
This article was downloaded by:[Yamagata University]
On: 28 February 2008
Access Details: [subscription number 771218322]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Numerical Functional Analysis and
Optimization
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713597287

Superconvergence of Solution Derivatives of the
Shortley-Weller Difference Approximation to Elliptic
Equations with Singularities Involving the Mixed Type of
Boundary Conditions
Zi-Cai Li a; Qing Fang b; Song Wang c; Hsin-Yun Hu d
a Department of Applied Mathematics and Department of Computer Science and
Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
b Department of Mathematical Sciences, Faculty of Science, Yamagata University,
Yamagata, Japan
c School of Mathematics and Statistics, The University of Western Australia,
Crawley, Western Australia, Australia

d Department of Mathematics, Tunghai University, Taichung, Taiwan

Online Publication Date: 01 January 2008
To cite this Article: Li, Zi-Cai, Fang, Qing, Wang, Song and Hu, Hsin-Yun (2008) 'Superconvergence of Solution
Derivatives of the Shortley-Weller Difference Approximation to Elliptic Equations with Singularities Involving the Mixed
Type of Boundary Conditions', Numerical Functional Analysis and Optimization, 29:1, 161 - 196
To link to this article: DOI: 10.1080/01630560701872490
URL: http://dx.doi.org/10.1080/01630560701872490

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713597287
http://dx.doi.org/10.1080/01630560701872490
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

B
y:

 [Y
am

ag
at

a 
U

ni
ve

rs
ity

] A
t: 

00
:5

9 
28

 F
eb

ru
ar

y 
20

08
 

Numerical Functional Analysis and Optimization, 29(1–2):161–196, 2008
Copyright © Taylor & Francis Group, LLC
ISSN: 0163-0563 print/1532-2467 online
DOI: 10.1080/01630560701872490
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� This paper presents a superconvergence analysis for the Shortley–Weller finite difference
approximation of second-order self-adjoint elliptic equations with unbounded derivatives on
a polygonal domain with the mixed type of boundary conditions. In this analysis, we
first formulate the method as a special finite element/volume method. We then analyze the
convergence of the method in a finite element framework. An O(h1�5)-order superconvergence of
the solution derivatives in a discrete H 1 norm is obtained. Finally, numerical experiments are
provided to support the theoretical convergence rate obtained.

Keywords Boundary singularity; Finite difference method; Mixed type of boundary
conditions; Poisson’s equation; Polygonal domains; Shortley–Weller approximation;
Solution derivatives; Stretching function; Superconvergence.

AMS Subject Classification 65N10; 65N30.

1. INTRODUCTION

In [7, 8], superconvergence of solution derivatives was studied for the
Shortley–Weller finite approximations (simply called FDM) to the Poisson
equation with the Dirichlet boundary condition. In this paper, we explore
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Science, Yamagata University, Yamagata 990-8560, Japan; E-mail: fang@sci.kj.yamagata-u.ac.jp
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162 Z.-C. Li et al.

the following problem of elliptic equations with the mixed type of the
Dirichlet and the Robin boundary conditions,

−�u + cu = f (x , y), (x , y) ∈ S , (1.1)

u = g (x , y), (x , y) ∈ �D , (1.2)

un + �u = gR(x , y), (x , y) ∈ �R , (1.3)

where S is a polygon, � = �D ∪ �R , and �D and �R are portions of the
boundary � of S on which the Dirichlet and the Robin conditions are
imposed, respectively, and c and � are non-negative smooth functions. In
(1.1)–(1.3), the notations are �u = �2u

�x2 + �2u
�y2 and un = �u

�n , and f , g , and gR
are given functions. Note that the Neumann condition is a special case of
the Robin condition in (1.3) with � = 0. To guarantee that the problem
is uniquely solvable, we exclude the case of c = 0 and the pure Neumann
boundary condition (i.e., �R = � and � = 0). Suppose that there exist
unbounded derivatives only near boundary �D . The superconvergence
rates of orders O(h2) and O(h1�5) of the solution derivatives in a discrete
H 1 norm have been established for smooth problems on rectangular and
polygonal domains (cf. [7]), respectively. For problems with unbounded
derivatives near �D , the local refinements of difference grids nearby should
be adapted, the same order superconvergence of solution derivatives can
be achieved for rectangular and polygonal domains (see [8, 9]). The above
study was made only for Poisson’s equation with the Dirichlet boundary
condition; this paper pursues the superconvergence for (1.1)–(1.3) by
the FDM. Note that in [9], only a brief outline of proof was provided,
and no numerical experiments were reported. In this paper, we will
provide the detailed proof and the numerical examples on nonrectangular
domain with the mixed type of the Dirichlet and the Neumann boundary
conditions.

First we formulate (1.1)–(1.3) as a variational problem. Let L2(S) be
the space of square integrable functions on S , and let H 1(S) be the usual
Sobolev space. We put H 1

0 := �v : v ∈ H 1(S), v|�D= 0�. The variational
problem corresponding with (1.1)–(1.3) can be expressed by: Find u ∈
H 1(S) such that

ah(u, v) = fh(v), ∀v ∈ H 1
0 (S),

where the bilinear and linear forms are defined respectively by

ah(u, v) =
∫∫

S
�u�v ds +

∫∫
S
cuv ds +

∫
�R

�uv dl ,

fh(v) =
∫∫

S
fv ds +

∫
�R

gRv dl �
(1.4)
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Superconvergence of Solution Derivatives 163

This paper is organized as follows. In the next section, we will first
present the Shortley–Weller difference scheme as a special finite element
method (FEM). In Section 3, an error analysis for the numerical method is
presented and the superconvergence of order O(h1�5) in a discrete norm is
obtained. In Sections 4–5, the proof for lemmas is given. Finally, numerical
experiments are presented in the last section to support the theoretical
superconvergence results obtained.

2. THE FINITE DIFFERENCE METHODS

A polygonal S may be divided into a mesh containing rectangles and
triangles with the mesh lines either parallel to one of the axes or on � .
In this mesh, all the triangles have at least one side on � . Let I be the
(double) index set of this mesh and X = (xi , yj), ∀(i , j) ∈ I be the set of
mesh nodes on S . We now split the nodal set X into two disjoint subsets:
the set containing nodes in S , denoted by Sh , and that on � , denoted by
�h . The index subsets of I corresponding with Sh and �h are denoted by IS
and I� , respectively. For any feasible indices i and j , let hi = xi+1 − xi and
kj = yj+1 − yj be the step sizes along the two directions, respectively. We put
h = maxi ,j�hi , kj�. In what follows, we use �ij and �ij to denote respectively
the rectangular and triangular element associated with (i , j) as shown in
Figure 1. For these elements, we have

S = S� ∪ S� := (∪ij�ij) ∪ (∪ij�ij)� (2.1)

As constructed, all elements in S� are right-angled triangles and located
near the boundary � . Therefore, the two nodes other than (xi , yj) of �ij ∈
S� are in �h . Obviously, the total number of triangles is much less than the
number of rectangles in this mesh. As shown in [5], the conventional finite
difference method can be formulated as a special finite element method

FIGURE 1 A rectangle �ij and a �ij .
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164 Z.-C. Li et al.

using piecewise bilinear and linear interpolating functions, v(x , y), on �ij

and �ij defined respectively by,

v(x , y) = 1
hi kj

�(xi+1 − x)(yj+1 − y)vi ,j + (x − xi)(yj+1 − y)vi+1,j

+(xi+1 − x)(y − yj)vi ,j + 1 + (x − xi)(y − yj)vi+1,j+1�, (x , y)∈�ij ,

(2.2)

and

v(x , y) = vi ,j + (x − xi)
hi

(vi+1,j − vi ,j) + (y − yj)
kj

(vi ,j+1 − vi ,j), (x , y) ∈ �ij ,

(2.3)

where vk,	 denotes the nodal value of v at (xk , y	). Let Vh ⊆ H 1(S) denote
a finite dimensional space of the piecewise bilinear and linear functions v
of (2.2) and (2.3) satisfying (1.2), and we denote by V 0

h the subset of Vh

satisfying v = 0 on � . The FDM with the quadrature approximations to the
line and area integrals are defined by: Find uh ∈ Vh such that

âh(uh , v) = f̂h(v), ∀v ∈ V 0
h , (2.4)

where

âh(u, v) =
∫̂ ∫

S
�u�v ds +

∫̂ ∫
S
cuv ds +

∫̂
�R

�uv dl

=
∑
ij∈IS

[∫̂∫
�ij

�u�v ds +
∫̂ ∫

�ij

�u�v ds

]

+
∑
ij∈IS

[∫̂∫
�ij

cuv ds +
∫̂ ∫

�ij

cuv ds

]
+
∑
i

∫̂
(�R )i

�uv dl , (2.5)

f̂h(v) =
∫̂ ∫

S
fv ds +

∫̂
�R

gRv dl

=
∑
ij∈IS

[∫̂∫
�ij

fv ds +
∫̂ ∫

�ij

fv ds

]
+
∑
i

∫̂
(�R )i

gRv dl , (2.6)

where �R = ∪i(�R)i , and (i , j) ∈ IS means the grids (xi , yj) = (i , j) ∈ Sh . The
approximate integrals in (2.5) and (2.6) over rectangles �ij are evaluated
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Superconvergence of Solution Derivatives 165

by the following quadrature rules∫̂ ∫
�ij

�u�v ds =
∫̂ ∫

�ij

uxvx ds +
∫̂ ∫

�ij

uyvy ds, (2.7)

∫̂ ∫
�ij

uxvx ds = hi kj
2

[
ux

(
i + 1

2
, j
)
vx

(
i + 1

2
, j
)

