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SUMMARY

Solving partial differential equations using strong form collocation with nonlocal approximation functions
such as orthogonal polynomials and radial basis functions offers an exponential convergence, but with
the cost of a dense and ill-conditioned linear system. In this work, the local approximation functions
based on reproducing kernel approximation are introduced for strong form collocation method, called the
reproducing kernel collocation method (RKCM). We perform the perturbation and stability analysis of
RKCM, and estimate the condition numbers of the discrete equation. Our stability analyses, validated
with numerical tests, show that this approach yields a well-conditioned and stable linear system similar to
that in the finite element method. We also introduce an effective condition number where the properties
of both matrix and right-hand side vector of a linear system are taken into consideration in the measure of
conditioning. We first derive the effective condition number of the linear systems resulting from RKCM,
and show that using the effective condition number offers a tighter estimation of stability of a linear
system. The mathematical analysis also suggests that the effective condition number of RKPM does
not grow with model refinement. The numerical results are also presented to validate the mathematical
analysis. Copyright � 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the past 15 years, meshfree methods [1, 2] have emerged into a new class of computational
methods that have been applied to many engineering and scientific problems. Meshfree methods
all share a common feature: the approximation of unknown in the partial differential equation is
constructed based on scattered points without mesh connectivity. While no mesh is needed in the
construction of approximation in meshfree methods, domain integration presents some difficulties
if the discrete equation is formulated based on weak formulation [3, 4]. Alternatively, collocation
on strong forms has been introduced in meshfree method, such as the radial basis collocation
methods (RBCM) [5–7] or the reproducing kernel collocation method (RKCM) [8–10]. These
methods employ approximation functions with higher order continuities and thus allow calculation
of higher order derivatives in the strong forms.
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The approximation functions commonly used in the weak form-based meshfree methods are the
moving least-squares (MLS) [11, 12] and reproducing kernel (RK) [13–15] approximations, while
the radial basis functions (RBFs) [5, 6, 16, 17] are usually employed in the strong form collocation
method. Since taking derivatives of RBF is relatively straightforward than taking derivatives of
MLS/RK, using RBFs in the strong form approaches justifies its simplicity. From convergence
standpoint, the compactly supported MLS/RK approximations with monomial reproducibility
render an algebraic convergence, while the nonlocal RBFs with certain regularity offer exponential
convergence. Nevertheless, the linear system of RBFs with collocation method is typically more
ill-conditioned compared with those based on the compactly supported MLS/RK approximations
with weak formulation. The RKCM [10, 18], where MLS/RK approximation is used in conjunction
with strong form collocation, is a compromise for enhanced conditioning with an algebraic rate of
convergence.

The stability of a linear system is strongly related to the conditioning of the matrix, which
is measured by the condition number. The traditional condition number is used to measure the
solution errors resulting from the round-off perturbations in the matrix [19–21], whereas the new
effective condition number takes into account round-off perturbation in both matrix and right-hand
side vector of a linear system [22] and offers a better measure of conditioning than the traditional
condition numbers. Christiansen and Hansen [23] proposed the effective condition number for
boundary collocation method, and Li et al. [24] applied the approach to finite difference method.
Problems with singularity are examples where the linear system is not as ill-conditioned as what
the traditional condition number indicates, and this has been demonstrated by the use of effective
condition number [25].

In this work, we investigate the stability of RKCM by introducing perturbation analysis of the
RKCM, estimating the bound of solution perturbation due to the perturbation of the linear system,
and analyzing the conditioning of the linear system using the traditional condition number and
the effective condition number. We show that the traditional condition number of RKCM is of the
order O(h−2), where h is the maximal nodal distance. However, we show that this measure of
conditioning sometimes overexaggerates the ill-conditioning of a linear system and leads to a loose
bound of stability estimation. The effective condition number of RKCM is shown to be insensitive
to model refinement, and it offers a better conditioning measure and yields a tighter bound of
stability estimation when validated with numerical tests. In this paper, we call the approach using
strong form collocation with reproducing kernel approximation the RKCM, and one term is used
over the other depending on the condition of the sentence.

This paper is organized as follows. Section 2 introduces reproducing kernel approximation, its
approximation properties, as well as its inverse inequalities. In Section 3, we discuss perturbation
and stability analyses, as well as condition numbers, for linear systems resulting from discretiza-
tion of function approximation and differential equations based on strong form collocation using
reproducing kernel approximation. In Section 4, we introduce the effective condition number, and
apply it for the stability estimation of RKCM linear system. The concluding remarks are given in
Section 5.

