
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2009; 80:163–190
Published online 23 April 2009 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme.2624

Subdomain radial basis collocation method
for heterogeneous media

Jiun-Shyan Chen1,∗,†,‡, Lihua Wang2,§ , Hsin-Yun Hu3,¶ and Sheng-Wei Chi1,‖

1Civil and Environmental Engineering Department, University of California Los Angeles (UCLA),

Los Angeles, CA 90095, U.S.A.
2School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai,

People’s Republic of China
3Mathematics Department, Tunghai University, Taichung, Taiwan

SUMMARY

Strong form collocation in conjunction with radial basis approximation functions offer implementation
simplicity and exponential convergence in solving partial differential equations. However, the smoothness
and nonlocality of radial basis functions pose considerable difficulties in solving problems with local
features and heterogeneity. In this work, we propose a simple subdomain strong form collocation method,
in which the approximation in each subdomain is constructed separately. Proper interface conditions are
then imposed on the interface. Under the subdomain strong form collocation construction, it is shown
that both Neumann and Dirichlet boundary conditions should be imposed on the interface to achieve the
optimum convergence. Error analysis and numerical tests consistently confirm the need to impose the
optimal interface conditions. The performance of the proposed methods in dealing with heterogeneous
media is also validated. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, development of meshfree methods offers new dimensions for solving partial differ-
ential equations (PDE). Meshfree methods can be classified into two types, one based on Galerkin
weak form integrated by quadrature rules [1–6] and the other based on strong form with direct
collocation [7–12]. Galerkin formulation yields a symmetric discrete equation and allows lower
continuity in the test and trial functions, but the need of quadrature rules for domain integration
and special treatment of Dirichlet boundary conditions adds considerable complexity and compu-
tational cost. Methods based on strong form, such as radial basis collocation method (RBCM),
on the other hand, avoid quadrature rules and simplifies imposition of boundary conditions, but
the nonlocality of the radial basis functions (RBF) renders full matrix and ill-conditioning in the
discrete system. The smooth approximation and nonlocality in the RBFs also cause obstruction in
solving problems with heterogeneous media.

Several methods have been proposed to deal with ill-conditioned discrete equations in the
RBCM. Much effort has been devoted to localize the RBFs. Schaback and Wendland [13] and
Wendland [14, 15] introduced a class of positive definite and compactly supported RBFs, which
consist of a univariate polynomial within their support. The accuracy of the approach can be
improved by using a large scaling factor but is costly. Xiao and McCarthy [16] presented a
local-weighted residual method with the Heaviside step function as the weighting function over a
local domain, and with the RBF as the trial function. Wang and Liu [17] introduced an influence
domain to the RBF approximation where each influence domain is localized. In this work, an
approach similar to a transformation method [5, 18] was also introduced to obtain the interpolation
properties. A local weak form with RBF approximation was proposed by Liu and Gu [19] to yield
a sparse discrete system. Shu et al. [20] introduced RBFs in the direct collocation of PDE by
computing derivatives based on a differential quadrature scheme within a local domain of influence.
Chen et al. [21] proposed a reproducing kernel (RK) enhanced RBF approximation to achieve a
local approximation, which holds the similar convergence property as that of the RBF collocation
method while yielding a banded and better-conditioned discrete system. Methods have also been
introduced to remedy ill-conditioning problem. The block partitioning method by Wong et al. [22]
and Kansa and Hon [23] takes the advantage of better conditioning of each sub-block. Fasshauer
[8] investigated global and local RBFs and introduced smoothing methods and multilevel algorithm
for enhancement of ill-conditioning. An adaptive algorithm [24] has been proposed to properly
select suitable test and trial spaces iteratively.

Despite of the tremendous advancement in the RBCM, little has been done in addressing
solvability of problems with heterogeneity and material interfaces using this class of methods.
Two major difficulties exist in applying RBCM to heterogeneous media. One is due to the nonlo-
cality of the RBF, where the local characters cannot be precisely represented by the nonlocal
approximation. The other is the difficulty of approximating derivative discontinuity across the
material interface by the smooth RBF. We note that the treatment of derivative discontinuity in the
arena of ‘meshfree methods’ has been extensively investigated due to the use of smooth moving
least squares (MLS) or RK functions as the test and trial functions in solving PDEs, but these
approaches, such as Lagrange multiplier method [25] and interface enrichment techniques [26, 27],
have been applied to weak form type framework with local test and trial functions.

In this work, we focus on the treatment of derivative discontinuity under strong form collocation
with RBF type of approximation, and present a subdomain RBCM to resolve the above-mentioned
difficulties. We first perform partitioning of the total domain and define subdomains according to
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heterogeneity of the problem. The solution of each subdomain is approximated only by the RBFs
with source points located in the domain and on the boundaries of the subdomain. The strong
form of the original problem is first imposed at the collocation points in each subdomain using the
RBFs in the same subdomain in such a way that they are treated as separate subdomain problems.
The solution of the total domain is then obtained by gluing the solution along the interfaces of the
subdomains by imposing interface conditions with direct collocation. These interface conditions
and the direct collocation of strong form and the associated boundary conditions are then solved
simultaneously to obtain the overall solution of the original problem. The critical consideration in
this approach is the type of interface conditions to be imposed. For elasticity problems, we show
that imposition of both displacement continuity conditions and traction continuity conditions yields
the best results. This has been identified by error analysis and numerical examples presented in
this paper. We also demonstrate that for problems with localized behavior near material interfaces,
localized RBFs (L-RBFs) are needed in addition to the subdomain treatment. A L-RBF constructed
under the partition of unity framework [21] is employed for this purpose in this work.

The formulation and implementation algorithms of the proposed methods presented in this
paper are organized as follows. We first give an overview of RBFs and L-RBFs constructed under
partition of unity in Section 2. In Section 3, we first show numerically and analytically why
strong form approach does not converge for heterogeneous materials, and followed by presentation
of a subdomain approximation for the solution of PDE with heterogeneous material constants.
The imposition of interface condition in a strong form and implementation details are also described
in this section. In Section 4, we provide error analysis of subdomain collocation method with a
special attention devoted to the imposition of interface conditions. We conclude that both displace-
ment continuity and traction equilibrium are required on the interfaces for optimum solution
accuracy. Several numerical examples are given in Section 5 to validate the adequacy of the
interface conditions and to examine the accuracy and convergence of the proposed subdomain
collocation method. Conclusions are given in Section 6.

