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SUMMARY

The direct approximation of strong form using radial basis functions (RBFs), commonly called the radial
basis collocation method (RBCM), has been recognized as an effective means for solving boundary
value problems. Nevertheless, the non-compactness of the RBFs precludes its application to problems
with local features, such as fracture problems, among others. This work attempts to apply RBCM to
fracture mechanics by introducing a domain decomposition technique with proper interface conditions.
The proposed method allows (1) natural representation of discontinuity across the crack surfaces and
(2) enrichment of crack-tip solution in a local subdomain. With the proper domain decomposition and
interface conditions, exponential convergence rate can be achieved while keeping the discrete system
well-conditioned. The analytical prediction and numerical results demonstrate that an optimal dimension
of the near-tip subdomain exists. The effectiveness of the proposed method is justified by the mathematical
analysis and demonstrated by the numerical examples. Copyright q 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Radial basis functions (RBFs) have been widely used in reconstruction of functions from known
data [1–4] and as the basis functions for solving partial differential equations (PDEs) [5–10].
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The mathematical theories for convergence in the RBF approximation can be found in [11–15].
Despite of its progress in recent years, difficulties remain when a large number of RBFs are used
in the approximation and when local features exist. These difficulties are largely attributed to the
non-compactness of the RBFs.

One typical example of problems with local features is the one with heterogeneity in the
coefficients of PDEs, such as elasticity with heterogeneous materials. The local characters in
this type of problems cannot be precisely represented by the nonlocal RBFs. Further, derivative
discontinuities across the material interfaces cannot be properly approximated by RBFs. Several
attempts have been introduced to localize the RBFs. These methods include a class of positive
definite and compactly supported radial functions which consist of a univariate polynomial within
their support [16, 17], a local weighted residual method with the Heaviside step function as the
weighting function over a local domain and with the RBF as the trial function [18], introducing
an influence domain to the RBF approximation where each influence domain is localized [19],
introducing RBF in the direct collocation of PDE by computing derivatives based on a differential
quadrature scheme within a local domain of influence [20], and a reproducing kernel-enhanced
RBF approximation to achieve a local approximation while possessing a similar convergence
property as that of the nonlocal RBF [21]. The issue of treating derivative discontinuity when
using smooth approximation functions has been addressed largely in the Galerkin-type methods,
such as the element free Galerkin (EFG) or reproducing kernel particle method (RKPM), by
introducing Lagrange multiplier method [22] and interface enrichment techniques [23]. In the
strong form type method such as radial basis collocation method (RBCM), a subdomain collocation
method [24] has been proposed, where RBF approximation in each subdomain is constructed
separately, and compatibility and flux equilibrium conditions are then imposed on the interfaces
between subdomains. This approach yields a derivative discontinuity on the interface and retains
an exponential convergence of RBCM when solving problems with heterogeneity.

Fracture mechanics represents another class of problems that are difficult to be solved by
numerical methods using smooth approximation functions. The roughness of the solution in fracture
problems includes strong discontinuity across fracture surfaces and singularities in the stress
field at the crack tip. Galerkin methods with smooth approximation typically yield a rather slow
convergence in fracture problems [25]. The non-convex geometry of crack surface adds additional
complexity in methods where approximation functions are not constructed from the local mesh.
Belytschko and co-authors introduced a method [26] to modify the moving least-squares (MLS)
approximation functions near the crack tip to yield a discontinuity in the approximation functions
across the crack surfaces. To further enhance the solution accuracy near crack tip where stress
singularity exists, enrichment functions representing crack-tip characteristics were introduced to
nodes near the crack tip as extrinsic bases [27, 28] or as intrinsic bases [27] of MLS. Other meshfree
methods have also been proposed for fracture problems, such as extended finite element method
[29, 30], collocation Trefftz method [31] and point collocation method [32].

Most of the above-mentioned methods for computational fracture mechanics are of weak form
type. In this work, we focus on the methods based on strong form approach, specifically, under
the framework of the RBCM. Employing RBCM for solving Motz’s problem where singularity
exists on the boundary has been introduced by Hu et al. [9]. Owing to the singularity at the source
points, singular functions were introduced in the RBF approximation to solve Motz’s problem. In
the present work, we first introduce domain decomposition under the framework of subdomain
collocation method to deal with the discontinuity across the crack surface. The domain is separated
into three subdomains: a small circular domain near the crack tip and two larger subdomains
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separated by the extension of the crack surface. The approximation in each subdomain is constructed
separately, and compatibility and traction equilibrium conditions are then imposed on the interfaces
between subdomains. Enrichment functions with

√
r property and discontinuity cross crack surface

are introduced in the near-tip subdomain, while multiquadrics RBFs are employed for the other
subdomains away from the crack tip. Selection of proper dimension for the near-tip subdomain can
be estimated by keeping the balance of errors among the subdomain interfaces near the crack tip.