2. REPRODUCING KERNEL APPROXIMATION

2.1. Basic equations

We first describe the RK approximation in one dimension. The multi-dimensional formation can
be easily obtained with a similar construction [13, 14]. Let a function f (x) be approximated by

f h(x)=
N p∑
I=1

�I (x)dI , x ∈�⊂R (1)

where �I (x) are the RK shape functions centered at xI , and dI are the coefficients to be sought.
The shape functions are constructed based on the locations of a set of nodal points S with
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maximal nodal distance h

S ={xI }N p
I=1 ={x1, x2, . . . , xN p} (2)

where Np is the number of nodal points. Based on MLS or reproducing kernel approximation, the
shape function is given as follows [13, 14]:

�I (x)=hT(0)M−1(x)h(x −xI )�a(x −xI ) (3)

where

M(x) =
N p∑
I=1

h(x −xI )hT(x −xI )�a(x −xI ) (4)

hT(x −xI ) = [1, x −xI , (x −xI )2, . . . , (x −xI )n] (5)

hT(0) = [1,0, . . . ,0] (6)

The vectors h(x −xI ) have dimension n+1, and M(x) is a moment matrix with dimension (n+1)×
(n+1). The function �a(x −xI ) is called the kernel function, for example, the B-spline function

�a(z)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2

3
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(7)

where z =|x −xI |/a and a is called the support size. The support sizes are allowed to vary in
space and be dependent on I . Another choice of kernel function is the quintic B-spline

�a(z)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

11

20
− 9z2

2
+ 81z4

4
− 81z5

4
, 0�z <

1

3

17

40
+ 15z

8
− 63z2

4
+ 135z3

4
− 243z4

8
+ 81z5

8
,

1

3
�z <

2

3

81

40
− 81z

8
+ 81z2

4
− 81z3

4
+ 81z4

8
− 81z5

40
,

2
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(8)

The RK shape functions are so constructed such that they satisfy the following reproducing
conditions when the complete nth-order polynomials are used as the bases in (5):

N p∑
I=1

�I (x)xi
I = xi , i =0,1, . . . ,n (9)

where n is the order of polynomial introduced in (5), and is called the reproducing order. The repro-
ducing conditions are also applied to multi-dimensions in the construction of multi-dimensional
RK approximation functions [13, 14].

2.2. Properties of RK approximation

The RK approximation described in the previous section will be used for solving boundary value
problem (BVP) under a strong form collocation framework. For a set of the RK shape function
satisfying reproduction conditions in (9), they have the following derivative reproducing properties:

N p∑
I=1

�(�)
I (x)xi

I = (xi )(�), i =0,1, . . . ,n (10)
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where ( )(�) =d�( )/dx� is a differential operator. Same properties applied to general multi-
dimensional case. Consider an one-dimensional domain �={x |0< x <1} with discretization by
Np equally or non-equally spaced points in �̄, we have the bounds [15]

|�I (x)|∞ < C1 (11)

|�(�)
I (x)|∞ � C2a−�, �=1,2, . . . (12)

where C1 and C2 are generic constants.
Let function v=v(x) be approximated by the linear combination of RK shape functions

v(x)=
N p∑
I=1

�I (x)dI (13)

Define a finite-dimensional space V as:

V =span{�1(x),�2(x), . . . ,�N p(x)}⊂ H2(�) (14)

The inverse inequalities given below [10] for the high-order derivatives of function ∀v∈V are
needed to show the convergence and stability in the remainder of this paper.

Lemma 2.1
Let the set of nodal points be quasi-uniformly distributed. For ∀v∈V , there exist the following
inequalities:

‖v‖�,� � C1�
1/2a−�n2�‖v‖0,�, �=1,2,3, . . . (15)

‖v‖�,� � C2�
1/2a−�n2�‖v‖1,�, �=1,2,3, . . . (16)

‖v,x‖�,� � C3�
1/2a−(�+1)n2(�+1)‖v‖1,�, �=1,2,3, . . . (17)

where � is the maximal overlapping number of RK discretization in the domain, a is the maximal
support size of kernel functions, �=�� is the boundary of �, and Ci are generic constants.