2. APPROXIMATION FUNCTIONS

2.1. Radial basis functions

RBFs were originally constructed for interpolation by Hardy [28], and have received much attention
in recent years in solving PDE’s due to the seminal work of Kansa [7, 12]. We take a commonly
used multiquadrics RBFs as an example

gI (x)=(r2I +c2)n−(3/2), n=1,2,3, . . . (1)

where rI =‖x−xI‖, the point xI is called the source point, and the constant c involved in
Equation (1) is called the shape parameter of RBFs. The approximation of a function u(x) in �
discretized by a set of Ns source points S, S=[x1,x2, . . . ,xNs]⊆�∪�� is expressed as

uh(x)=
Ns∑
I=1

gI (x)aI + p(x) (2)

where aI is the expansion coefficient, p(x)∈ Pt is polynomial of degree less than t , and gI (x) is
the RBF.
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Remark 2.1

1. RBFs are global nonlocal functions. The intensity (not locality) of the functions is controlled
by the shape parameter c; smaller c yields more concentrated function near source point xI .
In RBFs approximation, the shape parameter has profound influence on the accuracy and
convergence of the approximation.

2. RBFs alone do not have polynomial reproducibility. The polynomial function p(x) in (2) is
used to achieve polynomial reproducibility.

3. RBFs are infinitely continuous differentiable (C∞). This allows the solution of PDE with
RBFs approximation be accomplished by a direct strong form collocation called the RBCM.
However, due to the nonlocal character of RBFs, the resulting discrete equations associated
with PDE are full matrices and often ill-conditioned as the discretization is refined.

4. To achieve optimum solution in RBCM, more collocation points than sources points should be
used and thus yields an over-determined system. For solving the over-determined system, one
may use QR decomposition, singular value decomposition (SVD), or Cholesky decomposition
on its normal equation. These procedures are typically more expensive than that of the finite
element methods (FEMs).

5. If certain regularity conditions of the approximated function u and the RBFs gI are met,
RBFs approximation possesses the following exponential convergence property [29]

‖u−uh‖L∞(�)�C�c/h‖u‖t (3)

where C is a constant independent of c and h, 0<�<1 is a real number, and ‖·‖t is induced
form defined in [29].

2.2. Localized radial basis functions

L-RBFs have been proposed to yield banded discrete differential operator and to reduce ill-
conditioning of the matrix. We consider the following L-RBFs constructed under partition of unity
framework [21]

uh(x)=
N∑
I=1

[�I (x)(aI +gI (x)dI )] (4)

where �I (x) is a partition of unity localizing function with compact support that has polynomial
reproducibility, that is ∑

I
�I (x)x

�
I = x�, |�|�p (5)

where x� = x�1
1 . . . x�d

d , and |�|=∑d
i=1 �i , and p is the order of that can be exactly reproduced.

The partition of unity function �I (x) with compact support can be constructed with MLS [1, 30]
or RK approximation [2].
Remark 2.2

1. In two-dimensional elasticity solved by strong form collocation, the bounds in condition
numbers using multiquadrics RBF, the RK function �I (x) that has compact support, and
L-RBF of Equation (4) constructed using RK function �I (x) as localizing function of RBF
are compared below [21]
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RBF: Cond.≈O(h−8)

RK: Cond.≈O(h−2)

L-RBF: Cond.≈O(h−3)

where h is the nodal distance. In this estimate, the support of the RK function �I (x) is
selected to be the minimum allowable support so that the polynomial reproducibility in (5)
holds [5]. It is shown above that the condition number of L-RBFs in (4) following [21] is
much smaller than the standard global RBFs and only slightly larger than the local partition
of unity function such as the RK function.

2. The error analysis [21] shows that if the error of RK approximation in (4) is sufficiently
small, solving PDE by strong form collocation with L-RBFs approximation maintains the
exponential convergence of RBFs, as opposed to the algebraic convergence rate in standard
RK approximation, while significantly improving the conditioning of the discrete system and
yielding a banded matrix.

3. The total operation count for solving PDEwith L-RBFs collocation method has been discussed
in [21].

4. In this work, we focus on how to deal with discontinuous derivatives when standard nonlocal
RBFs are employed as approximation functions. We will only introduce the L-RBFs when
fine features exist in the problem, such as the existence of boundary layers as demonstrated
in the numerical examples.

3. SUBDOMAIN RBCM FOR HETEROGENEOUS ELASTICITY

3.1. Difficulty in RBCM for heterogeneous elasticity

The smooth and nonlocal nature of RBFs renders difficulty in PDE with heterogeneous coefficients.
Consider a one-dimensional elasticity without body force

d

dx

(
E(x)

du

dx

)
= 0, x ∈(0,10)

u(0) = 0, u(10)=1

(6)

with heterogeneous Young’s modulus

E(x)=
{
E+, x ∈[0,5]
E−, x ∈(5,10] (7)

where E+ =103, E− =104. Let uh be the approximation of the unknown u by RBFs

uh(x)=
Ns∑
I=1

gI (x)aI (8)
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where gI (x) is the one-dimensional nonlocal multiquadrics RBFs and Ns is the number of source
points. We impose the strong form in (6) at Nc collocation points to yield the following discrete
equation: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1(x1) · · · gNs(x1)

E(x2)g1,xx (x2) · · · E(x2)gNs,xx (x2)

...
...

E(xNc−1)g1,xx (xNc−1) · · · E(xNc−1)gNs,xx (xNc−1)

g1(xNc) · · · gNs(xNc)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a1

...

aNs

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

...

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

The first and last equations are associated with the two boundary conditions and the rest of Nc−2
equations refer to the strong form collocation of the differential equation. For sufficient accuracy,
the number of collocation points Nc should be greater than the number of source points Ns.
In this problem, we use Nc=4Ns, which yields the best accuracy. This over-determined system
in (9) is solved by least-squares method. In the first test, we use shape parameter c=5.0 and
uniform discretization with Ns=41, 81, and 161, and the numerical results in Figure 1(a) show
essentially no convergence since the numerical model fails to capture the derivative discontinuity.
We then reduce the shape parameter to c=1.2 to better capture the material interface as shown in
Figure 1(b), but the method converges to a wrong solution.

By re-examining this problem and with the consideration of the discontinuous Young’s modulus,
the differential equation in Equation (6) is re-written as

E(x)u,xx (x)+E,x (x)u,x (x)=0 (10)

Since E,x (x)=�(x−5), Equation (10) is expressed as

E(x)u,xx (x)+�(x−5)u,x (x)=0 (11)

Thus, the strong form collocation of (11) with boundary conditions in Equation (6) is⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g1(x1), . . . , gNs(x1)

E(x2)g1,xx (x2), . . . , E(x2)gNs,xx (x2)

...
...

E(xNc−1)g1,xx (xNc−1), . . . , E(xNc−1)gNs,xx (xNc−1)

g1(xNc), . . . , gNs(xNc)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0, . . . , 0

�(x2−5)g1,x (x2), . . . , �(x2−5)gNs,x (x2)

...
...