The remainder of this paper is organized as follows. The overview of RBF approximations
and the convergence properties are given in Section 2. In Section 3, we first demonstrate that
the enriched RBCM with the visibility criteria (RBCM-VC) or the diffraction method introduced
in EFG [26–29] yields unsatisfactory results. Further, adding crack-tip enrichment functions to
the RBF approximation results in an ill-conditioned discrete system. The subdomain radial basis
collocation method (SD-RBCM) is also reviewed in this section. In Section 3, enriched SD-
RBCM for fracture mechanics is introduced. The strategy of domain decomposition for introducing
different basis functions in different subdomains is presented, proper interface conditions between
subdomains are introduced, and discretization by strong form collocation for fracture problems is
derived. The error analysis of the proposed method is given in this section as well. The effectiveness
of the proposed method is demonstrated in the numerical examples presented in Section 4. Finally,
concluding remarks are given in Section 5.

2. RADIAL BASIS COLLOCATION METHOD

Boundary value problems have traditionally been solved by the Galerkin method, where the original
strong formulation is first transformed to a weak formulation. Weak formulation has also been
employed in meshfree methods where the approximation functions are constructed without using
local element topology, and thus the constraint on element boundary compatibility is avoided.
Nevertheless, the need to integrate domain in the weak formulation adds considerable complexity
to meshfree methods. An alternative approach for solving PDEs is to introduce approximation
directly to the strong form. The strong form approach appears to be attractive for meshfree methods
as it avoids domain and boundary integrations. The higher-order differentiability of many RBFs
makes them good candidates for solving PDEs using the strong formulation with collocation [5, 8],
termed the RBCM as described below.

2.1. RBCM for boundary value problems

Consider the following boundary value problem:

Lu= f in � (1)

Bgu= g on ��g (2)

Bhu= h on ��h (3)

where L is the differential operator, Bg and Bh are the boundary operators associated with Dirichlet
and Neumann boundary conditions, respectively, � is the problem domain, ��g is the Dirichlet
boundary, ��h is the Neumann boundary, f, g, h are the source term tensors, and u is the unknown
tensorial function.
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Equations (1)–(3) are called the strong forms of the boundary value problem in which the
solution u is approximated by some basis functions. The approximated function v≈u is forced to
satisfy the strong forms (1)–(3) at the collocation points:

Lv(pI ) = f(pI ), pI ∈�, I =1, . . . ,Np (4)

Bgv(qI ) = g(qI ), qI ∈��g, I =1, . . . ,Nq (5)

Bhv(rI ) = h(rI ), rI ∈��h, I =1, . . . ,Nr (6)

where {pI }Np
I=1⊆�, {qI }Nq

I=1⊆��g , and {rI }Nr
I=1⊆��h are the collocation points in domain �, and

on the Dirichlet boundary ��g and the Neumann boundary ��h , respectively. Let the approximated
function be expressed as

v(x)=
Ns∑
I=1

�I (x)aI =UTa (7)

where vT=[v1,v2,v3], aT=[a1, . . . ,aNs ], aTI =[a1I ,a2I ,a3I ], UT=[U1, . . . ,UNs ], UI =�I I, �I
is the basis function centered at source point xI , and Ns is the number of source points. Introducing
approximation (7) into the collocation equations (4)–(6), we have

LUT(pI )a= f(pI ), pI ∈�, I =1, . . . ,Np (8)

BgU
T(qI )a= g(qI ), qI ∈��g, I =1, . . . ,Nq (9)

BhU
T(rI )a= h(rI ), rI ∈��h, I =1, . . . ,Nr (10)

Equations (8)–(10) are combined to solve for the coefficient vector a:⎡
⎢⎣
AL

Ag

Ah

⎤
⎥⎦

︸ ︷︷ ︸
A

a=
⎡
⎢⎣
bL

bg

bh

⎤
⎥⎦

︸ ︷︷ ︸
b

(11)

where the sub-matrices in (11) are given in Appendix A. For achieving sufficient accuracy in using
RBF approximation for the numerical solution of PDEs, the total number of collocation points
Nc=Np+Ng+Nr much larger than the number of source points Ns should be used [33]. This
yields an over determined system in (11), and approaches such as least-squares method is used to
obtained an approximate solution.