+ux

(
i + 1

2
, j + 1

)
vx

(
i + 1

2
, j + 1

)]
, (2.8)∫̂ ∫

�ij

uyvy ds = hi kj
2

[
uy

(
i , j + 1

2

)
vy

(
i , j + 1

2

)
+uy

(
i + 1, j + 1

2

)
vy

(
i + 1, j + 1

2

)]
, (2.9)∫̂ ∫

�ij

cuv ds = hi kj
4


(cu)ij vij + (cu)i+1,j vi+1,j + (cu)i ,j+1ui ,j+1

+(cu)i+1,j+1 vi+1,j+1�, (2.10)∫̂ ∫
�ij

fv ds = hikj
4

[
fij vij + fi+1,j vi+1,j + fi ,j+1vi ,j+1 + fi+1,j+1vi+1,j+1

]
, (2.11)

where wij = w(xi , yj) for any w and ij and

ux

(
i + 1

2
, j
)

= ui+1,j − uij

hi
, uy

(
i , j + 1

2

)
= ui ,j+1 − uij

kj

with the mesh nodes being defined in Figure 1. Similarly, the integrals over
a triangle �ij used in (2.5) and (2.6) are approximated by∫̂ ∫

�ij

�u�v ds = hi kj
2

[
ux

(
i + 1

2
, j
)
vx

(
i + 1

2
, j
)

+uy

(
i , j + 1

2

)
vy

(
i , j + 1

2

)]
, (2.12)∫̂ ∫

�ij

cuv ds = hikj
8

[
2(cu)ij vij + (cu)i+1,j vi+1,j + (cu)i ,j+1vi ,j+1

]
, (2.13)

∫̂ ∫
�ij

fv ds = hikj
8

[
2fij vij + fi+1,j vi+1,j + fi ,j+1vi ,j+1

]
, (2.14)

∫̂
�R

�uv =
∑
i

∫̂
(�R )i

�uv,
∫̂

�R

gRv =
∑
i

∫̂
(�R )i

gRv� (2.15)
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166 Z.-C. Li et al.

From (2.4) and (2.7)–(2.15), the traditional Shortley–Weller difference
scheme centered at the grid (i , j) ∈ Sh is given by

−(kj−1 + kj)
2hi

(ui+1,j − ui ,j) − (kj−1 + kj)
2hi−1

(ui−1,j − ui ,j)

− (hi−1 + hi)
2kj

(ui ,j+1 − ui ,j) − (hi−1 + hi)
2kj−1

(ui ,j−1 − ui ,j)

+ (hi−1 + hi)(kj−1 + kj)
4

ci ,j ui ,j

= (hi−1 + hi)(kj−1 + kj)
4

fi ,j �

Dividing both sides of above equation by
(hi−1+hi )(kj−1+kj )

4 gives the Shortley–
Weller approximation to the equation. For the integrals on boundary in
(2.15), we choose the trapezoidal rule,∫̂

12
f = |12|

2
(f1 + f2),

where 1 and 2 denote the two end points and |12| denotes the length of
the segment 12.

Based on partition (2.1), the FDM can also be interpreted as the finite
volume method (FVM): To seek uh such that

−
∫̂

�Sij \�

�uh

�n
+
∫̂ ∫

Sij

cuh +
∫̂

�R∩Sij
�uh =

∫̂ ∫
Sij

f +
∫̂

�N ∩Sij
gN +

∫̂
�R∩Sij

gR ,

(2.16)

Eq. (2.16) may greatly simplify the formulation of difference equations of
the FDM.

For the discretization of the problem on �R , we have the difference
scheme as follows. Taking Figure 2 with the Robin condition as an
example, we have

−
∫̂

AB∪BC

�uh

�n
+
∫̂ ∫

Sij

cuh +
∫̂

OA∪OC
�uh =

∫̂ ∫
Sij

f +
∫̂

OA∪OC
gR � (2.17)

We can obtain the following equation easily,

−1
2

{
u3 − u0

k1
(h1 + h2) + u2 − u0

h2
(k1 + k2)

}
+ (�0u0)|OA ∪ OC | + c0u0|Sij |

= f0|Sij | +(gR)0|OA ∪ OC |,
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Superconvergence of Solution Derivatives 167

FIGURE 2 Boundary difference equation on �R .

where

|Sij | = 1
8
(h1 + h2)(k1 + k2), |OA ∪ OC | = 1

2

(√
h2
1 + k21 +

√
h2
2 + k22

)
�

The linear algebraic equations from (2.17) are denoted by

Ax = b, (2.18)

where A is symmetric and positive definite, x is the unknown vector
consisting of uij , and b is a known vector. Matrix A is also an M -matrix.
Both the maximum principle and the conservative law are retained in the
FDM. This is an advantage over the linear FEM. Even for the Dirichlet
boundary condition on � , the symmetric condition �u

�n = 0 may happen,
which is, indeed, the Neumann condition, see the example in the next
section.

Note that in FDM, the derivatives ux and uy are replaced approximately
and straightforwardly by the divided differences. Hence, basic elements
in the FDM must be rectangles �ij and right-angled triangles �ij . More
general partitions of S into rectangles �ij and triangles �ij are also possible
if we use the ideas of combined methods in [5]: Let S be divided by
an interior boundary �0 into several non-overlapped subdomains Si , i =
1, 2, � � � ,N . Each Si , is further partitioned into rectangles and triangles. We
assume that the grid points (i , j) on �0 are common to the meshes on both
sides of �0. In this case, our method is conforming because there is no
discontinuity across �0 in the piecewise linear and bilinear interpolating
functions.



D
ow

nl
oa

de
d 

B
y:

 [Y
am

ag
at

a 
U

ni
ve

rs
ity

] A
t: 

00
:5

9 
28

 F
eb

ru
ar

y 
20

08
 

168 Z.-C. Li et al.

FIGURE 3 Typical local refinements of difference grids. (a) Grids near BD ∪ CD; (b) Grids
near BD.

In this section, we will modify the previous numerical method for
(1.1) with unbounded derivatives on �U ⊆ �D . This includes a meshing
technique and a modification of the difference scheme, as given below.

To mesh S , we follow the following rules:

• We divide S into several subdomains by an interior boundary �0 and
mesh each of the subdomain separately.

• For the subdomain containing part of �U , we mesh it using mesh lines
parallel or perpendicular to that part of �U . The mesh lines parallel to
�U are normally graded according to a rule to be defined.

• Make sure that all the mesh nodes on �0 are common to the meshes on
both sides of �0 to avoid the case of nonconformity.

Let us demonstrate this using the subdomain in Figure 3(a), in which
the solution derivatives are assumed to be unbounded on two edges, CD
and DB. For this case, we split this subdomain into two subsubdomains,
named as S1 and S2, by �0 = DE , which is chosen such that � CDE ≈
� EDB. Then two local Cartesian coordinate systems are used in S1 and
S2, respectively, and the local nonuniform meshes are used along CD and
BD. Figure 3(b) also illustrates a partition used for a problem that has
unbounded derivative along the edge BD. Clearly, a mesh constructed in
this way contains mostly rectangular elements. Triangular elements are
needed only near � and �0.

3. ERROR ANALYSIS OF THE METHOD

In this section, we present the main results of the paper on the
superconvergence of the solution of the finite difference method discussed
in Section 2. Some detailed proofs of upper bounds for various error terms
will be given in Sections 4 and 5 because they are lengthy. This error
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Superconvergence of Solution Derivatives 169

analysis is carried out using the following discrete H 1 norm:

‖v‖2
1 := ‖v‖2

1,S = |v|21,S + ‖v‖2
0,S , ∀v ∈ H 1(S)

where |v|1,S and ‖v‖0,S are defined respectively by

|v|21 = |v|21,S =
∑
ij∈IS

[∫̂∫
�ij

(�v)2ds +
∫̂ ∫

�ij

(�v)2ds
]
,

‖v‖2
0 = ‖v‖2

0,S =
∑
ij∈IS

[∫̂∫
�ij

v2ds +
∫̂ ∫

�ij

v2ds
]
�

Here the quadrature rules,
∫̂∫

�ij
(�v)2 ds,

∫̂∫
�ij
(�v)2 ds,

∫̂∫
�ij
v2 ds and∫̂∫

�ij
v2 ds are given in Section 2.1.
It has been shown in [2], p. 196, that

‖u − uh‖1 ≤ C
{
‖u − uI ‖1 + sup

w∈V 0
h

∣∣( ∫∫
S −∫̂∫S)�uI�w ds

∣∣
‖w‖1

+ sup
w∈V 0

h

∣∣( ∫∫
S −∫̂∫S)cuw ds

∣∣
‖w‖1

+ sup
w∈V 0

h

+
∣∣( ∫

�R
−∫̂

�R

)
�uw dl

∣∣
‖w‖1

+ sup
w∈V 0

h

∣∣( ∫∫
S −∫̂∫S)fw ds

∣∣
‖w‖1

+ sup
w∈V 0

h

∣∣( ∫
�R

−∫̂
�R

)
gDw dl

∣∣
‖w‖1

}
,

(3.1)

where uI is the Vh -interpolant of the true solution u. Because both uI and
w are linear on �ij , it is easy to verify that∫∫

�ij

�uI�w ds −
∫̂ ∫

�ij

�uI�w ds = 0�

Splitting each integral on the right-hand side of (3.1) into one over
the union of rectangular elements and another over the union of the
triangular elements and using the above equality, we have from (3.1)

‖u − uh‖1 ≤ C
{
sup
w∈V 0

h

∣∣( ∫∫
S�

−∫̂∫S�)�uI�w ds
∣∣

‖w‖1

+
(

‖u − uI ‖1 + sup
w∈V 0

h

∣∣( ∫∫
S�

−∫̂∫S�)fw ds
∣∣

‖w‖1

)
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170 Z.-C. Li et al.

+ sup
w∈V 0

h

∣∣( ∫∫
S� −∫̂∫S�)fw ds

∣∣
‖w‖1

+
(
sup
w∈V 0

h

∣∣( ∫∫
S�

−∫̂∫S�)cuw ds
∣∣

‖w‖1

+ sup
w∈V 0

h

∣∣( ∫∫
S� −∫̂∫S�)cuw ds

∣∣
‖w‖1

)

+
(
sup
w∈V 0

h

∣∣( ∫
�R

−∫̂
�R

)
�uw dl

∣∣
‖w‖1

+ sup
w∈V 0

h

∣∣( ∫
�R

−∫̂
�R

)
gRw dl

∣∣
‖w‖1

)}
=: T + T1 + T2 + T3 + T4� (3.2)

Naturally, we assume that the unbounded derivatives occur only on the
Dirichlet boundary �D . The following assumptions characterize the natures
of the singularity in the solution and the right-hand side of the continuous
Poisson equation and the finite difference mesh near the boundary
�U ⊆ �D .