�(xNc−1−5)g1,x (xNc−1), . . . , �(xNc−1−5)gNs,x (xNc−1)

0, . . . , 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⎡
⎢⎢⎢⎣

a1

...

aNs

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

...

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)
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Figure 1. (a) Numerical solutions of a one-dimensional elastic composite using radial basis collocation
method with large shape parameter c=5.0 and (b) numerical solutions of a one-dimensional elastic

composite using radial basis collocation method with small shape parameter c=1.2.

It is clear that the term �(xJ −5)gI,x (xJ ) is omitted in (9) unless one of the collocation points
is exactly on the interface, and this yields the results in Figures 1(a)–(b) where the numerical
solutions do not capture material interface and yield a straight line. On the other hand, having
collocation points located on the interface yields singularity in �(xJ −5)gI,x (xJ ), and Equation (9)
cannot be solved directly unless the delta function is regularized. Thus, we propose the subdomain
collocation method to alleviate this difficulty in the next section.

3.2. Basic equations

We first consider the original heterogeneous problem of the following form:

L�u� = f � in � (13)

B�u� = q� on �� (14)

where � is the open domain, �� is the boundary of �, L� is the differential operator in �, B� is
the boundary operator defined on ��, which contains both the Dirichlet and Neumann boundary
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operators, f � is the source term, q� is associated with boundary conditions, and the superscript �
denotes the heterogeneity of the problem. In most elasticity problems, the heterogeneity is resulting
from heterogeneous elasticity constants in the differential operator or the heterogeneity of body
force, but in some special cases heterogeneity could exist in boundary conditions. In this paper,
we focus on material heterogeneity and that yields weak discontinuity (derivative discontinuity)
in the solution.

For easy illustration we consider a domain composed of two materials, each occupies �+ and
�− as shown in Figure 2. We denote by ��+ and ��− the boundaries of �+ and �−, respectively,
and closed domains �̄=�∪��, �̄

+ =�+∪��+, �̄
− =�−∪��−, and we have �̄= �̄

+∪�̄
−
,

�+∩�− =∅, and �=��+∩��− is the interface. In each subdomain, the material is homogeneous.
We consider the transformation of the original problem to the following subdomain problem:

L+u+ = f + in �+

B+u+ = q+ on ��+∩��
(15)

L−u− = f − in �−

B−u− = q− on ��−∩��
(16)

I (u+,u−)=0 on � (17)

where I is the operator representing interface conditions on �, which plays a critical role on
the accuracy and convergence of the proposed method. The solution of originally heterogeneous
problem in (13)–(14) is now solved in each subdomain in (15) and (16), separately, with additional
interface condition in (17) to ‘glue’ the two subdomain solutions together. We will give detailed
discussion on the appropriate construction of I for heterogeneous elasticity in the next section.
The solution in each subdomain is approximated by separate set of basis functions

uh(x)=
⎧⎨
⎩
uh+(x)=g+

1 (x)a+
1 +·· ·+g+

N+
s
(x)a+

N+
s
, x∈ �̄

+

uh−(x)=g−
1 (x)a−

1 +·· ·+g−
N−
s
(x)a−

N−
s
, x∈ �̄

− (18)

where N+
s and N−

s are the number of source points in the two subdomains, and {g+
I }N+

s
I=1 and

{g−
I }N−

s
I=1 are two sets of RBFs with their corresponding source points {x+

I }N+
s

I=1 and {x−
I }N−

s
I=1 located

in �̄
+
and �̄

−
, respectively. The coefficients {a+

I }N+
s

I=1 and {a−
I }N−

s
I=1 are obtained by solving strong

form collocation and interface conditions of Equations (15)–(17) simultaneously.

3.3. Subdomain collocation for heterogeneous elasticity

The strong form of an elasticity problem is given as follows:

(Ci jklu(k,l)), j +bi = 0 in � (19)

Ci jklu(k,l)n j = hi on ��h (20)

ui = ḡi on ��g (21)
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h∂Ω

g∂Ω

−n

+
Ω

−
ΩΓ

+n

Figure 2. Two subdomains of a problem with material heterogeneity.

where Ci jkl is the elasticity tensor, ui is the displacement, (·), j ≡�(·)/�x j , bi is the body force,
hi is the surface traction on Neumann boundary ��h , gi is the prescribed boundary displacement
on Dirichlet boundary ��g , and ��=��h∪��g . For heterogeneous materials, Ci jkl is a function
of position, and it yields nonsmooth solution if Ci jkl is discontinuous across material interfaces.

Based on the heterogeneity of Ci jkl , we decompose domain into n subdomains �=⋃n
i=1�(i),

�(i)∩�( j) =∅ if i �= j , so that Ci jkl is a constant tensor in each subdomain. For simplicity we
consider a domain composed of two materials. The corresponding sub-problems are expressed as:

(C+
i jklu

+
(k,l)), j +b+

i = 0 in �+

u+
i = ḡ+

i on ��+∩��g

C+
i jklu

+
(k,l)n

+
j = h+

i on ��+∩��h

(22)

(C−
i jklu

−
(k,l)), j +b−

i = 0 in �−

u−
i = ḡ−

i on ��−∩��g

C−
i jklu

−
(k,l)n

−
j = h−

i on ��−∩��h

(23)

with the following interface conditions:

u+
i −u−

i = 0

C+
i jklu

+
(k,l)n

+
j +C−

i jklu
−
(k,l)n

−
j = 0

on � (24)

Remark 3.1
For elasticity, we consider both displacement continuity and traction equilibrium on the interface.
It will be shown in the next section that the imposition of both displacement continuity and traction
equilibrium conditions yields the best convergence of this method.

For notational simplicity, Equations (22)–(24) are symbolically expressed as follows:

L+u+ = f+ in �+

B+
g u

+ = g+ on ��+∩��g

B+
h u

+ = h+ on ��+∩��h

(25)
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L−u− = f− in �−

B−
g u

− = g− on ��−∩��g

B−
h u

− = h− on ��−∩��h

(26)

u+−u− = 0

B+
h u

++B−
h u

− = 0
on � (27)

The solution in each subdomain is approximated by a separate set of basis functions:

uhi (x)=
⎧⎨
⎩
uh+
i (x)=g+

1 (x)a+
i1+·· ·+g+

N+
s
(x)a+

i N+
s
, x∈ �̄

+

uh−
i (x)=g−

1 (x)a−
i1+·· ·+g−

N−
s
(x)a−

i N−
s
, x∈ �̄

− (28)

Substituting RBFs approximation in (28) into (25)–(27) and evaluating them at collocation points
for all sub-problems yields a set of algebraic equations to solve for the coefficients a±

j I .