The convergence of the discrete equation (11) is closely related to the basis functions used in the
approximation (7). The required continuity of the basis functions is determined by the differential
operator L. Without integration by parts commonly used in the weak formulation, basis functions
with higher-order continuity are needed in this strong form-based approach compared with the
Galerkin method. The most commonly used basis function for the strong form collocation method
is the multivariate RBFs originally constructed for surface fitting [1]. Some RBFs perform very
well in interpolating highly irregular scattered data compared with many interpolation methods
[2], and they have been introduced in high-dimensional interpolation [34]. RBF was first applied
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to solving PDEs in [5, 6]. A commonly used RBF for solving PDEs is the multiquadratics (MQ)
function [1, 12]:

�I (x)=(r2I +c2)n−3/2, n=1,2,3, . . . (12)

where rI =‖x−xI‖, and the constant c is called the shape parameter of RBF. To reproduce certain
order of polynomials, the approximation by RBF is often modified as

vi (x)=
Ns∑
I=1

�I (x)ai I + p(x) (13)

where p(x)∈Pm is complete polynomials of degree less and equal to m. The convergence of
RBF has been studied by Madych and Nelson [11], and it has been shown that there exists an
exponential convergence rate if RBF is globally analytic or band-limited

‖u−v‖L∞(�)�C�c/h‖u‖t (14)

where C is a constant independent of c and h, h is the radial distance between source points,
0<�<1 is a real number, and ‖·‖t is induced form defined in [11].

RBFs such as MQ function in (12) are nonlocal functions. This yields a full matrix A in (11)
and consequently ill-conditioned as the dimension of A increases. Following [21], the condition
number of A is given as

Cond(A)= �max(A)

�min(A)
=

(
�max(ATA)

�min(ATA)

)1/2

≈O(N 4
S) (15)

where �min(ATA) and �max(ATA) are the minimal and maximal eigenvalues of matrix ATA,
respectively. As shown in (15), the condition number increases quickly in the model refinement,
which is needed in problems with local features such as heterogeneity and singularity. A subdomain
collocation method [24] has been introduced to reduce the condition numbers and to model
heterogeneous media where derivative discontinuity exists. This idea will be extended to fracture
mechanics in this work where singularity in stresses and strains requires special treatment using
RBF approximation.

2.2. Difficulty in RBCM for fracture mechanics

Meshfree methods with smooth and node-based approximation encounter difficulties in approxi-
mating strong discontinuity (C−1) across crack surface and singularity in strain and stress fields at
the crack tip. A commonly used approach under the Galerkin framework is to introduce enrichment
functions in the approximation as [27]

v(x)= ṽ(x)+ v̂(x) (16)

where ṽ∈Cn is a smooth function with continuity n�0, and v̂ is the enrichment function expressed
as follows for the near-tip field:

v̂(x)=
4∑

I=1
�̂I (x)âI =ÛT

â (17)
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Figure 1. Crack surface geometry and orientation.

where

Û
T=

[√
r sin

�

2
,
√
r cos

�

2
,
√
r sin

�

2
sin�,

√
r cos

�

2
sin�

]
(18)

Here � is the angle tangent to the crack surface as shown in Figure 1. The bases �̂I for the
enrichment function v̂ are selected based on the asymptotic displacement field near crack tip,
and they exhibit strong discontinuity along �→� and �→−�. The term

√
r is the asymptotic

displacement behavior which yields 1/
√
r singularity in strain and stress fields near the crack tip.

Although the enrichment function v̂ constructed above enhances solution accuracy near the crack
tip, the convergence of the total solution resides on the basis functions in the smooth part ṽ.

Under the framework of element free Galerkin [28], MLS functions have been employed as the
bases for ṽ. A visibility criterion has been proposed in the construction of �̂I where the domain
of influence of the MLS functions is truncated according to the crack surface intersecting with the
ray of light between the nodal point and point of evaluation. This approach, however, introduces
discontinuity along certain direction inside the problem domain and the method yields incorrect
stress and strain fields and performs poorly when crack-tip enrichment functions are introduced
[27]. A transparency method and a diffraction method have been introduced to yield MLS functions
with only discontinuity across the crack surface and maintain proper continuity inside the domain
[26]. However, we observe that the above methods do not work well for strong form collocation
with radial basis approximation functions as demonstrated below.