A1: The derivatives of the solution u close to �U satisfies (cf. [3, 13]):

sup
0<d(x ,y)�1

di−�(x , y)
∣∣∣∣ �i�ni

u(x , y)
∣∣∣∣ ≤ C1, i = 1, 2, 3, 4,

for some constants � > 0 and C1 > 0, independent of u, where d denotes
the distance between (x , y) ∈ S and �U , and n denotes the unit vector in
the direction from (x , y) to the point on �U closest to (x , y). Moreover, we
assume that for 0 < r � 1, u satisfies

sup
dist(P ,Q )≤r

∣∣u(P ) − u(Q )
∣∣ ≤ Cr �,

where P and Q are two arbitrary points in S near �U . In this paper, we
assume

� = 1
2

+ 
 (3.3)

for some 
 > 0. This is necessary for the derivative estimates used in the
analysis.

A2: The function f satisfies the following properties (cf. [3, 13]):

sup
0<d�1

di−�(x , y)
∣∣∣∣ �i�ni

f (x , y)
∣∣∣∣ ≤ C2, i = 0, 1, 2

sup
dist(P ,Q )≤r

‖f (P ) − f (Q )‖ ≤ Cr �
(3.4)
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Superconvergence of Solution Derivatives 171

for some constants � > 0, C2 > 0, and 0 < r � 1. To make � compatible
with (3.3), we assume it satisfies

� = −3
2

+ 
, 
 > 0�

A3: We assume that the difference mesh near �U is constructed
locally so that the mesh lines are either parallel or perpendicular to
one of the boundary segments in �U . Furthermore, we assume that the
mesh lines parallel to one segment of �U are constructed nonuniformly
according to the distances from the segment d	 = �(	h), 	 = 0, 1, � � � ,n,
for a positive integer n, where h = 1

n and �(·) is the stretching function on
[0, 1] defined by

�(s) = 1∫ 1
0 zp(1 − z)pdz

∫ s

0
zp(1 − z)pdz, s ∈ [0, 1]

with p > 0 a (proper) constant (cf. [3, 13]), whose choice will be given in
the following theorems.

A triangulation family with the mesh parameter h is said to be regular

if for each triangle �ij of the mesh we have if
max�l (1)ij ,l (2)ij ,l (3)ij �

min�l (1)ij ,l (2)ij ,l (3)ij �
≤ C for all

0 < h ≤ h0, where l (k)ij , k = 1, 2, 3 denote the lengths of the three sides of
�ij , h0 is a positive constant, and C is a positive constant, independent of
the mesh sizes. The regularity implies that the interior angles of any �ij

are bounded below by a positive constant when h → 0+. However, for the
meshes defined in the previous section, some triangles having at least one
side on � and �0 may satisfy the above inequality because of the stretching
function given in A3. Hence, we make the following assumption.

A4: The family of triangles located on � or �0, using the local
refinements techniques in A3, is regular.

To make our proof notationally simple, we consider a special case
of the above problem that has triangular solution domains of the shape
depicted in Figure 4. We simplify Assumptions A1 and A2 as the following:

A5: Suppose that the solution u is sufficiently smooth except1 for
the derivatives with respect to x at x = 0, which are unbounded and

1This implies that the high-order derivatives with respect to y used are all bounded. However,
the derivatives with respect to x are based on (3.5).
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172 Z.-C. Li et al.

FIGURE 4 Partition of xi and yj .

satisfy

sup
x∈(0,1)

xi−�

∣∣∣∣ �i�xi
u(x , y)

∣∣∣∣ ≤ C , i = 1, 2, 3, 4,

sup
x∈(0,1)

xi−�

∣∣∣∣ �i�xi
f (x , y)

∣∣∣∣ ≤ C , i = 0, 1, 2,

(3.5)

where � = 1
2 + 
, � = − 3

2 + 
, and 0 < 
 < 3
2 .

Note that Assumptions A1, A2, and A5 are commonly used for
problems with unbounded derivatives near the boundary, one popular type
of boundary singularities (cf., for example, [3, 4, 8, 12–14]). For this case,
the application of the meshing technique in A3 results in a mesh depicted
in Figure 4. This is given in the following assumption.

A6: Let both xi and yj of partition in S be chosen as in A3; see
Figure 4.

Finally, we have the following theorem; the proof of the bounds of T
and Ti is deferred to Sections 4 and 5.

Theorem 3.1. Let S = S� ∪ S� and A1–A6 be fulfilled. For � = 1
2 + 
 and

� = − 3
2 + 
, 
 > 0, there exists the error bound of the solution uh from the Shortley–

Weller difference approximation

‖u − uh‖1 ≤ T + T1 + T2 + T3 + T4 ≤ Chr , r ≤ 1�5,
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Superconvergence of Solution Derivatives 173

where r = (p + 1)
, T and T1–T4 are defined in (3.2), and C is a positive
constant independent of h.

4. BOUNDS FOR T1–T4

In this section, we will estimate bounds on T1–T4 in (3.2). Bounds on
T will be established in the next section. The following three lemmas have
been established in [7, 8].

Lemma 4.1. Let u be the exact solution to (1.1)–(1.2), and let uI be the Vh-
interpolant of u. Then, we have

‖u − uI ‖1 =
{∑

ij∈IS
‖u − uI ‖2

1,�ij
+
∑
ij∈IS

‖u − uI ‖2
1,�ij

+
∑
i

‖u − uI ‖2
1,(�R )i

} 1
2

,

and

|u − uI |21,�ij
≤ 1

2

∫∫
�ij

��2
1,i(x)

(
u2
xxx(x , yj) + u2

xxx(x , yj+1)
)

+ �2
2,j(y)(u

2
yyy(xi , y) + u2

yyy(xi+1, y))�,

|u − uI |21,�ij
≤
∫∫

�ij

��2
1,i(x)u

2
xxx(x , yj) + �2

2,j(y)u
2
yyy(xi , y)�,

|u − uI |21,(�R )i ≤
∫
�R

�2
1,i(s)u

2
sss ,

where uxi yj = �i+j u
�xi�yj

, and

�1,i(x) =


1
2
(x − xi)2 for xi ≤ x ≤ xi + hi

2
,

1
2
(xi+1 − x)2 for xi + hi

2
≤ x ≤ xi+1,

�2,j(y) =


1
2
(y − yj)2 for yj ≤ y ≤ yj + kj

2
,

1
2
(yj+1 − y)2 for yj + kj

2
≤ y ≤ yj+1�

Lemma 4.2. There exists the bound:∣∣∣∣(∫∫
S�

−
∫̂ ∫

S�

)
fw
∣∣∣∣ ≤ C‖|f ‖|

�
× ‖w‖1,S� , w ∈ V 0

h ,
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174 Z.-C. Li et al.

where

‖|f ‖|
�

=
√√√√∑

�ij∈S�

∫̂ ∫
�ij

p2
ij + ‖qij‖2

−1,�ij
,

p2
ij = (f 2

x + f 2
x (x , yj) + f 2

x (x , yj+1))(x − xi)2(x − xi+1)
2

+ (f 2
y + f 2

y (xi , y) + f 2
y (xi+1, y))(y − yj)2(y − yj+1)

2,

q2
ij = (f 2

xx + f 2
xx(x , yj) + f 2

xx(x , yj+1))(x − xi)2(x − xi+1)
2

+ (f 2
yy + f 2

yy (xi , y) + f 2
yy (xi+1, y))(y − yj)2(y − yj+1)

2,

and

‖qij‖−1,�ij ≤ sup
w∈V 0

h

∫∫
�ij

qijw

‖w‖1,�ij

�

Combining Lemmas 4.1 and 4.2, we have the following lemma.

Lemma 4.3. Let A1–A3 be given. There exists the error bound of T1,

T1 ≤ C
n∑

	=1

�	2
(p+1)−5 × h2
(p+1)�
1
2 ,

where h = 1
N , as given in A3. Moreover, for � = 1

2 + 
 and � = − 3
2 + 
, 
 > 0,

when putting r = (p + 1)
, we have

T1 =



O(hr ), if r < 2,

O

(
h2

√
ln

1
h

)
= O(h2−�), 0 < � � 1, if r = 2,

O(h2), if r > 2�

In the rest of this section, we estimate bounds on T2 in (3.2). Consider
the quadrature rule on �ij ,∫̂ ∫

�ij

f = |�ij |
4

(2f1 + f2 + f3), (4.1)

where 1 denotes the right-angled vertex and 2 and 3 the other two vertices
of �ij . We have the following lemma.
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Superconvergence of Solution Derivatives 175

Lemma 4.4. Let �ij be a right-triangled triangle with the boundary lengths hij
and kij forming the right angle satisfying kij ≤ Chij for a positive constant C ,
independent of hij and kij . Then, the quadrature rule in (4.1) satisfies∣∣∣∣∣

∫∫
�ij

f −
∫̂ ∫

�ij

f

∣∣∣∣∣ ≤ Chij
√
hij kij |f |1,�ij , (4.2)

where |f |k,�ij denotes the Sobolev norm of f �ij .

Proof. Let � = �(x , y), 0 ≤ x̄ ≤ 1, 0 ≤ x̄ ≤ 1 − ȳ� be the reference
triangle. For any linear function of the form f̄ = a + bx̄ + c ȳ on � with
constants a, b, and c , it is easy to verify that∫∫

�
f̄ = a

2
+ b + c

6
and

∫̂ ∫
�
f̄ = a

2
+ b + c

8
�

Hence, the quadrature rule (4.1) is exact only for the constant integrands.
Define an affine transformation G : (x , y) → (x̄ , ȳ) where x̄ = x−xi

hij
and

ȳ = y−yj
kij

. Under the transformation G , the triangle �ij is transformed to �.