3.4. Implementation

Let �=± be the heterogeneity parameter, P� be a set of N �
p collocation points in ��, Q� be a set

of N �
q collocation points on ���∩��g , R� be a set of N �

r collocation points on ���∩��h , and T
be a set of Nt collocation points on �, we have

P� = {p�
1,p

�
2, . . . ,p

�
N �
p
}⊆��, Q� ={q�

1,q
�
2, . . . ,q

�
N �
q
}⊆���∩��g

R� = {r�1,r�2, . . . ,r�N �
r
}⊆���∩��h, T={t1, t2, . . . , tNt }⊆�

(29)

Let uh� be the approximation function of u� according to (28) and is expressed as

uh� =U�Ta� (30)

U�T = [g�
1,g

�
2, . . . ,g

�
N �
s
], g�

I =g�
I I, a� =[a�

1,a
�
2, . . . ,a

�
N �
s
]T, a�

I =[a�
1I ,a

�
2I ,a

�
3I ]T (31)

where g�
I is the RBFs with source point x�

I ∈ �̄
�
, and I is an identity matrix. By introducing

approximation (30) into strong forms (25)–(27) and evaluating them at the collocation points in the
domains, boundaries, and interfaces defined in (29) for the subdomains, we obtain the following
discrete equation:

Aa :=

⎡
⎢⎢⎣
A+

A−

K

⎤
⎥⎥⎦a=

⎡
⎢⎢⎣
b+

b−

0

⎤
⎥⎥⎦=:b (32)
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where {A+,b+} and {A−,b−} are the stiffness matrices and force vectors associated with subdo-
main problems in (25) and (26), respectively, and K is associated with the interface conditions
in (27). The submatrices and subvectors are defined as

A+ =

⎡
⎢⎢⎣
A+

L

A+
g

A+
h

⎤
⎥⎥⎦ , A− =

⎡
⎢⎢⎣
A−

L

A−
g

A−
h

⎤
⎥⎥⎦ , K=

[
Kg

Kh

]
, b+ =

⎡
⎢⎢⎣
b+
L

b+
g

b+
h

⎤
⎥⎥⎦ , b− =

⎡
⎢⎢⎣
b−
L

b−
g

b−
h

⎤
⎥⎥⎦ (33)

where A�
L , A

�
g , and A

�
h are the matrices associated with differential operator L�, Dirichlet boundary

operator B�
g and Neumann boundary operator B�

h , respectively, and Kg and Kh are associated with
Dirichlet and Neumann type interface conditions, respectively. The explicit expressions of these
matrices and vectors in (32)–(33) are given in the Appendix.

To achieve an optimum convergence, more collocation points than source points need to be used
in the discretization. This yields an over-determined system in (32) and is solved by a least-squares
method. It is important to realize that the least-squares solution of strong form collocation in (32)
is equivalent to the minimization of least-squares functional with quadratures. We first define
the following least-squares method: to seek the approximation solution uh ∈U , where U is the
admissible space spanned by the RBFs, such that

E(uh)= min
vh∈U

E(vh) (34)

where

E(vh) = 1

2

{∫
�+

(L+vh+−f+)2 d�+
∫

�−
(L−vh−−f−)2 d�

+
∫

��g∩��+
(B+

g v
h+−g+)2 d�+

∫
��g∩��−

(B−
g v

h−−g−)2 d�

+
∫

��h∩��+
(B+

h v
h+−h+)2 d�+

∫
��h∩��−

(B−
h v

h−−h−)2 d�

+
∫

�
(vh+−vh−)2 d�+

∫
�
(B+

h v
h++B−

h v
h−)2 d�

}
(35)

where the notation (y)2≡(y)T(y). It has been shown in [31] that the errors associated with least-
squares method are unbalanced between domain term, Dirichlet boundary term and Neumann
boundary term, and a weighted least-squares method has been proposed. In this work, we introduce
a weighted version of (35) as

E(vh) = 1

2

{∫
�+

(L+vh+−f+)2 d�+
∫

�−
(L−vh−−f−)2 d�

+w+
g

∫
��g∩��+

(B+
g v

h+−g+)2 d�+w−
g

∫
��g∩��−

(B−
g v

h−−g−)2 d�

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:163–190
DOI: 10.1002/nme



174 J.-S. CHEN ET AL.

+w+
h

∫
��h∩��+

(B+
h v

h+−h+)2 d�+w−
h

∫
��h∩��−

(B−
h v

h−−h−)2 d�

+w̄g

∫
�
(vh+−vh−)2 d�+w̄h

∫
�
(B+

h v
h++B−

h v
h−)2 d�

}
(36)

where w±
g and w±

h are the weights associated with Dirichlet and Neumann boundary in each
subdomain, respectively, and w̄g and w̄h are the weights associated with the two interface conditions
on interface �. According to [31], the following weights are used:√

w+
g =

√
w−
g =√w̄g =O(k̄ · N̄s),

√
w+
h =O(s+),

√
w−
h =O(s−),

√
w̄h =O(1) (37)

where k� =max(��,��), k̄=max(k+,k−), N̄s =max(N+
s ,N−

s ), s+ = k̄/k+, s− = k̄/k−, �� and ��

are Lame’s constants in �̄
�
, and N �

s is the number of source points in �̄
�
. Based on the equivalence

of strong form collocation method and the least-squares method with quadratures, the collocation
matrices affected by the introduction of weights in (37) are as follows:

A+ =

⎡
⎢⎢⎢⎢⎣

A+
L√

w+
g A+

g√
w+
h A

+
h

⎤
⎥⎥⎥⎥⎦ , A− =

⎡
⎢⎢⎢⎢⎣

A−
L√

w−
g A−

g√
w−
h A

−
h

⎤
⎥⎥⎥⎥⎦ , K=

[√
w̄gKg√
w̄hKh

]

b+ =

⎡
⎢⎢⎢⎢⎣

b+
L√

w+
g b+

g√
w+
h b

+
h

⎤
⎥⎥⎥⎥⎦ , b− =

⎡
⎢⎢⎢⎢⎣

b−
L√

w−
g b−

g√
w−
h b

−
h

⎤
⎥⎥⎥⎥⎦

(38)

The above-weighted functional problem in (36) can be described equivalently

a(vh,uh)= f (vh) ∀vh ∈U (39)

where the bilinear and linear forms are defined as follows:

a(vh,uh) =
∫

�±
(L±vh±)T(L±uh±)d�+w±

g

∫
��g∩��±

(B±
g v

h±)T(B±
g u

h±)d�

+w±
h

∫
��h∩��±

(B±
h v

h±)T(B±
h u

h±)d�+w̄g

∫
�
(vh+−vh−)T(uh+−uh−)d�

+w̄h

∫
�
(B+

h v
h++B−

h v
h−)T(B+

h u
h++B−

h u
h−)d� (40)

and

f (vh) =
∫

�±
(L±vh±)Tf± d�+w±

g

∫
��g∩��±

(B±
g v

h±)Tg± d�

+w±
h

∫
��h∩��±

(B±
h v

h±)Th± d� (41)
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Here, we used
∫
�±(L±vh±)T(L±uh±)d� to denote