To demonstrate, a plane stress plate with an edge crack subjected to a uniform tension �=1.0
is considered (Figure 2(a)). The plate dimension is 0.6×0.6, and the crack length is 0.3. The
material properties of the plate are Young’s modulus E=3×104 and the Poisson ratio �=0.3. This
problem is solved by a strong form collocation in (8)–(11) using MQ RBF in (12) with n=1 for
the smooth approximation ṽ. Bases in (18) are used as the near-tip enrichment functions for v̂. We
also weight the boundary conditions in (9) and (10) according to [10]. The number of collocation
points is four times of the number of source points for this problem as shown in Figure 2(b).
Since RBFs are not compactly supported, we use visibility criterion to introduce discontinuity in
the RBFs as shown in Figure 2(c). The RBF domain of influence for source point P in a cracked
square domain is truncated by the line connecting the source point P and the crack tip Q using the
visibility criterion. The truncated RBF associated with the source point P becomes discontinuous
across crack surface and across line QP . We call this approach the RBCM with visibility criterion
(RBCM-VC).
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Figure 2. Tensile specimen with edge crack (a) problem statement and (b) RBF discretization, (c) RBF
domain of influence (shaded area) of source point P in the cracked domain.

In the numerical test, uniform discretization is employed with different refinements Ns =144,
256, 400. We first use constant shape factors c=0.001 and c=0.4 in RBF. Figure 3(a) and (b)
shows the displacement and stress solutions along y=0.001 and indicate that the numerical results
converge to a wrong solution. We then use varying shape parameter where smaller c (c=0.1r,r
is the distance from the crack tip) is used near crack tip, and a slight improvement is observed in
Figure 3(c). Figure 4 shows the condition numbers of this edge crack problem based on RBCM-
VC. The results demonstrate that the condition number of the system increases dramatically for
the case with large shape parameter (c=0.4) and the situation can be improved with variable c.

3. SUBDOMAIN RBCM FOR FRACTURE MECHANICS

3.1. Basic equations

We start with the problem statement of a linear elastic fracture mechanics as shown in Figure 5.

∇ ·r+b= 0 in � (19)

u= ū on ��g (20)

r ·n= t on ��t (21)

r ·n= 0 on ��c (22)

where ��c is the crack surface. Equation (19) is the equilibrium equation with r the stress tensor
and b the body force vector. Equations (20)–(22) are boundary conditions with the prescribed
displacement ū, and the surface traction t. The surface traction boundary ��t and the crack surface
��c constitute the Neumann boundary, that is, ��h =��t ∪��c.
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Figure 3. Solution of the edge crack problem along y=0.001 obtained from RBCM-VC with: (a) c=0.001;
(b) c=0.4; and (c) varying c.
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Figure 3. Continued.
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Figure 5. Domain and boundaries of a fracture problem.

Figure 6. Domain partition in crack problem.

The strong form statement in (19)–(22) can be expressed in the following operator forms:

Lu= f, f=b in � (23)

Bgu= g, g= ū on ��g (24)

Bhu= h, h=
{
t on ��t

0 on ��c
(25)

where L is the differential operator of equilibrium, Bg and Bh are the boundary operators associated
with prescribed displacement and surface traction boundary conditions, respectively.

3.2. Subdomain collocation

To introduce enrichment functions near crack tip and to represent proper discontinuity across
the crack surface in the RBF approximation of the displacement field, we consider a domain
partitioning as shown in Figure 6 with separate approximation in each subdomain in conjunction
with proper interface conditions on the interface �.
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Let v	(x) be the approximation of u(x) for x∈�	, the subdomain collocation of strong forms
is given as

Lv	(pI ) = f(pI ), pI ∈�	, I =1, . . . ,N	
p, 	=1,2,3

Bgv	(qI ) = g(qI ), qI ∈��g∩��	, I =1, . . . ,N	
q , 	=1,2,3

Bhv	(rI ) = h(rI ), rI ∈��h∩��	, I =1, . . . ,N	
r , 	=1,2,3

(26)

with interface conditions

v+(sI )−v−(sI ) = 0

B+
h v

+(sI )+B−
h v

−(sI ) = 0
, sI ∈�, I =1, . . . ,N� (27)

where ��	 is the boundary of subdomain �	, and {pI }N
	
p

I=1⊆�	, {qI }N
	
q

I=1⊆��g∩��	, {rI }N
	
r

I=1⊆
��h∩��	, and {sI }N�

I=1⊆� are the collocation points in the subdomain �	, Dirichlet subboundary
��g∩��	, Neumann subboundary ��h∩��	, and subdomain interface �, respectively. The first
interface condition in (27) is the displacement compatibility, where (v+,v−) denote the approxi-
mated displacements of the two subdomains interacting interface �, and the second condition in
(27) is the operator form of interface traction equilibrium �+

ij, j n
+
j =�−

i j, j n
−
j , where �	

ij and n	
j are

the stress computed by v	
i in �	 and surface normal on ��	, respectively.