Let f̄ be the image of f under the mapping G . We have∣∣∣∣∣
∫∫

�ij

f −
∫̂ ∫

�ij

f

∣∣∣∣∣ = hij kij
2

∣∣∣∣∫∫�
f̄ −

∫̂ ∫
�
f̄
∣∣∣∣ ≤ C

hij kij
2

|f̄ |1,�� (4.3)

In the last step of (4.3), we used the Bramble–Hilbert lemma in [2], p. 198,
because the rule (4.1) is exact for constant. By the inverse transformation
G−1 of G , we have

|f̄ |1,� ≤ C
max�hij , kij�√

hij kij
|f |1,�ij ≤ C

hij√
hij kij

|f |1,�ij � (4.4)

Combining (4.3) and (4.4) gives the desired result (4.2). This completes
the proof of Lemma 4.4. �

Lemma 4.5. Let S� = ∪ij�ij , and let hij and kij be the lengths of for the two
sides of �ij forming the right angle. If hij ≤ Ckij for a constant C > 0, independent
of the mesh sizes, then there exists the bound,∣∣( ∫∫

S� −∫̂∫S�)fw∣∣
‖w‖1,S�

≤ C‖|�‖|�, w ∈ V 0
h , (4.5)
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176 Z.-C. Li et al.

where w ∈ V 0
h and

‖|�‖|� =
√√√√∑

ij

{∫∫
�ij

h2
ij(f̃ij)2 + ‖hij(Df̃ij)‖2

−1,�ij

}
�

Here, f̃ij = f (�ij) with �ij a fixed (but unknown) point in �ij , and Df =√
f 2
x + f 2

y .

Proof. For any w on, we have (fw)x = fxw + fwx and (fw)y = fyw + fwy�
From Lemma 4.4, we get∣∣∣∣∣

∫∫
�ij

fw −
∫̂ ∫

�ij

fw

∣∣∣∣∣ ≤ Chij
√
hij kij�|(Df )w|0,�ij + |f (Dw)|0,�ij �,

and then from the Cauchy–Schwarz inequality,

∑
ij∈IS

∣∣∣∣∣
∫∫

�ij

fw −
∫̂ ∫

�ij

fw

∣∣∣∣∣ ≤ C
∑
ij∈IS

{[
hij(Df̃ij)

√
hij kij

]
×
[
w̃ij

√
hij kij

]
+
[
(hij(f̃ij)

√
hij kij

]
×
[
(Dw)ij

√
hij kij

]}
≤ C‖|�‖|� × ‖w‖1,S� �

This is (4.5), and we have proved Lemma 4.5. �

From Lemmas 4.4 and 4.5, we have the following theorem:

Theorem 4.6. Let A1–A4 be fulfilled. Then, there exists a positive constant C ,
independent of mesh sizes, such that

T2 ≤ C
n∑

	=1

�	2
(p+1)−3 × h2
(p+1)t	�
1
2 , (4.6)

where h = 1
n as given in A3. Moreover, for � = 1

2 + 
 and � = − 3
2 + 
, 
 > 0,

we have

T2 =


O(hr ), if r < 1�5,

O

(
h1�5

√
ln

1
h

)
= O(h1�5−�), 0 < � � 1, if r = 1�5,

O(h1�5), if r > 1�5,

(4.7)

where r = (p + 1)
.
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Superconvergence of Solution Derivatives 177

Proof. Choose the difference grids (xi , yj) with the distance d	 =
O((	h)p+1) to � , and let t	 = d	+1 − d	 = O(h(	h)p) denote the diameters of
�ij and �ij . From Assumption A4, the elements �ij ∈ S� can be reordered
according to the distance sequence, d	, to � with max�hij , kij� ≤ Ct	 and
then

(Dkf̃ij)2 = O(d2�−2k
	 ) = O(d2�−4−2k

	 )�

We have∫∫
�ij

h2
ij f̃

2
ij ≤ Ct 4	 d

2�
	 = Ct 3	 d

2�−4
	 t	 ≤ C	(2�−1)(p+1)−3 × h(2�−1)(p+1)t	,

‖hij(Df̃ij)‖2
−1,�ij

≤ C	(2�−1)(p+1)−3 × h(2�−1)(p+1)t	�

Hence, we have

T2 ≤ C‖|�‖|� ≤
∑

ij∈IS

(∫∫
�ij

h2
ij f̃

2
ij + ‖hijDf̃ij‖2

−1,�ij

)
1
2

≤ C

{
n∑

	=1

	(2�−1)(p+1)−3 × h(2�−1)(p+1)t	

} 1
2

≤ C

{
n∑

	=1

	2
(p+1)−3 × h2
(p+1)t	

} 1
2

�

This is (4.6), and Eq. (4.7) follows from r = (p + 1)
 and
∑n

	=1 t	 ≤ C . This
completes the proof of Theorem 4.6. �

Below we provide the bounds of T3 and T4. Under A1 and A2, there
exist the bounds,

|Dku| ≤ C |Dkf |, k = 0, 1, � � � (4.8)

For the highly smooth c ,2 we have

T3 = sup
w∈V 0

h

∣∣( ∫∫
S�

−∫̂∫S�)cuw ds
∣∣

‖w‖1

+ sup
w∈V 0

h

∣∣( ∫∫
S� −∫̂∫S�)cuw ds

∣∣
‖w‖1

2If the function c is piecewise highly smooth, the same superconvergence can be achieved if
its discontinuity boundary is of the difference grids.
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178 Z.-C. Li et al.

≤ C

sup
w∈V 0

h

∣∣( ∫∫
S�

−∫̂∫S�)fw ds
∣∣

‖w‖1

+ sup
w∈V 0

h

∣∣( ∫∫
S� −∫̂∫S�)fw ds

∣∣
‖w‖1


≤ C(T1 + T2)� (4.9)

The bound of T3 is given from Lemma 4.3 and Theorem 4.6. Next, for the
bound of T4, we have the following lemma.

Lemma 4.7. Suppose gR ∈ H 2(�D),3 there exists the bound,∣∣∣∣(∫
�R

−
∫̂

�R

)
gRv dl

∣∣∣∣ ≤ Ch1�5‖gR‖2,�R ‖v‖1� (4.10)

Proof. Because the central rule is used for
∫̂

�D
, we have the bound,∣∣∣∣(∫

�R

−
∫̂

�R

)
gRv dl

∣∣∣∣ ≤ C
∑
i

h2
i |gRv|2,(�R )i � (4.11)

By noting the piecewise linear functions u on �R , there exists the bound,

|gRv|2,(�R )i ≤ |gR |2,(�R )i |v|0,(�R )i+2|gR |1,(�R )i |v|1,(�R )i
≤ |gR |2,(�R )i |v|0,(�R )i+Ch

− 1
2

i |gRv|1,(�R )i‖v‖ 1
2 ,(�R )i

≤ Ch
− 1

2
i ‖gR‖2,(�R )i‖v‖ 1

2 ,(�R )i
, (4.12)

where we have used the inverse inequality: |v|1,(�R )i ≤ Ch
− 1

2
i ‖v‖ 1

2 ,(�R )i
. From

the Cauchy–Schwarz inequality, we have from (4.11) and (4.12)∣∣∣∣(∫
�R

−
∫̂

�R

)
gRv dl

∣∣∣∣ ≤ Ch1�5‖gR‖2,�R ‖v‖ 1
2 ,�R

≤ Ch1�5‖gR‖2,�R ‖v‖1,S ≤ Ch1�5‖gR‖2,�R ‖v‖1, (4.13)

where we have used the bounds,

‖v‖ 1
2 ,�R

≤ C‖v‖1,S , ‖v‖1,S ≤ C‖v‖1� (4.14)

This completes the proof of Lemma 4.7. �

3When gR = O(un) near the singular boundary �U , we still have the bound: |(∫
�R

−∫̂
�R
)gR v dl |≤

Ch1�5‖v‖1 by following the proof of Lemma 4.8.
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Superconvergence of Solution Derivatives 179

Lemma 4.8. Let A1, A2, and � ∈ C 2(�R) hold, there exists the bound,∣∣∣∣(∫
�R

−
∫̂

�R

)
�uv dl

∣∣∣∣ ≤ Ch1�5‖v‖1� (4.15)

Proof. Because � ∈ C 2(�R), we have from the central rule and Lemma 4.7∣∣∣∣(∫
�R

−
∫̂

�R

)
�uv dl

∣∣∣∣ ≤ C
∑
i

h
3
2
i |�u|2,(�R )i‖v‖ 1

2 ,(�R )i

≤ C
√∑

i

h3
i |u|22,(�R )i × ‖w‖1 := C

√
B × ‖v‖1� (4.16)

When the part of �R is far from the singular boundary �U ∈ �D , u ∈ C2, and
B = Bfar = O(h3) to give (4.15) immediately. Below consider the part of �R
near �U , and have

B = Bnear =
∑
i

h3
i |u|22,(�R )i≤ Ch4

i u
2
ss((�R)i) ≤ Ch4

i r
2�−4
i , (4.17)

where uss = �2u
�s2 = O(r �−2

i ). From the local refinement in A3, there exist the
bounds,

hi = xi − xi−1 = O(h(ih)p), ri = O(xi) = O((ih)p+1)� (4.18)

Then we have from (4.17) and (4.18)

Bnear = C
∑
i

(h(ih)p)4((ih)p+1)2�−4 ≤ Ch4
∑
i

(ih)2�(p+1)−4� (4.19)

Because for � > 1
2 and p ≥ 1, there exists the bound∑

i

(ih)2�(p+1)−4 ≤ Ch−1� (4.20)

Combining (4.19) and (4.20) gives B = Bnear ≤ Ch3. The desired result
(4.15) follows from (4.16), and the proof of Lemma 4.8 is completed. �

From Lemmas 4.7 and 4.8, we have the bound of T4,

T4 =
sup

w∈V 0
h

∣∣( ∫
�R

−∫̂
�R

)
�uw dl

∣∣
‖w‖1

+ sup
w∈V 0

h

∣∣( ∫
�R

−∫̂
�R

)
gRw dl

∣∣
‖w‖1


= O(h1�5)� (4.21)
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180 Z.-C. Li et al.