∫
�+(L+vh+)2 d�+∫�−(L−vh−)2 d�, and same

notation applies to other terms. The integrals given in the above least-squares problem can be
approximated by Newton–Cotes integration rules, that is to seek ũh ∈U such that

ã(vh, ũh)= f̃ (vh) ∀vh ∈U (42)

It is equivalent to seek ũh ∈U that satisfies

Ẽ(ũh)= min
vh∈U

Ẽ(vh) (43)

Here, we denote Ẽ=∫ ∧
(·) the numerical integration counterpart of E=∫ (·), where ∫ ∧

(·) denotes
numerical integration. Same notation applies to ã(·, ·) and f̃ (·). Recall that the least-squares
solution of strong form collocation is equivalent to the minimization of least-squares functional
with quadratures. Thus, the minimization of subdomain weighted least-squares functional in (43)
and (36) leads to a subdomain weighted collocation method in (32). Further, the convergence
properties of strong form collocation method can be obtained by analyzing least-squares functional
as follows.

To start, define the following norm:

‖vh‖2E = k̄‖vh±‖2
1,�± +‖L±vh±‖2

0,�± +w±
g ‖B±

g v
h±‖2

0,��g∩��± +w±
h ‖B±

h v
h±‖2

0,��h∩��±

+w̄g‖vh+−vh−‖20,�+w̄h‖B+
h v

h++B−
h v

h−‖20,� (44)

where w±
g ‖B±

g v
h±‖2

0,��g∩��± =w+
g ‖B+

g v
h+‖2

0,��g∩��+ +w−
g ‖B−

g v
h−‖2

0,��g∩��− , etc, k̄=max(�±,

�±). To show that there exists an optimal solution we need the following theorem.

Theorem 3.1
Suppose that the bilinear form ã(·, ·) is continuous and coercive in U

ã(vh,uh) �C1‖vh‖E‖uh‖E ∀vh ∈U (45)

ã(uh,uh) �C2‖uh‖2E ∀uh ∈U (46)

where C1 and C2 are positive constants independent of the number of collocation points.

By using the Lax-Milgram lemma, it can be shown that the solution of the subdomain weighted
collocation method has error bound:

‖u− ũh‖E�C inf
vh∈U

‖u−vh‖E (47)

Detail analysis is given in the next section.
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4. ERROR ANALYSIS OF SUBDOMAIN RBCM FOR HETEROGENEOUS MEDIA

We rewrite that the weighted least-squares functional (36) corresponds to the subdomain collocation
Equations (32)–(33) as follows:

E(uh)=
n∑

i=1
E(uh(i)), uh ∈U =V ×V ×V (48)

where n is the number of subdomains, V =V (1)×·· ·×V (n), and V (i) =span{g(i)
1 ,g(i)

2 , . . . ,g(i)

N (i)
s

}.
For simplicity, we consider the total domain consisting only two subdomains denoted as �̄

+ =
�+∪��+ and �̄

− =�−∪��−, �̄
+∪�̄

− = �̄, and ��̄
+∩��̄

− =� is the interface with surface
outward normals n+ and n− defined in Figure 2.

The weighted least-squares functional is expressed as

E(uh) = 1

2

{∫
�±

(	±
i j, j +b±

i )2 d�+w±
h

∫
��h∩��±

(	±
i j n

±
j −h±

i )2 d� +w±
g

∫
��g∩��±

(uh±
i −g±

i )2 d�

+w̄h

∫
�
(	+

i j n j−	−
i j n j )

2 d�+w̄g

∫
�
(uh+

i −uh−
i )2 d�

}
(49)

Here, we use the notation (yi )2≡ yi yi , 	
±
i j =C±

i jk�u
h±
(k,�) is the stress tensor, ni =n+

i =−n−
i , w

±
g and

w±
g are the boundary weights, and w̄g and w̄h are the interface weights as described in Section 3.

We also denote
∫
�±(	±

i j, j +b±
i )2 d�=∫�+(	+

i j, j +b+
i )2 d�+∫�−(	−

i j, j +b−
i )2 d�, etc. to simplify

the expression of the equation. We seek uh that minimizes the functional:

E(uh)= min
vh∈U

E(vh) (50)

This minimization problem is equivalent to

a(vh,uh)= f (vh) ∀vh ∈U (51)

where the bilinear form is

a(vh,uh) =
∫

�±
�±
ik,k	

±
i j, j d�+w±

g

∫
��g∩��±

vh±
i uh±

i d�

+w±
h

∫
��h∩��±

�±
ikn

±
k 	±

i j n
±
j d�+w̄g

∫
�
(vh+

i −vh−
i )(uh+

i −uh−
i )d�

+w̄h

∫
�
(�+

iknk−�−
iknk)(	

+
i j n j −	−

i j n j )d� (52)

�±
i j =C±

i jk�v
h±
(k,�), and the linear form

f (vh)=−
∫

�±
�±
i j, j b

±
i d�+w±

g

∫
��g∩��±

vh±
i g±

i d�+w±
h

∫
��h∩��±

�±
i j n

±
j h

±
i d� (53)
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We define the following norm as the elasticity counterpart of the norm defined in (44):

‖uh‖H =
3∑

i=1
{�̄‖uhi ‖21,�+‖	±

i j, j‖20,�± +w̄g‖uh+
i −uh−

i ‖20,�

+w̄h‖	+
i j n j −	−

i j n j‖20,�+w±
h ‖	±

i j n
±
j ‖2

0,��h∩��± +w±
g ‖uh±

i ‖2
0,��g∩��±}1/2 (54)

where �̄=min(�+,�−), �± =min(�±,�±) and

�̄‖uhi ‖21,� = �̄‖uh+
i ‖2

1,�+ + �̄‖uh−
i ‖2

1,�− (55)

There exist a few useful lemmas summarized below.