The RBF approximations of the displacements in each subdomain are constructed as follows:

(i) For the near-tip subdomain (	=1):

v1i (x)=
N1
s∑

I=1
�1
I (x)a

1
i I +

4∑
I=1

�̂I (x)âi I , x∈ �̄
1 =�

1 ∪��1 (28)

(ii) For far-field subdomains (	=2,3):

v	
i (x)=

N 	
s∑

I=1
�	
I (x)a

	
i I , x∈ �̄

	 =�	∪��	, 	=2,3 (29)

where N	
s is the number of source points in the subdomain �̄

	 =�	∪��	, {�	
I }N

	
s

I=1 are the

set of RBFs with their corresponding source points {x	
I }N

	
s

I=1 located in �̄
	
. As described

above, the displacements are approximated by RBFs with enrichment functions {�̂I }4I=1
given in (18) in the near-tip subdomain �1, and are approximated by the standard RBFs
without enrichment in the far-field subdomains �2 and �3. This subdomain approximation
allows enrichment functions be introduced only near the crack tip without affecting far-field
solution in finite domain problems. The displacement continuity and traction equilibrium

on the subdomain interface �̄
1∩(�̄

2∪�̄
3
) are enforced by the interface conditions in (27).

The subdomain approximation in �2 and �3 with the imposition of interface conditions

(27) on �̄
2∩�̄

3
is intended to introduce discontinuity across the crack surface ��c.
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3.3. Convergence properties

Let U be finite-dimensional collection of basis functions, U =∪3
i=1Vi , where V1=span{�I , �̂I }

and the other subspaces V2=V3=span{�I }, �I are RBF defined in Section 2.1, and �̂I are singular
functions given in (18). Define a functional

E(v) = 1

2

3∑
	=1

∫
�	

(Lv	−f)2 d�+
3∑

	=2

w	
h

2

∫
��h∩��	

(Bhv	−h)2 d�

+
3∑

	=2

w	
g

2

∫
��g∩��	

(Bgv
	−g)2 d�+ w̄g

2

3∑
	=2

∫
�

(v1−v	)2d�

+ w̄h

2

3∑
	=2

∫
�

(Bhv
1−Bhv

	)2 d�+ w̄g

2

∫
�

(v2−v3)2 d�+ w̄h

2

∫
�

(Bhv2−Bhv
3)2 d� (30)

The solution for subdomain collocation in (26) can be viewed as minimization of least-squares
functional with quadratures: to seek solution ũB such that

Ê(ũB)=min
v∈U Ê(v) (31)

where Ê(v)denotes the discrete functional form ofE(v). Consider a norm

‖v‖H =
{

3∑
	=1

(‖Lv	‖20,�	 +w‖v‖21,�	)+
3∑

	=2
w	
h‖Bhv	‖20,��h∩��	 +

3∑
	=2

w	
g‖Bgv	‖20,��g∩��	

+w̄g

3∑
	=2

‖v1−v	‖20,�+w̄h

3∑
	=2

‖Bhv1−Bhv	‖20,�+w̄g‖v2−v3‖20,�

+ w̄h‖Bhv2−Bhv3‖20,�
}1/2

(32)

Following the Lax–Milgram lemma [35], we obtain an optimal estimate below

‖u− ũB‖H � inf
v∈U ‖u−v‖H

�
3∑

	=1
C	
1‖L(RN	

s )‖0,�	 +
3∑

	=1
C	
2

√
w‖(RN	

s )‖1,�	 +
3∑

	=2
C	
3

√
w	
h‖Bh(RN	

s )‖
0,��h∩��	

+
3∑

	=1
C	
4

√
w	
g‖Bg(RN	

s )‖
0,��g∩��	

+
3∑

	=1
C	
5

√
w̄g‖RN 	

s
‖0,�+

3∑
	=1

C	
6‖RN	

s ‖1,� (33)

where RN 	
s
=u−v	 is the remainder in �	, C	

j are genetic constants, and triangle inequalities on
interior boundary � have been used

3∑
	=2

‖v1−v	‖0,� =
3∑

	=2
‖v1−u+u−v	‖0,��C

3∑
	=1

‖u−v	‖0,� (34)
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Denote RNs =max{RN1
s
, RN2

s
, RN3

s
}. Above error bound can be written as follows:

‖u− ũB‖H �C1‖L(RNs )‖0,�+C2
√

w‖RNs ‖1,�
+C3

√
wh‖Bh(RNs )‖0,��h∩��	 +C4

√
wg‖Bg(RNs )‖0,��g∩��	

+C5‖RNs ‖1,� (35)

Note that both displacement and traction conditions on the interior bounding � are needed to get
an optimal solution [24].