Remark 4.9. Based on Lemmas 4.7 and 4.8, for the rectangular domain
S , only the O(h1�5) rate can be obtained, when the Robin condition, or
the non-homogeneous Neumann condition Un = gN , is enforced on �N ,
where �N is one or two edges of �S . However, for the rectangular S , the
high superconvergence O(h2) can also be retained if the homogeneous
Neumann condition, un = 0 on �N , is enforced on �N by noting T4 = 0.
Such a conclusion can be confirmed by the following fact. Because un = 0
implies a symmetry of the elliptic problem, an extended Dirichlet problem
can be obtained on a larger rectangle. Hence, the superconvergence O(h2)
can be achieved based on the analysis of [8].

5. BOUNDS ON T

In this section, we derive some bounds on T in (3.2). To achieve this,
we first note(∫̂∫

S�

−
∫∫

S�

)
�u�v ds =

(∫̂∫
S�

−
∫∫

S�

)
�(uI )xvx + (uI )yvy�

=
∑
ij∈IS

(∫̂∫
�ij

−
∫∫

�ij

)
�(uI )xvx + (uI )yvy��

(5.1)

The current analysis has two differences from that in [8]: (1) The Dirichlet
boundary condition is not imposed on �S� ⊂ S , where S� = ∪ij�ij ; in this
paper the Dirichlet or the Robin condition may be imposed on � near
�S�. (2) Both grids xi and yj along x axis and y axis are chosen to be local
refinements. Let us estimate the bounds of the first term on the right-hand
side of (5.1). After some manipulations, we obtain∫∫

�ij

(uI )xvx = kj
3hi

{
(u4 − u3)(v4 − v3) + (u2 − u1)(v2 − v1)

+ 1
2
(u4 − u3)(v2 − v1) + 1

2
(u2 − u1)(v4 − v3)

}
,

and ∫̂ ∫
�ij

(uI )xvx = kj
2hi

�(u4 − u3)(v4 − v3) + (u2 − u1)(v2 − v1)�,

where subscripts 1, 2, 3, and 4 represent grids (i , j), (i + 1, j), (i , j + 1),
and (i + 1, j + 1) respectively. Hence we have(∫̂∫

�ij

−
∫∫

�ij

)
(uI )xvx = kj

6hi
(u1 + u4 − u2 − u3)(v1 + v4 − v2 − v3)�

(5.2)
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Superconvergence of Solution Derivatives 181

Using the Taylor expansion, we see that u4 can be expanded at the center
O at

(
i + 1

2 , j + 1
2

)
to yield

u4 := u(i + 1, j + 1) = uo +
(
hi
2

�

�x
+ kj

2
�

�y

)
uo + 1

2

(
hi
2

�

�x
+ kj

2
�

�y

)2

uo

+ 1
3!
(
hi
2

�

�x
+ kj

2
�

�y

)3

uo + 1
4!
(
hi
2

�

�x
+ kj

2
�

�y

)4

ũ,

where ũ = u(�, �) for some (�, �) ∈ �ij . The other terms, uk , k = 1, 2, 3,
can be derived similarly. Using these expansions, we have

u1 + u4 − u2 − u3

= hikj(uxy)o + k4j
4 · 4! ũyyyy + b1hik3j ũxyyy + b2h2

i k
2
j ũxxyy + b3h3

i kj ũxxxy + b	h4
i ũxxxx ,

where b	’s are constants independent of hi and kj . Substituting the above
equation into (5.2) we have(∫̂∫

S�

−
∫∫

S�

)
(uI )xvx

=
∑
ij∈IS

(∫̂∫
�ij

−
∫∫

�ij

)
(uI )xvx

=
∑
ij∈IS

kj
6hi

{
hikj(uxy)o + k4j

4 · 4! ũyyyy +
4∑

	=1

b	h	
i k

4−	
j ũx	y4−	

}
(v1 + v4 − v2 − v3)�

(5.3)

We will first estimate the bound on the first term on the right-hand
side of (5.3). This is given in the following lemma.

Lemma 5.1. Let A4–A6 hold. The there exists the error bound,∣∣∣∣∑
ij∈IS

k2j (uxy)o(v1 + v4 − v2 − v3)
∣∣∣∣ ≤ Ch

3
2 ‖v‖1, ∀v ∈ V 0

h � (5.4)

Proof. Because no boundary conditions for V are imposed on S�, we
have (cf. [8])∑

ij∈IS
k2j (uxy)o(v1 + v4 − v2 − v3)
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182 Z.-C. Li et al.

=
∑
ij∈IS

�k2j+1(uxy)i+ 1
2 ,j+ 1

2
− k2j (uxy)i+ 1

2 ,j− 1
2
�(vi+1,j − vij)

+
∑

(i+1,j)∈�1∧(i ,j)∈�1
k2j (uxy)i+ 1

2 ,j+ 1
2
(vi+1,j − vi ,j)

=
∑
ij∈IS

k2j �(uxy)i+ 1
2 ,j+ 1

2
− (uxy)i+ 1

2 ,j− 1
2
�(vi+1,j − vij)

+
∑
ij∈IS

�(k2j+1 − k2j )(uxy)i+ 1
2 ,j+ 1

2
�(vi+1,j − vij)

+
∑

(i+1,j)∈�1∧(i ,j)∈�1
k2j (uxy)i+ 1

2 ,j+ 1
2
(vi+1,j − vi ,j)

=: TA + TB + TC , (5.5)

where �1 denotes the set of horizontal segments of ��ij , as shown in
Figure 5(a). For the first term on the right-hand side of the above
equation, we have

|TA| =
∣∣∣∣∑
ij∈IS

k2j �(uxy)i+ 1
2 ,j+ 1

2
− (uxy)i+ 1

2 ,j− 1
2
�(vi+1,j − vi)

∣∣∣∣
=
∣∣∣∣∑
ij∈IS

kj
kj+1 + kj

2
(hikj)(ũxyy)i+ 1

2 ,j

vi+1,j − vij
hi

∣∣∣∣
≤ Ch2‖ũxyy‖0,S‖v‖1, (5.6)

in the last step of the above equation, we have also used the Schwarz
inequality.

Next, from kj = O(j php+1) in A3 and A5, we have

|kj+1 − kj | ≤ Chp+1((j + 1)p − j p) ≤ Cphp+1j p−1 ≤ Cjp−1hp+1, (5.7)

FIGURE 5 The sets (a) �1 and (b) �∗
1 of ��ij near � highlighted by the solid lines.
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Superconvergence of Solution Derivatives 183

and

kj+1 + kj
kj

= (j + 1)p + j p

j p
≤ C �

Then we obtain

|TB | =
∣∣∣∣∑
ij∈IS

�(k2j+1 − k2j )(uxy)i+ 1
2 ,j+ 1

2
�(vi+1,j − vij)

∣∣∣∣
=
∣∣∣∣∑
ij∈IS

(kj+1 − kj)
(
kj+1 + kj

kj

)
(hikj)(uxy)i+ 1

2 ,j+ 1
2

vi+1,j − vij
hi

∣∣∣∣
≤ CTD‖v‖1, (5.8)

where

T 2
D =

∑
ij∈IS

(kj+1 − kj)2(hikj)(uxy)
2
i+ 1

2 ,j+ 1
2
� (5.9)

From (5.7) we have

N∑
j=1

(kj+1 − kj)2kj ≤ C
N∑
j=1

j 2(p−1)h2(p+1) × j php+1

= Ch3(p+1)
N∑
j=1

j 3p−2 ≤ CN 3p−1h3(p+1)

≤ C(Nh)3p−1h4 ≤ Ch4, (5.10)

by noting Nh ≤ C .4 Also from A5 and A6 and p > 0

N∑
i=1

hi(uxy)
2
i+ 1

2 ,j+ 1
2

≤
N∑
i=1

hix
2(�−1)
i ≤ C

N∑
i=1

iphp+1(ih)2(�−1)(p+1)

=
N∑
i=1

i (2�−1)(p+1)−1h(2�−1)(p+1) ≤ CN (2�−1)(p+1)h(2�−1)(p+1)

≤ C(Nh)(2�−1)(p+1) ≤ C � (5.11)

Combining (5.8)–(5.11) gives

TD ≤ Ch2, |TB | ≤ Ch2‖v‖1� (5.12)

4Strictly speaking, when 3p − 2 = −1 (i.e., p = 1
3 ), the bounds in (5.10) should be modified

as Ch4 ln 1
h , and the final bound in (5.4) is also retained.
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184 Z.-C. Li et al.

Moreover,

TC =
∑

(i+1,j)∈�1∧(i ,j)∈�1
k2j hi(uxy)i+ 1

2 ,j+ 1
2

vi+1,j − vi ,j
hi

=
∑

(i+1,j)∈�1∧(i ,j)∈�1
k

3
2
j

√
hi(uxy)i+ 1

2 ,j+ 1
2
×
√
hikj

vi+1,j − vi ,j
hi

≤ Ch
3
2 ‖ũxy‖0,�1‖v‖1� (5.13)

Combining (5.5), (5.6), (5.12), and (5.13), we finally have∣∣∣∣∑
ij∈IS

k2j (uxy)o(v1 + v4 − v2 − v3)
∣∣∣∣ ≤ C�h

3
2 ‖ũxy‖0,�1 + h2 + h2‖ũxyy‖0,S�‖v‖1�

The desired result (5.4) follows from ‖ũxy‖0,�1 ≤ C and ‖ũxyy‖0,S ≤ C (see
A1). This completes the proof of Lemma 5.1. �

Lemma 5.2. Let A4–A6 hold. Then we have∣∣∣∣(∫̂∫
S�

−
∫∫

S�

)
(uI )xvx

∣∣∣∣ ≤ C
{
h1�5 + h3‖ũxyyy‖0,S + T0

}× ‖v‖1, v ∈ V 0
h ,

where

T0 =
√∑

ij∈IS
‖h3

i ũxxxx‖2
0,�ij

+ h
√∑

ij∈IS
‖h2

i ũxxxy‖2
0,�ij

+ h2

√∑
ij∈IS

‖hi ũxxyy‖2
0,�ij

+ h1�5

√√√√√∑
ij∈IS

∥∥∥∥∥k
2�5
j

hi
ũyyyy

∥∥∥∥∥
2

0,�ij

(5.14)

and ũ = u(�, �) form some (�, �) ∈ �ij .