3. PERTURBATION AND STABILITY ANALYSIS OF REPRODUCING
KERNEL COLLOCATION METHOD

In this section, we present the perturbation analysis and stability estimation of linear systems
resulting from (i) function approximation and (ii) discretization of partial differential equations by
strong form collocation with RK approximation.

3.1. Stability of RKCM for function approximation

Here, we study the stability of linear systems resulting from function approximation by collocation
method using RK approximation. Consider RK approximation of f (x) in (1) by a set of RK shape
functions {�I (x)}N p

I=1 centered at {xI }N p
I=1. We define another set of evaluation points, called the

collocation points, denoted as

E ={nI }Nc
I=1 (18)

The set of collocation points may or may not be the same as the set of nodal points. In the
collocation method, the residuals of the approximation are enforced to be zero at the collocation
points:

f h(�I )= f (�I ) ∀ I =1,2, . . . , Nc (19)

where Nc is the number of collocation points. This gives a linear system

Ax=b (20)
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Figure 1. The approximation errors of RK approximation by collocation
method with various reproducing degrees.

where

AI J =�J (nI ), bI = f (nI ), xI =dI ∀ I =1,2, . . . , Nc, J =1,2, . . . , N p (21)

In the collocation method, typically Nc�N p. If Nc> N p, we have an overdetermined system,
and the least-squares method, QR decomposition or singular value decomposition (SVD) can be
used to solve the system.

First, we discuss the convergence behavior for the system (20). Let n be the reproducing degree
in RK approximation, and if f (n+1)(x)∈ L2, where the superscript (n+1) denotes the order of
derivative, there exists the following convergence property [10, 18]:

‖ f (x)− f h(x)‖�,��can+1−�| f (x)|n+1,� (22)

where ��0, and a = (n+1)h is the support size with h the nodal distance. Taking �=0, we have
the L2 error bound:

‖ f (x)− f h(x)‖0,��can+1| f (x)|n+1,� (23)

The L2 error norms of RK approximation of a function f (x)=sin(�x), 0�x�1, by collocation
method are shown in Figure 1, in which the number of collocation points is taken to be the same as
the number of nodal points, the support sizes vary with the reproducing degree n, i.e., a = (n+1)h,
and r denotes the rate of convergence. The results in Figure 1 agree well with (23) for n =1 and 2,
and show a superconvergence for n =3.
To study the stability of the system (20), we begin with a perturbation analysis. For function
approximation, we consider Nc= N p. Let square matrix A be positive definite with full rank. The
diagonal canonical form of A is

UTAU=D=daig(�1,�2, . . . ,�N p) (24)

where �i are the eigenvalues of A, with the order �max =�1��2� · · ·��N p =�min >0. The columns
of U are the corresponding orthonormal eigenvectors u1,u2, . . . ,uN p, uT

i ui =1, satisfying

Aui =�i ui , i =1,2, . . . , N p (25)

Two perturbed problems and their properties for system (20) are summarized as follows. Detail
derivations are given in [19, 20].

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 88:157–179
DOI: 10.1002/nme



162 H.-Y. HU, J.-S. CHEN AND S.-W. CHI

Table I. The condition numbers of matrix A associated with RK approximation
of a function f (x)=sin(�x), 0�x�1 by collocation.

n =1 n =2 n =3

N p Cond(A) Np Cond(A) Np Cond(A)

6 1.53 6 1.45 6 2.68
11 1.58 11 1.58 11 6.54
21 1.60 21 1.62 21 8.77

Table II. Stability of a linear system Ax=b associated with RK
approximation of a function f (x)=sin(�x), 0�x�1 by collocation.

n =2, N p=11 n =3, N p=11

Cond(A) 1.58 6.54
‖�A‖ 1×10−13 1×10−13

‖A‖ 1.0000 1.0000
‖�b‖ 1×10−13 1×10−13

‖b‖ 2.23607 2.23607
‖�x‖ 1.2247×10−13 3.2529×10−13

‖x‖ 2.23634 2.23767

Case I: The vector b on the right side of the system (20) is perturbed:

Ax̂=b+�b (26)

Let the perturbed solution of (26) be expressed as x̂=x+�x, where �x is the perturbation of
solution due to the perturbation of vector �b. We have the following perturbation property (see
[19, 20] for derivation):

‖x̂−x‖
‖x‖ = ‖�x‖

‖x‖ �Cond(A)
‖�b‖
‖b‖ (27)

where Cond(A)=‖A‖‖A−1‖ is the condition number of matrix A, and ‖‖ is the matrix norm.
Note that Cond(A)=�max/�min when matrix 2-norm is used.