If there exist exponential convergence rates in each subdomain and on the boundaries, we obtain

‖u− ũB‖H�O(�c/hs ) (36)

where parameters c and h are addressed in Section 2.1 and 0<�s<1 is a real number. Accuracy and
rate of convergence are determined by the shape parameter c and the number of basis function N 	

s
in each subdomain �	. If the particular solutions are used as the admissible functions, this leads
to the collocation Trefftz method [31, 33], and there exist exponential convergence rates as well.

3.4. Coupling strategy from convergence consideration

Consider a second-order operator L=D, the tracing inequalities are

‖v‖1,� �C0‖v‖2,�, (37)

‖v‖0,� � C̃0‖v‖1,�, (38)

The error bound in (35) can then be written as follows:

‖u− ũB‖H �C1‖RN1
s
‖2,�1 +C2‖RN2

s
‖2,�2 +C3‖RN3

s
‖2,�3

�C1�
c/h1
1 ‖u‖t +C2�

c/h2
2 ‖u‖t +C3�

c/h3
3 ‖u‖t (39)

where RN 	
s
is the remainder in �	, 0<�	<1, 	=1,2,3 and ‖·‖t is induced form defined in [11].

We define the nodal distances h	 in each subdomain �	 as

h	 =
(
Area(�	)

N	
s

)1/n

in n-dimension (40)

According to Equation (39), for balance of errors among the three subdomains, we consider

�c/h11 ≈�c/h	
	 where 	=2,3 (41)

Taking nature log of each side, we obtain the relationship

(c/h1) log�1≈(c/h	) log�	 where 	=2,3 (42)

Substituting (40) into (42), we obtain

N 1
s

Area(�1)
=

(
log�	

log�1

)n N	
s

Area(�	)
(43)

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 83:851–876
DOI: 10.1002/nme



864 L. WANG, J.-S. CHEN AND H.-Y. HU
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a
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Figure 7. Domain partition for concave domain.

or

N	
s =

(
log�1
log�	

)n Area(�	)

Area(�1)
N 1
s (44)

Based on the number of basis functions used in each subdomain, the optimal dimension of the
near-tip subdomain �1 can be estimated. As shown in Figure 7, if the number of basis functions
is proportional to the area of subdomains, we have

�
2

(a2−�
2)/2
= N 1

s

N̄s
, N̄s =min(N 2

s ,N 3
s ) (45)

where 
 denotes the radius of subdomain �1, and a is the dimension of the plate patch. Thus, we
obtain the relationship for selection of the radius of subdomain �1:


=
√

�a2

(2+�)�
where �= N 1

s

N̄s
(46)

4. NUMERICAL EXAMPLES

In the following numerical examples, the collocation method applied to the strong forms of each
subdomain augmented with interface conditions as given in Equations (26)–(27) is introduced. The
approximation of solution in each subdomain by RBFs and with enrichment functions introduced
in the near-tip subdomain as described in Equations (28)–(29) is employed. We call this proposed
method as the SD-RBCM. MQ RBFs are used for all the numerical examples. To achieve optimal
solution accuracy, weighted collocation method [10] is introduced to balance the errors in the
domain and on the boundaries. The collocation equations for the boundary and interface are
weighted as follows:

Subdomain strong forms:

Lv	(pI ) = f(pI ), pI ∈�	, I =1, . . . ,N	
p, 	=1,2,3√

w	
gBgv	(qI ) =

√
w	
gg(qI ), qI ∈��g∩��	, I =1, . . . ,N	

q , 	=1,2,3√
w	
hBhv	(rI ) =

√
w	
hh(rI ), rI ∈��h∩��	, I =1, . . . ,N	

r , 	=1,2,3

(47)
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Interface conditions: √
w̄g(v+(sI )−v−(sI )) = 0√

w̄h(B
+
h v

+(sI )+B−
h v

−(sI )) = 0, sI ∈�, I =1, . . . ,N�

(48)

The weights suggested by Chen et al. [24] are:
√

w	
g =√

w̄g =O(k̄ · N̄s),

√
w	
h =O(s	),

√
w̄h =O(1) (49)

where k̄=max{k	}, k	 =max{�	,�	}, N̄s =max{N	
s }, s	 =k/k	, �	 and �	 are Lame’s constants

in �̄
	
and N	

s is the number of source points in �̄
	
.

4.1. The variant Motz’s problem

A two dimensional variant Motz’s problem is given as

Du= �2u
�x2

+ �2u
�y2

=0 in � (50)

where �={(x, y)|−1/2�x�1/2,0�y�1/2} as shown in Figure 8, and the following mixed
Dirichlet-Neumann boundary conditions are introduced

�u
�x

= 0 on x=−1

2
∩0�y�1

2
,

u = 0.125 on y= 1

2
∩−1

2
�x�1

2
,

�u
�x

= 0 on x= 1

2
∩0�y�1

2
,

�u
�y

= 0 on y=0∩0<x�1

2
,

u = 0 on y=0∩ 1

2
�x<0.