Proof. For the bounds of the terms in (5.3), we have∣∣∣∣∑
ij∈IS

kj
hi
k4j (ũyyyy)(v1 + v4 − v2 − v3)

∣∣∣∣ =
∣∣∣∣∑
ij∈IS

(hikj)
k4j
hi
(ũyyyy)

(
v4 − v3

hi
− v2 − v1

hi

)∣∣∣∣
≤ Ch

3
2

√√√√√∑
ij∈IS

∥∥∥∥∥k
2�5
j

hi
ũyyyy

∥∥∥∥∥
2

0,�ij

· ‖v‖1� (5.15)
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Superconvergence of Solution Derivatives 185

Also, we have∣∣∣∣∑
ij∈IS

kj
hi
h3
i kj(ũxxxy)(v1 + v4 − v2 − v3)

∣∣∣∣ ≤
∑
ij∈IS

h3
i k

2
j |ũxxxy|·

(∣∣∣∣v4 − v3
hi

∣∣∣∣+ ∣∣∣∣v2 − v1
hi

∣∣∣∣)

≤ Ch
√∑

ij∈IS
‖h2

i ũxxxy‖2
0,�ij

· ‖v‖1� (5.16)

Similarly,∣∣∣∣∑
ij∈IS

kj
hi
h4
i (ũxxxx)(v1 + v4 − v2 − v3)

∣∣∣∣ ≤ C
√∑

ij∈IS
‖h3

i ũxxxx‖2
0,�ij

· ‖v‖1,∣∣∣∣∑
ij∈IS

kj
hi
h2
i k

2
j (ũxxyy)(v1 + v4 − v2 − v3)

∣∣∣∣ ≤ Ch2

√∑
ij∈IS

‖hi ũxxyy‖2
0,�ij

· ‖v‖1,∣∣∣∣∑
ij∈IS

kj
hi
hik3j (ũxyyy)(v1 + v4 − v2 − v3)

∣∣∣∣ ≤ Ch3

√∑
ij∈IS

‖ũxyyy‖2
0,�ij

· ‖v‖1

= Ch3‖ũxyyy‖0,S · ‖v‖1� (5.17)

We obtain from Lemma 5.1, (5.3), and (5.15)–(5.17),∣∣∣∣(∫̂∫
S�

−
∫∫

S�

)
(uI )xvx

∣∣∣∣ ≤ C�h1�5 + h3‖ũxyyy‖0,S + T0

}
× ‖v‖1,

where T0 is defined in (5.14). This completes the proof of Lemma 5.2. �

Let us now consider(∫̂∫
S�

−
∫∫

S�

)
(uI )yvy =

∑
ij∈IS

(∫̂∫
�ij

−
∫∫

�ij

)
(uI )yvy

=
∑
ij∈IS

hi
6kj

{
hikj(uxy)o + k4j

4 · 4! ũyyyy +
4∑

	=1

b	h	
i k

4−	
j ũx	y4−	

}
× (v1 + v4 − v2 − v3)� (5.18)

We have the following lemma.

Lemma 5.3. Let A4–A6 hold. For � = 1
2 + 
 and � = − 3

2 + 
, 
 > 0, the
following error bound holds:∣∣∣∣∑

ij∈IS
h2
i (uxy)o(v1 + v4 − v2 − v3)

∣∣∣∣ ≤ Chr‖v‖1, (5.19)

where r = (p + 1)
 ≤ 1�5.
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186 Z.-C. Li et al.

Proof. Let the difference grids along x axis are xi , i = 0, 1, � � � ,N , and
denote hi = hi − hi−1. We have∑

ij∈IS
h2
i (uxy)o(v1 + v4 − v2 − v3)

=
∑
ij∈IS

�h2
i+1(uxy)i+ 1

2 ,j+ 1
2
− h2

i (uxy)i− 1
2 ,j+ 1

2
�(vi ,j+1 − vij)

+
∑

(i ,j+1)∈�∗
1∧(i ,j)∈�∗

1

h2
i (uxy)i+ 1

2 ,j+ 1
2
(vi ,j+1 − vi ,j)

=
∑
ij∈IS

h2
i �(uxy)i+ 1

2 ,j+ 1
2
− (uxy)i− 1

2 ,j+ 1
2
�(vi ,j+1 − vij)

+
∑
ij∈IS

�(h2
i+1 − h2

i )(uxy)i+ 1
2 ,j+ 1

2
�(vi ,j+1 − vij)

+
∑

(i ,j+1)∈�∗
1∧(i ,j)∈�∗

1

h2
i (uxy)i+ 1

2 ,j+ 1
2
(vi ,j+1 − vi ,j)

=: T ∗
A + T ∗

B + T ∗
C , (5.20)

where �∗
1 denotes the set of vertical segments of ��ij shown in Figure 5b.

For the first term on the right-hand side of the above equation, we have

|T ∗
A | =

∣∣∣∣∑
ij∈IS

h2
i �(uxy)i+ 1

2 ,j+ 1
2
− (uxy)i− 1

2 ,j+ 1
2
�(vi ,j+1 − vi)

∣∣∣∣
=
∣∣∣∣∑
ij∈IS

hi
hi+1 + hi

2
(hikj)(ũxxy)i ,j+ 1

2

vi ,j+1 − vij
kj

∣∣∣∣
≤ CTE‖v‖1, (5.21)

where

TE =
√∑

ij∈IS
h4
i (hikj)(ũ2

xxy)i ,j+ 1
2
�

The bound for T ∗
A , which is also different from that in [8], is derived as

follows. For the term TE defined above, we have

T 2
E =

∑
ij∈IS

h4
i (hikj)(ũ

2
xxy)i ,j+ 1

2
=
{ N∑

i=1

h5
i (ũ

2
xxy)i ,j+ 1

2

}{ N∑
j=1

kj

}
�
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Superconvergence of Solution Derivatives 187

Because
∑N

j=1 kj ≤ C , uxxy ≤ Cx�−2
i , hi = (ih)p+1

i , and xi = (ih)p+1 due to A5
and A6, we obtain

T 2
E ≤ C

N∑
i=1

h5
i x

2�−4
i = C

N∑
i=1

(ih)2(p+1)i2r−5 × h2r ≤ Ch2r ,

where we have used the facts that (ih) ≤ C and 2r = 2(p + 1)
 =
2(2� − 3)(p + 1). Taking the square-root on both sides of the above gives

TE ≤ Chr , and so, |T ∗
A | ≤ Chr‖v‖1 (5.22)

by (5.21). Similarly, we can show from Lemma 5.1 that

|T ∗
B | =

∣∣∣∣∑
ij∈IS

�(h2
i+1 − h2

i )(uxy)i+ 1
2 ,j+ 1

2
�(vi ,j+1 − vij)

∣∣∣∣ ≤ Ch2‖v‖1, (5.23)

and

T ∗
C =

∑
(i ,j+1)∈�∗

1∧(i ,j)∈�∗
1

kjh2
i (uxy)i+ 1

2 ,j+ 1
2

vi ,j+1 − vi ,j
kj

=
∑

(i ,j+1)∈�∗
1∧(i ,j)∈�∗

1

h
3
2
i

√
kj(uxy)i+ 1

2 ,j+ 1
2
×
√
hikj

vi ,j+1 − vi ,j
kj

≤ Ch
3
2 ‖uxy‖0,�∗

1
‖v‖1� (5.24)

Combining (5.20) and (5.22)–(5.24) gives∣∣∣∣∑
ij∈IS

h2
i (uxy)o(v1 + v4 − v2 − v3)

∣∣∣∣ ≤ C�h
3
2 ‖ũxy‖0,�∗

1
+ hr + h2�‖v‖1� (5.25)

The desired result (5.19) follows from ‖ũxy‖0,�∗
1

≤ C and Assumption A4.
This completes the proof of Lemma 5.3. �

Lemma 5.4. Let A4–A6 hold. For � = 1
2 + 
 and � = − 3

2 + 
, 
 > 0, putting
r = (p + 1)
 ≤ 1�5, we have∣∣∣∣(∫̂∫

S�

−
∫∫

S�

)
(uI )yvy

∣∣∣∣ ≤ C�hr + h3‖ũxyyy‖0,S + T ∗
0 � × ‖v‖1, v ∈ V 0

h ,

(5.26)
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188 Z.-C. Li et al.

where

T ∗
0 =

√∑
ij∈IS

‖h3
i ũxxxx‖2

0,�ij
+ h

√∑
ij∈IS

‖h2
i ũxxxy‖2

0,�ij

+ h2

√∑
ij∈IS

‖hi ũxxyy‖2
0,�ij

+
√√√√∑

ij∈IS

∥∥∥∥h4
i

kj
ũyyyy

∥∥∥∥2
0,�ij

(5.27)

and ũ = u(�, �) for some (�, �) ∈ �ij .