Lemma 4.1
Let uh±

i be the components of the solution uh± in subdomains �±, respectively, there exist the
following trace inequalities:

‖uh±
i ‖0,� � C‖uhi ‖1,�

‖	±
i j n j‖0,� � CN±

s

√
k̄‖uhi ‖1,�

‖uh±
i ‖0,��g∩��± � C‖uhi ‖1,�

‖	±
i j n

±
j ‖0,��h∩��± � C N̄s

√
k̄‖uhi ‖1,�

(56)

where k̄=max{k+,k−}, N̄s =max{N+
s ,N−

s }, and C is a generic constant independent of
N+
s ,N−

s , N̄s , and k̄. The above trace inequalities can be found in References [32, 33].
Remark 4.1
Since �=�+∪�−∪�, using integration by parts we have

�̄|uhi |21,� �
∫

�
uhi, j	i j d�=−

∫
�
uhi 	i j, j d�+

∫
��

uhi 	i j n j d�

= −
∫

�+
uh+
i 	+

i j, j d�−
∫

�−
uh−
i 	−

i j, j d�+
∫

��+
uh+
i 	+

i j n
+
j d�

+
∫

��−
uh−
i 	−

i j n
−
j d� (57)

Since ��=��+∪��− =��g∪��h∪�, and considering n j =n+
j =−n−

j on the interface �, the
third and fourth terms on the right-hand side of above equation can be rearranged as∫

��+
uh+
i 	+

i j n
+
j d�+

∫
��−

uh−
i 	−

i j n
−
j d�

=
∫

��h∩��±
uh±
i 	±

i j n
±
j d�+

∫
��g∩��±

uh±
i 	±

i j n
±
j d�+

∫
�
uh+
i 	+

i j n
+
j d�+

∫
�
uh−
i 	−

i j n
−
j d�

=
∫

��h∩��±
uh±
i 	±

i j n
±
j d�+

∫
��g∩��±

uh±
i 	±

i j n
±
j d�+

∫
�
(uh+

i 	+
i j n j −uh−

i 	−
i j n j )d�

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:163–190
DOI: 10.1002/nme



178 J.-S. CHEN ET AL.

=
∫

��h∩��±
uh±
i 	±

i j n
±
j d�+

∫
��g∩��±

uh±
i 	±

i j n
±
j d�

+
∫

�
(uh+

i −uh−
i )	+

i j n j d�+
∫

�
(	+

i j n j −	−
i j n j )u

h−
i d� (58)

It follows that

�̄|uhi |21,� � ‖uh±
i ‖0,�±‖	±

i j, j‖0,�± +‖uh+
i −uh−

i ‖0,�‖	+
i j n j‖0,�+‖	+

i j n j −	−
i j n j‖0,�‖uh−

i ‖0,�
+‖uh±

i ‖0,��h∩��±‖	±
i j n

±
j ‖0,��h∩��± +‖uh±

i ‖0,��g∩��±‖	±
i j n

±
j ‖0,��g∩��± (59)

It can be seen that both the displacement and the traction continuity conditions on the interface
exist in (59). They are critical in proving the coercivity in Lemma 4.2. The above analysis also
explains the reasons how interface conditions are added to the least-squares functional, the bilinear
form, and energy norm in Section 3.

By using the results stated in Lemma 4.1 and in (59) and the Poincare inequality, we have the
following lemma.

Lemma 4.2
There exists a positive number �̄ such that the bilinear form a(·, ·) satisfies the following condition:

�̄‖uh‖21,��C0a(uh,uh) ∀uh ∈U (60)

where C0 is a generic constant independent of N+
s ,N−

s , N̄s , and k̄.

We have used the relationship between 1-norm and bilinear form to yield (60), see [33].
To obtain an optimal solution of the subdomain weighted collocation method, the results given in
Lemma 4.2 and the Lax-Milgram lemma will be used.

Lemma 4.3
Suppose that the bilinear form a(·, ·) is continuous and coercive in U , we have

a(vh,uh) � C1‖vh‖H‖uh‖H ∀vh ∈U

a(uh,uh) � C2‖uh‖2H ∀uh ∈U
(61)

where C1 and C2 are two positive constants independent of N+
s ,N−

s , N̄s , and k̄. As such, there is
an optimal solution uh for the subdomain weighted least-squares method:

‖u−uh‖H�C inf
vh∈U

‖u−vh‖H (62)

Since the Newton–Cotes integration rules are used in the functional, we summarize the error
bounds for the approximation in following lemmas.

Remark 4.2
To arrive (61), the Poincare inequality [34], trace inequalities in (56) [32] and the result in (59) [33]
have been used. These inequalities yield the relationship between H -norm and bilinear form, that
is, the coercivity. Although [33] deals with Poisson problem, the proof can be easily extended to
elasticity.
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Lemma 4.4
Let r be the order of polynomial that the numerical integration can exactly integrate. There exist
the following bounds for the approximate integrals:∣∣∣∣

(∫ ∧

�±
−
∫

�±

)
(	±

i j, j )
2
∣∣∣∣ � Ckh̄r+1(N±

s )r+5‖uh±
i ‖2

0,�±∣∣∣∣∣
(∫ ∧

��g∩��±
−
∫

��g∩��±

)
(u±

i )2

∣∣∣∣∣ � Ch̄r+1 N̄ r+1
s ‖uh±

i ‖2
0,��g∩��±

∣∣∣∣
(∫ ∧

��h∩��±
−
∫

��h∩��±

)
(	±

i j n
±
j )2
∣∣∣∣ � Ckh̄r+1 N̄ r+3

s ‖uh±
i ‖2

0,��h∩��±

∣∣∣∣
(∫ ∧

�
−
∫

�

)
(uh+

i −uh−
i )2

∣∣∣∣ � C1h̄
r+1(N+

s )r+1‖uh+
i ‖20,�+C2h̄

r+1(N−
s )r+1‖uh−

i ‖20,�∣∣∣∣
(∫ ∧

�
−
∫

�

)
(	+

i j n j−	−
i j n j )

2
∣∣∣∣ � C1kh̄

r+1(N+
s )r+3‖uh+

i ‖20,�
+C2kh̄

r+1(N−
s )r+3‖uh−

i ‖20,�

(63)

where
∫ ∧
�+ denotes the approximation of

∫
�+ , N̄s =max{N+

s ,N−
s }, h̄=max{h̄i }, where h̄i is the

maximal distance of integration nodes (collocation points) and its neighbors.

Lemma 4.5
Suppose the conditions in Lemmas 4.3 and 4.4 hold, we choose h̄ to satisfy

h̄r+1 N̄ r+3
s =O(1) (64)

Then, there exist the following inequalities:

ã(vh,uh) � C̃1‖vh‖H‖uh‖H ∀vh ∈U

ã(uh,uh) � C̃2‖uh‖2H ∀uh ∈U
(65)

where ã(·, ·) is the integration counterpart of a(·, ·), and C̃1, C̃2 are generic constants independent
of N+

s ,N−
s , N̄s , and k̄.

Under the conditions given in (64), and consider that h̄= N̄−1
s , we have h̄=O(h[1+2/(1+r)]).

This indicates that for a desired accuracy, the density of collocation points should be selected
much denser than the source points i.e. Nc�Ns especially when lower-order quadrature rules are
used. Finally, we have the following important theorem.