(51)

The discontinuity of boundary conditions at (0,0) yields a singularity u=O(
√
r) as r →0.

A series solution has been proposed [31]:

u(r,�)=
∞∑
i=0

dir
i+1/2 cos

(
i+ 1

2

)
� (52)

The domain partitioning of this problem is shown in Figure 9, where �1 with radius 
=0.1 is used.
In this problem, only the first term in the series solution,

√
r cos(�/2), is used as the enrichment

function in the near-tip subdomain �1 together with RBF bases, and only RBFs are used as the
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Figure 8. The variant Motz’s problem definition.

Figure 9. Domain partitioning of the variant Motz’s problem.

bases in the far-field subdomain �2, that is,

v1(x) =
N1
s∑

I=1
�1
I (x)a

1
I +

√
r cos(�/2)â, x∈ �̄

1=�1∪��1 (53)

v2(x) =
N2
s∑

I=1
�2
I (x)a

2
I , x∈ �̄

2=�2∪��2 (54)

A total of 18 source points are used in �̄
1
, and 240 source points are used in �̄

2
. Consequently,

4×18 and 4×240 collocation points are used in �̄
1
and �̄

2
, respectively. The weights for the

boundary collocation equations are introduced based on (49) with k̄=1.
Figure 10 shows that the best accuracy in the solution and its derivatives along y=0.001 can

be obtained by SD-RBCM with radius 
=0.1 for �̄
1
. According to (46), the prediction of the

optimal dimension of near-tip subdomain is 
=0.105, and the numerical results in Figure 10 are
consistent with this prediction. Further, with the same discretization, the condition number of the
matrix in the discrete equation is reduced from 1017 for the case without domain partitioning to
1012 for the SD-RBCM with subdomain approximation.

4.2. Edge crack in a square plate subjected to tension

We revisit the crack problem discussed in Section 3 and compare the results of RBCM and RBCM-
VC with the proposed SD-RBCM approach. The domain partitioning of this problem is described
in Figure 11 with the radius for the near-tip subdomain being 
=0.1. In the SD-RBCM approach,

MQ RBFs and enrichment functions are used to approximate displacements in subdomain �̄
1
,
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Figure 10. Solution of the variant Motz’s problem at y=0.001.

whereas only MQ RBFs are used in subdomains �̄
2
and �̄

3
. The number of source points and

collocation points used in each subdomain are N 1
s =26, N 2

s =N 3
s =150, and N	

c =4N	
s , 	=1,2,3,

respectively as shown in Figure 17.
Solution obtained by finite element method with 22 500 elements is used as the reference solution

of this problem. The comparison of displacement and stress solutions in Figure 12 demonstrates
the significant accuracy improvement in SD-RBCM compared with the solution of RBCM with
or without visibility criterion. The condition numbers of the discrete equation associated with
different methods are compared in Figure 13. The results show that SD-RBCM discrete systems
are much well-conditioned compared with those of RBCM-based approaches without subdomain
approximation.

The convergence of the solution in L2 and H1 norms shown in Figure 14 also exhibits a much
higher convergence rates in SD-RBCM compared with the RBCM-based approaches. The effect
of near-tip subdomain dimension on the solution accuracy is shown in Figure 15. The results
suggest that an optimal dimension of near-tip subdomain exists in this finite domain problem. The
numerical tests validate the result obtained from (46), which gives the optimal radius of near-tip
subdomain to be 
=0.096.
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Figure 11. Domain partition in SD-RBCM.
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Figure 12. Comparison of solution at y=0.001 of the edge crack plate subjected to tension.
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Figure 13. Condition number of the A matrix in the edge crack plate subjected to tension
using RBCM, RBCM-VC, and SD-RBCM.
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Figure 14. Convergence of L2 and H1 error norms of the edge crack plate subjected to tension.

We assume that the error exhibits an exponential convergence behavior as

ε=C�cN , 0<�<1 (55)

where N denotes the number of source points in one direction and c is the RBF shape parameter.
Express errors in two levels of discretization as:

ε1=C�c1N1, ε2=C�c2N2 . (56)

It follows that

�=e(logε1−logε2)/(c1N1−c1N2) (57)
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Figure 15. Solution at y=0.001 of the edge crack plate subjected to tension using
different near-tip subdomain radii.

