1

2 (ln 1 ), we obtain from (5.15) and (5.16),

kj h h
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II � Ch3+2r

(
ln

1

h

)2

. (5.17)

Combining (5.9)–(5.12), (5.14) and (5.17) gives the desired result (5.8). This completes the proof of Theorem 5.1. �
Remark 5.1. In [7], the FDM is extended to other elliptic equations with Neumann and Robin boundary conditions.
Numerical experiments, displaying a computed convergence rate of order O(h1.85), are also presented in [7] to support
the theoretical O(h1.5)-order superconvergence rate obtained in this paper.

Acknowledgements

We are grateful to Professors T. Yamamoto, R. Beauwens and the anonymous referees for their valuable comments
and suggestions on this paper.

References

[1] J.H. Bramble, B.E. Hubbard, On the formulation of finite difference analogies of the Dirichlet problem for Poisson’s equation, Numer. Math. 4
(1962) 313–327.

[2] C.G. Ciarlet, Basic error estimates for elliptic problems, in: P.G. Ciarlet, J.L. Lions (Eds.), Finite Element Methods (Part I), North-Holland,
Amsterdam, 1991.

[3] Q. Fang, Convergence of finite difference methods for convection–diffusion problems with singular solutions, J. Comput. Appl. Math. 152
(2003) 119–131.

[4] M. Krizek, P. Neittaanmaki, On a global-superconvergence of the gradient of linear triangular elements, J. Comput. Appl. Math. 18 (1987)
221–233.

[5] Z.C. Li, Combined Methods for Elliptic Equations with Singularities, Interfaces and Infinities, Kluwer Academic Publishers, Dordrecht,
Boston, London, 1998.

[6] Z.C. Li, H.Y. Hu, Q. Fang, T. Yamamoto, Superconvergence of solution derivatives for the Shortley–Weller difference approximation of
Poisson’s equation, Part II. Singularity problems, Numer. Funct. Anal. Optimiz. 24 (3–4) (2003) 195–221.

[7] Z.C. Li, H.Y. Hu, S. Wang, Q. Fang, Superconvergence of solution derivatives for the Shortley–Weller difference approximation of Poisson’s
equation, Part III. Singularity problems on polygons, Technical report, Department of Applied Mathematics, National Sun Yat-sen University,
Kaohsiung, Taiwan, 2005.

[8] Z.C. Li, S. Wang, The finite volume method and application in combinations, J. Comp. Appl. Math. 106 (1999) 21–53.
[9] Z.C. Li, T. Yamamoto, Q. Fang, Superconvergence of solution derivatives for the Shortley–Weller difference approximation of Poisson’s

equation, Part I. Smoothness problems, J. Comp. Appl. Math. 151 (2) (2003) 307–333.
[10] G. Strang, G.J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Inc., 1973.
[11] T. Yamamoto, Inversion formulas for tridiagonal matrices with applications to boundary value problems, Numer. Funct. Anal. Optimiz. 22

(2001) 357–385.
[12] T. Yamamoto, Convergence of consistent and inconsistent finite difference schemes and an acceleration technique, J. Comp. Appl. Math. 140

(2002) 849–866.
[13] T. Yamamoto, Q. Fang, X. Chen, Superconvergence and nonsuperconvergence of the Shortley–Weller approximations for Dirichlet problems,

Numer. Funct. Anal. Optimiz. 22 (2001) 455–470.
[14] K. Yoshida, T. Tsuchiya, Recovered derivatives for the Shortley–Weller finite difference approximation, Information 4 (3) (2001) 267–277.