Theorem 4.1
Suppose that the bilinear form ã(·, ·) is continuous and coercive in U , then the solution of the
subdomain weighted collocation method has error bound

‖u− ũh‖H�C inf
vh∈U

‖u−vh‖H (66)
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Moreover,

‖u− ũh‖H �C
3∑

i=1
{√�̄‖u±

i −vh±
i ‖1,�± +‖	±

i j, j −�±
i j. j‖0,�± +√w̄g‖vh+

i −vh−
i ‖0,�

+√w̄h‖(�+
i j −�−

i j )n j‖0,�+
√

w±
g ‖u±

i −vh±
i ‖0,��g∩��±

+
√

w±
h ‖(	±

i j −�±
i j )n j‖0,��h∩��±} (67)

where �±
i j is the stress calculated by vh±

i , and C is a generic constant.

Remark 4.3
Both displacement and traction continuity conditions on the interface are needed to prove the
coercivity in Lemmas 4.2, 4.3, 4.5 and in Theorem 4.1, and to yield an optimal solution ũh .
If RBCM exhibits exponential convergence in homogeneous problem, same convergence properties
exist in subdomain radial basis collocation method (SD-RBCM) if the errors on the material
interfaces are well controlled.

5. NUMERICAL EXAMPLES

In the following study, we consider two types of approximation functions:

(a) Reciprocal multiquadrics RBFs:

gI (x)=(r2I +c2)−1/2, rI =
√

(x−xI )2+(y− yI )2 (68)

(b) L-RBFs constructed based on partition of unity with RK as the localizing function given
in Equation (4), where the RK is constructed using cubic bases and a quintic spline
(C4 continuity) kernel function:


(s)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

11

20
− s2

2
+ s4

4
− s5

12
, 0�s<1,

17

40
+ 5s

8
− 7s2

4
+ 5s3

4
− 3s4

8
+ s5

24
, 1�s<2,

243

120
− 81s

24
+ 9s2

4
− 3s3

4
+ s4

8
− s5

120
, 2�s<3,

0, s�3,

s= ‖x−xI‖
a

(69)

In the following examples, c denotes the shape parameters in RBFs, h represents the nodal distance,
and a is the radius of finite cover in the L-RBFs. We use the following methods in the numerical
examples:

1. Radial basis collocation method (RBCM): nonlocal multiquadrics RBFs as approximation in
conjunction with collocation of strong form.
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2. Subdomain radial basis collocation method (SD-RBCM): nonlocal multiquadrics RBFs as
approximation in conjunction with subdomain collocation of strong form.

3. Subdomain localized radial basis collocation method (SD-LRBCM): L-RBFs as approxima-
tion in conjunction with subdomain collocation of strong form.

In all examples, the density of collocation points about twice the density of the source points in
each dimension is used [33, 35], unless specified otherwise. In the discussion of numerical results,
errors are measured by L2-norm and H1-norm defined as

‖uh−u‖0 =
(∫

�
(uhi −ui )(u

h
i −ui )d�

)1/2

(70)

|uh−u|1 =
(∫

�
(uhi, j −ui, j )(u

h
i, j −ui, j )d�

)1/2

(71)

5.1. One-dimensional bi-material rod

We repeat the one-dimensional bi-material rod as discussed in (6)–(7) in Section 3.1, and consider
existence of body force conditions: (1) b(x)=0, (2) b(x)=1.5x .

As discussed in Sections 3 and 4, both displacement continuity and traction equilibrium condi-
tions should be imposed on the material interface �. We denote �+ :={x :0< x<5}, �− :=
{x :5< x<10}, and material interface �:={x : x=5}. To numerically verify this condition, we
consider the following three interface conditions:

Interface condition I:

	+ =	− on � (72)

Interface condition II:

u+ =u− on � (73)

Interface condition III:

	+ = 	− on �

u+ = u− on �
(74)

Note that traction continuity 	+
i j n

+
j +	−

i j n
−
j =0 has been simplified to 	+ =	− in one dimen-

sion. In this numerical test, uniform source point distribution is used, and Ns=41. Guiding by

Equation (37), we use weights
√

w+
g =

√
w−
g =√w̄g =105,

√
w+
h =10,

√
w−
h =1,

√
w̄h =1 in the

weighted collocation. The comparison of solutions for the case of zero body force obtained by
SD-RBCM using different interface conditions is shown in Figure 3. The results clearly indicate
that the imposition of both displacement continuity and traction equilibrium conditions yields
the best accuracy. Imposition of only one of the two conditions results in errors. We will use
both displacement and traction interface conditions for the remaining numerical examples when
subdomain collocation method is used.

The results obtained from domain RBCM and SD-RBCM are shown in Figure 4. As expected,
RBCM does not capture material interface, whereas SD-RBCM is substantially accurate.
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Figure 3. Bi-material elastic rod subjected to zero body force analyzed by SD-RBCM
using different interface conditions.
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Figure 4. Bi-material elastic rod subjected to higher-order body force obtained by RBCM and SD-RBCM.

The comparison of L2- and H1-norms of RBCM and SD-RBCM are shown in Figure 5. This
problem reveals that the use of subdomain collocation is critical in capturing the local material
interface behavior when nonlocal RBFs are used.

5.2. Two-dimensional bi-material plate

A rectangular plate composed of two materials is subjected to a uniform tension h=1.0 in the
horizontal direction as shown in Figure 6. All points on the left edge of the plate are fixed in the
horizontal direction and free to move in the vertical direction, and all points on the bottom edge
are free to move in the horizontal direction and fixed in the vertical direction. The material prop-
erties are: Young’s moduli E+ =1×103, E− =1×104, and the Poisson ratios �+ =0.25, �− =0.3.
This problem is different from problem 5.1 due to the Poisson effect that yields a local ‘boundary
layer’ effect as will be seen below.
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Figure 5. Convergence of L2- and H1-error norms of bi-material elastic rod with
body force using RBCM and SD-RBCM.
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Figure 6. Bi-material plate subjected to tension.

The domain is discretized by 90×9 uniform source points (Ns), and 180×18 uniform collocation

points (Nc). The weights for the weighted collocation are
√

w+
g =

√
w−
g =√w̄g=105,

√
w+
h =10,√

w−
h =1,

√
w̄h=1. Finite element solution with 16 000 nodes is used as the reference solution.

The solutions along y=0.5 of FEM (16 000 nodes), RBCM, SD-RBCM, and SD-LRBCM are
compared in Figure 7. The results show again that RBCM solution is very poor. Owing to
the very localized thin layer of stress concentration near the material interface, SD-RBCM also
yields considerable errors in the stress solutions. The localized stresses can be better captured
by the use of L-RBFs in SD-LRBCM. The comparison of L2- and H1-error norms generated by
RBCM, SD-RBCM, and SD-LRBCM is shown in Figure 8, where RBCM and SD-RBCM do
not converge for this problem, and SD-LRBCM generates the best convergence among the three
methods.