Proof. For the terms in (5.18), we have∣∣∣∣∑
ij∈IS

hi
kj
k4j (ũyyyy)(v1 + v4 − v2 − v3)

∣∣∣∣ =
∣∣∣∣∑
ij∈IS

(hikj)k3j (ũyyyy)

(
v4 − v2

kj
− v3 − v1

kj

)∣∣∣∣
≤ Ch3‖ũyyyy‖2

0,S‖v‖1 (5.28)

and∣∣∣∣∑
ij∈IS

hi
kj
h3
i kj(ũxxxy)(v1 + v4 − v2 − v3)

∣∣∣∣ ≤
∑
ij∈IS

h4
i kj |ũxxxy|·

(∣∣∣∣v4 − v2
kj

∣∣∣∣+ ∣∣∣∣v3 − v1
kj

∣∣∣∣)

≤ Ch
√∑

ij∈IS
‖h2

i ũxxxy‖2
0,�ij

· ‖v‖1� (5.29)

Similarly, it can be shown that

∣∣∣∣∑
ij∈IS

hi
kj
h4
i (ũxxxx)(v1 + v4 − v2 − v3)

∣∣∣∣ ≤ C

√√√√∑
ij∈IS

∥∥∥∥h4
i

kj
ũxxxx

∥∥∥∥2
0,�ij

· ‖v‖1,

∣∣∣∣∑
ij∈IS

hi
kj
h2
i k

2
j (ũxxyy)(v1 + v4 − v2 − v3)

∣∣∣∣ ≤ Ch2

√∑
ij∈IS

‖hi ũxxyy‖2
0,�ij

· ‖v‖1,

∣∣∣∣∑
ij∈IS

hi
kj
hik3j (ũxyyy)(v1 + v4 − v2 − v3)

∣∣∣∣ ≤ Ch3‖ũxyyy‖0,S · ‖v‖1� (5.30)

From Lemma 5.3, (5.18), (5.28), (5.29), and (5.30), we obtain∣∣∣∣(∫̂∫
S
−
∫∫

S

)
(uI )yvy

∣∣∣∣
≤ C�h1�5 + h3‖ũxyyy‖0,S + h3‖ũyyyy‖0,S + T ∗

0 � × ‖v‖1, (5.31)

where T ∗
0 is given in (5.27). This completes the proof of Lemma 5.4. �



D
ow

nl
oa

de
d 

B
y:

 [Y
am

ag
at

a 
U

ni
ve

rs
ity

] A
t: 

00
:5

9 
28

 F
eb

ru
ar

y 
20

08
 

Superconvergence of Solution Derivatives 189

We comment that a distinction of the above analysis from that in [8]
is that (5.26) was derived separately for different mesh densities in the
y-direction. In contrast, the bound in [8] corresponding with (5.31) was
derived on a uniform mesh. We have the following theorem.

Theorem 5.5. Let A4–A6 hold, and assume that the exact solution, u, is four-
times continuously differentiable on S, except the x-derivatives of u at x = 0. Let
� = 1

2 + 
, 
 > 0, and r = (p + 1)
 ≤ 1�5. Then, we have

T = sup
v∈V 0

h

1

‖v‖1

∣∣∣∣(∫̂∫
S�

−
∫∫

S�

)
�uI�v

∣∣∣∣ = O(hr )� (5.32)

Proof. We have from Lemmas 5.2 and 5.4,∣∣∣∣(∫̂∫
S�

−
∫∫

S�

)
�(uI )xvx + (uI )yvy�

∣∣∣∣
≤ C�hr + h1�5 + h3‖ũxyyy‖0,S + T

∗
0�‖v‖1 (5.33)

for v ∈ V 0
h , where

T
∗
0 =

√∑
ij∈IS

‖h3
i ũxxxx‖2

0,�ij
+ h

√∑
ij∈IS

‖h2
i ũxxxy‖2

0,�ij
+ h1�5

√∑
ij∈IS

‖hi ũxxyy‖2
0,�ij

+
√√√√∑

ij∈IS

∥∥∥∥k2�5j

hi
ũyyyy

∥∥∥∥2
0,�ij

+
√√√√∑

ij∈IS

∥∥∥∥h4
i

kj
ũyyyy

∥∥∥∥2
0,�ij

� (5.34)

Obviously, we have from � > 1
2 ,

hr + h1�5 + h3‖ũxyyy‖0,S ≤ Chr � (5.35)

It was proved in [8] that√∑
ij∈IS

‖h3
i ũxxxx‖2

0,�ij
+
√∑

ij∈IS
‖h2

i ũxxxy‖2
0,�ij

+ h2

√∑
ij∈IS

‖hi ũxxyy‖2
0,�ij

≤ Ch1�5� (5.36)

Let us now consider the bounds for the last two terms, denoted by I 1/2 and
II 1/2, respectively, on the right-hand side of (5.34). Because uyyyyy ∈ C(S),
we obtain

I := h3
∑
ij∈IS

∥∥∥∥k2�5j

hi
ũyyyy

∥∥∥∥2
0,�ij

= h3
∑
ij∈IS

∫∫
�ij

k5j
h2
i

ũ2
yyyyy ≤ Ch3

∑
ij∈IS

k6j
hi
� (5.37)
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190 Z.-C. Li et al.

Because
∑N

i=1
1
hi

≤ C 1
ip hp+1 , we have

∑N
i=1

1
hi

≤ C 1
h2 ln

1
h for p = 1 and∑N

i=1
1
hi

≤ C 1
h2 for p �= 1. Then, we have

I ≤ Ch3

( N∑
j=1

h6
j

)( N∑
i=1

1
hi

)
≤ Ch8 1

h2
ln

1
h

≤ Ch6 ln
1
h
� (5.38)

Moreover, we have

II :=
∑
ij∈IS

∥∥∥∥h4
i

kj
ũxxxx

∥∥∥∥2
0,�ij

≤
∑
ij∈IS

∫∫
�ij

h8
i

k2j
ũ2
xxxx

≤
∑
ij∈IS

h9
i

kj
ũ2
xxxx ≤ C

∑
ij∈IS

h2
i

kj
h7
i x

2�−8
i ≤ Ch2

( N∑
i=1

h7
i x

2�−8
i

)( N∑
j=1

1
kj

)
� (5.39)

Next, for r ≤ 1�5 we obtain

N∑
i=1

h7
i x

2�−8
i ≤ C

N∑
i=1

i2�−1)(p+1)−7h(2�−1)(p+1)

≤ C
N∑
i=1

i2r−7h2r ≤ C
lnN
N 3

h2r � (5.40)

Because
∑N

j=1
1
kj

≤ C 1
h2 (ln

1
h ), we obtain from (5.39) and (5.40),

II ≤ Ch3+2r

(
ln

1
h

)2

� (5.41)

Combining (5.33)–(5.36), (5.38), and (5.41) gives the desired result
(5.32). This completes the proof of Theorem 5.5. �

Remark 5.6. Suppose that Assumption A5 is replaced by A1.
Theorem 5.5 can be proven similarly by the arguments given above.
However, the proof based on A5 is simpler than that based on A1. In the
next section, we will give numerical experiments in which the solution
satisfies A1, and the numerical results are in perfect agreement with the
theoretical results in Theorem 3.1.

6. NUMERICAL EXPERIMENTS

Consider the following boundary value problem:

−�u = f , in S , (6.1)
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Superconvergence of Solution Derivatives 191

u = 0, on �1 ∪ �2, (6.2)
�u
�n

= 0, on �3 (6.3)

where S is the triangle defined by S = �(x , y), 0 < x < 1, (y <
√
3x) ∧ (y <√

3(1 − x))�, �1 = �(x , 0) : 0 < x < 1�, �2 = �(x , 1 − √
3x) : 1

2 < x < 1�, and
�3 = �(x ,

√
3x) : 0 < x < 1

2�. The exact solution is chosen to be

uexact(x , y) = (
y + √

3x
)�
y�
(√

3 − (
y + √

3x
))(√

3
2

− y
)
� (6.4)

When � = 1 or 2, the solution is smooth. However, when � < 2 and � �= 1,
the derivatives of u are unbounded along �1.

For � < 2 and � �= 1, we may use the stretching function in A3 for yi ,

yi = di = (ih)p+1 ×
√
3
2

, i = 0, 1, � � � ,n, (6.5)

where h = 1
n , and

xi = 1√
3
yi , x2n+1−i = 1 − xi , i = 0, 1, � � � ,n� (6.6)

We first consider the numerical solution of the problem defined by
(6.1), (6.2), and the Dirichlet condition on �3 given by u|�3= uexact|�3 . We
also assume that � = 2, and thus the the solution (6.4) is smooth. Let S
be partitioned into a uniform mesh with NS + 1 mesh nodes along the
y direction. The nodes of the mesh along the x -direction is determined
automatically by the intersections of mesh lines in the y-direction and the
diagonals �3 and �2. The problem is solved on this mesh by the FDM
described in the previous sections, and the computed errors and condition
numbers are listed in Table 1. In these results A denotes the system matrix
arising from the Shortley–Weller difference approximation (2.4), and the
condition number is defined by

Con(A) = �max(A)

�min(A)
, (6.7)

where �max(A) and �min(A) are the maximum and minimum eigenvalues
of A, respectively. From Table 1, we can easily see the following relations:

‖�‖0 = O(h2), ‖�‖1 = O(h1 7
8 ), Con(A) = O(h−2), (6.8)
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192 Z.-C. Li et al.

TABLE 1 Errors and condition numbers for the smooth problem with � = 2 and p1 = 1

NS 4 6 8 12 16 24

‖�‖0 7.96(−4) 3.42(−4) 1.90(−4) 8.36(−5) 4.69(−5) 2.08(−5)

‖�‖1 8.99(−3) 4.09(−3) 2.35(−3) 1.08(−3) 6.22(−4) 2.84(−4)

maxij |�ij | 2.96(−3) 1.36(−3) 7.41(−4) 3.33(−4) 1.89(−4) 8.40(−5)

maxij |(�x)i+ 1
2 ,j

| 2.56(−2) 1.48(−2) 9.21(−3) 4.56(−3) 2.70(−3) 1.27(−3)

maxij |(�y)i ,j+ 1
2
| 3.56(−2) 2.15(−2) 1.41(−2) 7.31(−3) 4.45(−3) 2.14(−3)

�1 1.07(−3) 5.43(−4) 2.74(−4) 9.61(−5) 4.38(−5) 1.40(−5)

�2 2.39(−3) 5.03(−4) 2.82(−4) 1.33(−4) 6.80(−5) 2.40(−5)

Con(A) 6.40 13.8 25.4 57.4 103 232

where � = u − uh . Note that for ‖�‖1, there exist a loss of orders compared
with the optimal order ‖�‖1 = O(h2) of convergence. This confirms the
convergence order ‖�‖1 = O(h1�5) in the error analysis in [5, 7].