We use this formula to calculate the asymptotic error behavior as follows:

(1) For RBCM:

‖u−v‖0,� ≈O((1.14)cN), ‖u−v‖1,� ≈O((1.09)cN ) (58)

(2) For RBCM-VC:

‖u−v‖0,� ≈O((0.98)cN), ‖u−v‖1,� ≈O((0.99)cN) (59)

(3) For SD-RBCM:

‖u−v‖0,� ≈O((0.20)cN), ‖u−v‖1,� ≈O((0.27)cN) (60)

Equations (58)–(60) indicate that RBCM does not converge, RBCM-VC has very slow convergence,
and SD-RBCM has the exponential convergence.
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Figure 16. Edge crack in a finite plate under shear.
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Figure 17. Source points and collocation points used in the discretization.

4.3. Edge crack in a finite plate subjected to shear load

Consider a crack subjected to shear load in a finite domain as displayed in Figure 16. The dimension
of the patch is 0.6×0.6, and the crack length is 0.3. The material properties of the plate are
Young’s modulus E=3×104 and the Poisson ratio �=0.3. The applied shear load is =1.0. The
domain partitioning of this problem is similar to that in Figure 11 with the radius for the near-tip
subdomain being 
=0.1 and similar discretization as described in Figure 17 is employed.

Solution based on finite element method with 23 280 elements is used as the reference solution
for this problem. Once again, the numerical results in Figure 18 show a good accuracy obtained
from SD-RBCM compared with the solutions of RBCM and RBCM-VC. Owing to the use of
same discretization as that of Example 4.2, same condition numbers as shown in Figure 13 are
expected for this problem.

The errors of the solution in L2 and H1 error norms in Figure 19 show an exponential conver-
gence in SD-RBCM, very slow convergence rate for RBCM-VC and no convergence in RBCM.
The effect of near-tip subdomain dimension on the solution accuracy is compared in Figure 20,
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Figure 18. Comparison of solution at y=0.001 of the edge crack plate under shear.
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Figure 19. Convergence of L2 and H1 error norms of the edge crack plate under shear.
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Figure 20. Solution at y=0.001 of the edge crack plate under shear using
different near-tip subdomain radii.

which again suggests that a dimension for the near-tip subdomain based on (46) yields the best
solution.

5. CONCLUSIONS

Radial basis collocation method (RBCM) for solving PDEs has been an active subject in the past
decade. The simplicity of the direct collocation on strong forms and the exponential convergence in
the radial basis approximation makes RBCM an attractive computational method. Nevertheless, the
nonlocality and the smooth nature of RBFs present intrinsic difficulties in dealing with problems
with non-convex geometry and local features, where fracture mechanics is one such example.

The objective of this paper is to introduce an enhanced RBCM to circumvent the
above-mentioned difficulties. Since RBFs are typically with high-order smoothness, the crack-tip
singularity in stress field and the discontinuity across the crack surface cannot be properly
approximated by RBFs. Enrichment functions representing near-tip characteristics commonly used
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in the Galerkin-based method also cannot be easily introduced in the nonlocal RBF approximation.
Further, methods such as visibility criterion and other related methods commonly used in meshfree
methods with compact supports for crack problems are not applicable due to the nonlocality of
RBFs.

In this work we introduced an SD-RBCM originally introduced for heterogeneous materials
[24] as an improvement of RBCM for crack problems. By a proper partitioning of the problem
domain into subdomains and by introducing separate approximation in each subdomain, the near-tip
stress singularity and crack surface displacement discontinuity can be accurately approximated. An
important step in this approach is the imposition of displacement continuity and traction equilibrium
along the interfaces between adjacent subdomains. We show that with the proper imposition of
interface conditions and with suitable weights applied to the boundary and interface collocation
equations, an exponential convergence can be obtained. We also show that an optimal dimension
of the near-tip subdomain exists in the finite domain crack problems, and this dimension has been
analytically derived and numerically validated.

APPENDIX A

Matrices and vectors of strong form collocation in Equation (11):

AL =

⎡
⎢⎢⎢⎣

LUT(p1)

...

LUT(pNp )

⎤
⎥⎥⎥⎦ , Ag =

⎡
⎢⎢⎢⎣

BgU
T(q1)

...

BgU
T(qNq )

⎤
⎥⎥⎥⎦ , Ah =

⎡
⎢⎢⎢⎣

BhU
T(r1)

...

BhU
T(rNr )

⎤
⎥⎥⎥⎦ (A1)

bL =

⎡
⎢⎢⎢⎣

f(p1)

...

f(pNp )

⎤
⎥⎥⎥⎦ , bg =

⎡
⎢⎢⎢⎣

g(q1)

...

g(qNq )

⎤
⎥⎥⎥⎦ , bh =

⎡
⎢⎢⎢⎣

h(r1)

...

h(rNr )

⎤
⎥⎥⎥⎦ (A2)
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