5.3. Plate with circular inclusion

A plate with a circular inclusion subjected to far-field horizontal traction 	0=1.0 is shown in
Figure 9. The interface between the two materials is assumed to be perfectly bonded. The material
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Figure 7. Comparison of displacement and stress solutions obtained
by RBCM, SD-RBCM, and SD-LRBCM.

properties are Young’s moduli E+ =1.0×103, E− =1.0×104, and the Poisson ratio �+ =0.25,
�− =0.3. Total of 330 source points and 1320 collocation points are used as shown in Figure 10.
Owing to symmetry, only the first quadrant of the plate is modeled. The dimension is 5.0×5.0
and the radius of the circular inclusion is r =1.0. The exact analytical tractions [36] are prescribed
on the right and top edges of the quarter model.

Weights for the weighted collocation following (37) are
√

w+
g =

√
w−
g =√w̄g =106,

√
w+
h =10,√

w−
h =1,

√
w̄h =1. Figure 11 shows the comparison of displacement and stress solutions along

x=0 obtained by RBCM, SD-RBCM, and SD-LRBCM. Results again show that worst results
generated by RBCM and best results by SD-LRBCM, although in this problem the SD-RBCM
results are already quite good. Convergence in L2- and H1-error norms of the three methods is
compared in Figure 12. The two methods with subdomain collocation converge much better than the
method with standard collocation. Further, SD-LRBCM converges much faster than SD-RBCM.
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6. CONCLUSIONS

Solving partial differential equations by radial basis functions (RBFs) in conjunction with strong
form collocation has achieved much success in recent years for problems with smooth solution.
Nonetheless, little has been done for problem with nonsmooth solution using this approach.
Elasticity problem with heterogeneous materials is one typical example of this kind. Unlike weak
form approach where the second-order differentiation is reduced to first-order differentiation, strong
form collocation encounters the difficulty when discontinuous material properties exist. This yields
an awkward situation: either material interface cannot be detected if none of the collocation point is
located on the interface, or derivatives of discontinuous material properties at the material interface
cannot be properly dealt with.

In this paper, we proposed a subdomain collocation method for solving heterogeneous elasticity.
The original heterogeneous problem is first sub-divided into sub-problems where each of the
corresponding subdomain has homogeneous material properties. For each sub-problem, the solution
is approximated by using only the RBFs with their source points located in the subdomain.
Each sub-problem is discretized by strong form collocation, and the collocation equations of all
sub-problems with proper interface conditions are then solved simultaneously. Error analysis is also
performed for the proposed method, and the results suggest that both displacement continuity and
traction equilibrium conditions along the materials interfaces should both be imposed for optimum
convergence in the proposed strong form collocation approach. More specifically, if radial basis
collocation method (RBCM) exhibits exponential convergence in homogeneous problem, same
convergence properties exist in subdomain radial basis collocation method (SD-RBCM) if the
errors on the material interfaces are well controlled.

Several numerical examples were analyzed to examine the effectiveness of the proposed
method. It is shown that the standard RBCM generates significant errors near material inter-
face and in some cases with large errors throughout the whole domain. On the other hand,
subdomain collocation method effectively captures derivatives along the material interfaces and
provides substantial improvement in the solution compared with the standard collocation method.
For problems exhibiting localized behavior near material interfaces, an L-RBFs constructed
using RK function as the localizing function of RBF [21] is further introduced in addition
to the employment of subdomain collocation. The convergence study demonstrates that the
proposed SD-RBCM converges exponentially. Similar convergence is observed when L-RBFs are
employed.

APPENDIX A

The explicit expressions of the matrices and vectors in (32)–(33) are defined here.

A+
L =

⎡
⎢⎢⎢⎢⎢⎣

L+(U+T
(p+

1 )), 0

...

L+(U+T
(p+

N+
p
)), 0

⎤
⎥⎥⎥⎥⎥⎦ , A−

L =

⎡
⎢⎢⎢⎢⎢⎣

0, L−(U−T
(p−

1 ))

...

0, L−(U−T
(p+

N−
p
))

⎤
⎥⎥⎥⎥⎥⎦ (A1)
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A+
g =

⎡
⎢⎢⎢⎢⎣

B+
g (U+T

(q+
1 )), 0

...

B+
g (U+T

(q+
N+
q
)), 0

⎤
⎥⎥⎥⎥⎦ , A−

g =

⎡
⎢⎢⎢⎢⎣
0, B−

g (U−T
(q−

1 ))

...

0, B−
g (U−T

(q−
N−
q
))

⎤
⎥⎥⎥⎥⎦ (A2)

A+
h =

⎡
⎢⎢⎢⎢⎣

B+
h (U+T

(r+
1 )), 0

...

B+
h (U+T

(r+
N+
r
)), 0

⎤
⎥⎥⎥⎥⎦ , A+

h =

⎡
⎢⎢⎢⎢⎣
0, B−

h (U−T
(r−

1 ))

...

0, B−
h (U−T

(r−
N−
r
))

⎤
⎥⎥⎥⎥⎦ (A3)

Kg =

⎡
⎢⎢⎢⎣
U+T

(t1), −U−T
(t1)

...
...

U+T
(tNt ), −U−T

(tNt )

⎤
⎥⎥⎥⎦ (A4)

Kh =

⎡
⎢⎢⎢⎣

B+
h U

+T
(t1), B−

h U
−T

(t1)

...
...

B+
h U

+T
(tNt ), B−

h U
−T

(tNt )

⎤
⎥⎥⎥⎦ (A5)

b+
L =

⎡
⎢⎢⎢⎣

f(p+
1 )

...

f(p+
N+
p
)

⎤
⎥⎥⎥⎦ , b−

L =

⎡
⎢⎢⎢⎣

f(p−
1 )

...

f(p−
N−
p
)

⎤
⎥⎥⎥⎦ (A6)

b+
g =

⎡
⎢⎢⎢⎣

g(q+
1 )

...

g(q+
N+
q
)

⎤
⎥⎥⎥⎦ , b−
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⎡
⎢⎢⎢⎣

g(q−
1 )

...

g(q−
N−
q
)

⎤
⎥⎥⎥⎦ (A7)

b+
h =

⎡
⎢⎢⎢⎣

h(r+
1 )

...

h(r+
N+
r
)

⎤
⎥⎥⎥⎦ , b−

h =

⎡
⎢⎢⎢⎣

h(r−
1 )

...

h(r−
N−
r
)

⎤
⎥⎥⎥⎦ (A8)
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