Next, we choose � = 7
6 and consider the Poisson equation with the

Dirichlet and Neumann conditions in (6.1)–(6.3). Numerical results are
presented in Tables 2–5 with p1 = p + 1 = 1, 2, 2�25, 2�5, respectively. All
numerical computation in Tables 1–6 is carried out in double precision.
Because p1(� − 1

2) = 2
3p1 = r , we expect from Theorem 3.1 that

‖�‖1 = O(h
2
3 ), for p1 = 1, (6.9)

‖�‖1 = O(h
4
3 ), for p1 = 2, (6.10)

‖�‖1 = O(h1�5), for p1 = 2�25, (6.11)

‖�‖1 = O(h1�5), for p1 = 2�5� (6.12)

From Table 4, we see that the asymptotic convergence rates for p1 =
2�25 in the different norms are, respectively,

‖�‖0 = O(h2), ‖�‖1 = O(h1 3
4 ), Con(A) = O(h−3�5), (6.13)

max
ij

|�ij | = O(h1 2
3 ), max

ij
|(�x)i+ 1

2 ,j
| = O(h

3
4 ), (6.14)

max
ij

|(�y)i ,j+ 1
2
| = O(h

3
4 ), (6.15)

�1 = O(h2�75), �2 = O(h2�75), (6.16)

where �x = ux − (uh)x , �y = uy − (uh)y, and �1 = maxi�|�i ,1|�, �2 =
maxi�|�i ,2|�. The superconvergence rate ‖�‖1 = O(h1 7

8 ) is consistent with
that of Theorem 3.1.
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Superconvergence of Solution Derivatives 193

TABLE 2 Errors and condition numbers for the singular problem with � = 7
6 and p1 = 1

NS 4 6 8 12 16 24

‖�‖0 3.49(−3) 1.83(−3) 1.20(−3) 6.87(−4) 4.71(−4) 2.83(−4)

‖�‖1 1.12(−2) 6.10(−3) 4.14(−3) 2.49(−3) 1.77(−3) 1.11(−3)
maxij |�ij | 9.66(−3) 5.28(−3) 3.28(−3) 1.72(−3) 1.12(−3) 7.21(−4)
maxij |(�x)i+ 1

2 ,j
| 3.22(−2) 1.75(−2) 1.20(−2) 7.60(−3) 5.55(−3) 3.63(−3)

maxij |(�y)i ,j+ 1
2
| 2.34(−2) 1.33(−2) 9.26(−3) 5.40(−3) 4.15(−3) 2.72(−3)

�1 9.66(−3) 3.82(−3) 2.54(−3) 1.54(−3) 1.11(−3) 7.00(−4)
�2 9.30(−3) 5.28(−3) 2.95(−3) 1.56(−3) 1.12(−3) 7.21(−4)
Con(A) 13.5 28.3 50.9 119 213 482

TABLE 3 Errors and condition numbers for the singular problem with � = 7
6 and p1 = 2

NS 4 6 8 12 16 24

‖�‖0 4.52(−3) 1.49(−3) 7.64(−4) 3.27(−4) 1.82(−4) 8.04(−5)

‖�‖1 2.27(−2) 9.49(−3) 5.40(−3) 2.55(−3) 1.50(−3) 7.12(−4)
maxij |�ij | 1.38(−2) 4.35(−3) 2.45(−3) 1.03(−3) 6.23(−4) 3.18(−4)
maxij |(�x)i+ 1

2 ,j
| 6.40(−2) 2.88(−2) 1.71(−2) 1.09(−2) 8.54(−3) 5.37(−3)

maxij |(�y)i ,j+ 1
2
| 3.74(−2) 2.49(−2) 1.93(−2) 1.27(−2) 8.93(−3) 5.14(−3)

�1 1.58(−3) 3.91(−4) 2.01(−4) 7.97(−5) 4.07(−5) 1.58(−5)
�2 4.12(−3) 7.78(−4) 3.70(−4) 1.05(−4) 5.43(−5) 2.14(−5)
Con(A) 9.40 25.6 53.1 185 432 1.47(3)

TABLE 4 Errors and condition numbers for the singular problem with � = 7
6 and p1 = 2�25

NS 4 6 8 12 16 24

‖�‖0 5.83(−3) 1.92(−3) 9.34(−4) 3.90(−4) 2.16(−4) 9.53(−5)

‖�‖1 2.82(−2) 1.19(−2) 6.65(−3) 3.12(−3) 1.84(−3) 8.76(−4)
maxij |�ij | 1.70(−2) 6.26(−3) 2.97(−3) 1.25(−3) 6.93(−4) 3.90(−4)
maxij |(�x)i+ 1

2 ,j
| 7.24(−2) 3.76(−2) 1.93(−2) 1.16(−2) 9.47(−3) 6.19(−3)

maxij |(�y)i ,j+ 1
2
| 4.84(−2) 2.68(−2) 2.10(−2) 1.42(−2) 1.02(−2) 6.35(−3)

�1 1.23(−3) 4.53(−4) 2.29(−4) 8.16(−5) 3.87(−5) 1.35(−5)
�2 3.36(−3) 8.88(−4) 3.34(−4) 1.26(−4) 6.22(−5) 2.21(−5)
Con(A) 11.2 35.7 79.3 314 790 3.00(3)

TABLE 5 Errors and condition numbers for the singular problem with � = 7
6 and p1 = 2�5

NS 4 6 8 12 16 24

‖�‖0 7.05(−3) 2.49(−3) 1.16(−3) 4.66(−4) 2.58(−4) 1.13(−4)

‖�‖1 2.32(−2) 1.47(−2) 8.09(−3) 3.73(−3) 2.20(−3) 1.05(−3)
maxij |�ij | 1.97(−2) 8.35(−3) 3.46(−3) 1.48(−3) 8.29(−4) 4.60(−4)
maxij |(�x)i+ 1

2 ,j
| 7.78(−2) 4.61(−2) 2.45(−2) 1.25(−2) 1.02(−2) 6.97(−3)

maxij |(�y)i ,j+ 1
2
| 5.81(−2) 2.88(−2) 2.26(−2) 1.55(−2) 1.14(−2) 9.13(−3)

�1 1.02(−3) 4.53(−4) 2.11(−4) 6.72(−5) 2.94(−5) 9.14(−6)
�2 2.69(−3) 8.24(−4) 3.54(−4) 1.23(−4) 5.59(−5) 1.77(−5)
Con(A) 14.0 51.9 123 546 147 6.22(3)
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From Tables 2–5, we also observe that the ratios of ‖�‖1 are given by

‖�‖1 at NS = 12

‖�‖1 at NS = 24
= 2�49(−3)

1�11(−3)
= 2�24 = 21�16 = O(h

10
9 ),

p1 = 1, from Table 2,

‖�‖1 at NS = 12

‖�‖1 at NS = 24
= 2�55(−3)

7�12(−4)
= 3�58 = 21�84 = O(h1 4

5 ),

p1 = 2, from Table 3,

‖�‖1 at NS = 12

‖�‖1 at NS = 24
= 3�12(−3)

8�76(−4)
= 3�56 = 21�83 = O(h1 4

5 ),

p1 = 2�25, from Table 4,

‖�‖1 at NS = 12

‖�‖1 at NS = 24
= 3�73(−3)

1�05(−3)
= 3�55 = 21�82 = O(h1 4

5 ),

p1 = 2�5, from Table 5,

which are all coincident with the predictions in (6.9)–(6.12). When p1 =
1, the poor rates, O(h

2
3 ) in theory and O(h

10
9 ) in computation, display a

necessity using the local refinements to improve accuracy of the numerical
solutions. Obviously, the optimal value p1 = 2�25 is the best choice for
computation due to its better accuracy than those of others.

Finally, we choose � = 0�95 and the optimal value p1 = 3�333333333;
numerical results are provided in Table 6, from which we can see

‖�‖0 = O(h2), ‖�‖1 = O(h1�85), Con(A) = O(h−4�5),

max
ij

|�ij |= O(h2), max
ij

∣∣(�x)i+ 1
2 ,j

∣∣ = O(h),

TABLE 6 Errors and condition numbers for the singular problem with � = 0�95 and
p1 = 3�3333333

NS 4 6 8 12 16 24

‖�‖0 1.22(−2) 5.22(−3) 2.46(−3) 9.58(−4) 5.26(−4) 2.32(−4)
‖�‖1 5.33(−2) 2.56(−2) 1.39(−2) 6.16(−3) 3.59(−3) 1.69(−3)
maxij |�ij | 3.02(−2) 1.49(−2) 6.86(−3) 2.72(−3) 1.47(−3) 6.69(−4)
maxij |(�x)i+ 1

2 ,j
| 9.76(−2) 6.54(−2) 3.81(−2) 1.78(−2) 1.20(−2) 8.58(−3)

maxij |(�y)i ,j+ 1
2
| 9.49(−2) 4.69(−2) 3.65(−2) 3.16(−2) 3.09(−2) 3.14(−2)

�1 1.53(−3) 3.23(−4) 1.19(−4) 3.13(−5) 1.24(−5) 3.39(−6)
�2 7.90(−3) 1.14(−3) 3.50(−4) 8.06(−5) 3.05(−5) 8.07(−6)
Con(A) 34.7 199 575 3.72(3) 1.25(4) 7.44(4)
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Superconvergence of Solution Derivatives 195

max
ij

∣∣(�y)i ,j+ 1
2

∣∣ = O(h−�), 0 < � � 1,

�1 = O(h3), �2 = O(h3)�

Although the derivatives maxij |(�y)i+ 1
2 ,j

| = O(h−�) with respect to y are
divergent for � < 1, the errors ‖�‖1 = O(h1�85). Such results are also
in good agreement with that of Theorem 3.1. Note that the above
computation provides, for the first time, significant numerical experiments
for unbounded derivatives on nonrectangular boundary � of the Poisson
equation by the Shortley–Weller difference approximation. Note that the
numerical experiments in this section are carried out for mixed type of the
Neumann and Dirichlet boundary conditions. To our best knowledge, this
is the first time to give meaningful numerical experiments for unbounded
derivatives on nonrectangular boundary �D of Poisson’s equation by the
Shortley–Weller difference approximation.
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