Case II: Both the matrix A and vector b are perturbed

(A+�A)x̃=b+�b (28)

Let the solution of this perturbed system be expressed as x̃=x+�x, where �x is the perturbation
of solution due to perturbation of matrix �A and vector �b. We have the following perturbation
property (see [19, 20] for derivation):

‖x̃−x‖
‖x‖ = ‖�x‖

‖x‖ � Cond(A)

1−Cond(A) ‖�A‖
‖A‖

{‖�A‖
‖A‖ + ‖�b‖

‖b‖
}

(29)

Example 3.1
This example studies the conditioning of matrix associated with RK approximation of a function
f (x)=sin(�x), 0�x�1 by collocation, and validates the dependency of the solution perturbation
to the condition number of matrix A as demonstrated in Table I. We consider the number of
collocation points to be the same as the number of nodal points in function approximation. The
kernel function �a(x −xI ) is chosen as the quintic B-spline defined in (8). The results in Table I
show that the condition number of the matrix associated with RK approximation by collocation is
fairly insensitive to the reproducing degree n and the number of nodal points. The small condition
number in the linear system Ax=b of RKCM for function approximation suggests its good stability.
This stable property is reflected in Table II, where a small perturbation in A and b results in small
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perturbation in x due to the small condition number of A. The matrix 2-norm is used in Table II.
The results in Table II also validate the perturbation property given in (A3).

3.2. Stability of RKCM for solving boundary value problem

In this subsection, solving BVP by strong form collocation with RK approximation is introduced.
For demonstration purposes, consider the following Poisson problem:

−�u = f in � (30)

un = q1 on �N (31)

un +�u = q2 on �R (32)

where ��=�N ∪�R , �N ∩�R =�, �N is the Neumann boundary, �R is the Robin boundary,
�>0, un =∇u ·n, and n is the outward normal. Let v be the RK approximation of u by

u(x)≈v(x)=
N p∑
I=1

�I (x)aI (33)

Introducing approximation of u into (30)–(32), and enforce the residual to be zero at the Nc
collocation points �={n1,n2, . . . ,nNc}, we have

−√
	J

N p∑
I=1

��I (�J )aI = √
	J f (�J ) ∀ �J ∈� (34)

√
	N

J

N p∑
I=1

�I,n(�J )aI =
√

	N
J q1(�J ) ∀ �J ∈�N (35)

√
	R

J

N p∑
I=1

{�I,n +��I }(�J )aI =
√

	R
J q2(�J ) ∀ �J ∈�R (36)

The parameters 	J , 	N
J , 	R

J are the weights on domain and boundaries, respectively, for balanced
errors between domain and boundaries, see [26] for details. Equations (34)–(36) can be rewritten as

Fy=r (37)

where F is an Nc× N p matrix, Nc�N p, and r is an Nc×1 vector. For optimal solution accuracy,
the number of collocation points Nc should be greater than the number of nodal points Np [17].
Using RK approximation in the strong form collocation in (37) has the following convergence [10]:

‖u−v‖H �Can−1|u|n+1,� (38)

where

‖v‖H ={‖v‖2
1,�+‖�v‖2

0,�+‖vn‖2
0,�N

+‖vn +�v‖2
0,�R

} 1
2 (39)

According to above results, the solution convergence of RKCM requires at least quadratic bases
in the RK approximation, that is n�2. For the solution error in L2 norm, we have the following
bound:

‖u−v‖L2�Can+1|u|n+1,�, n�2 (40)

The convergence properties of RKCM are verified in this numerical example. Consider the
following BVP:

d2u

dx2
= −�2 sin�x, 0< x <1 (41)

u(0) = 0 (42)

u(1) = 0 (43)
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Figure 2. Solution convergence of BVP in (41)–(43) by RKCM.

The solution of this problem is u(x)=sin�x . The following numerical parameters are employed:
reproducing degrees n =1,2,3 numbers of points N p=6–21, and the number of collocations
Nc=4N p. Equally spaced collocation points and nodal points are used, and the kernel function
�a(x −xI ) is chosen as the quintic B-spline defined in (8), and support size a is selected as
a = (n+1)h, where h is the nodal distance. The weights for the boundary collocation equations
are selected according to Hu et al. [26] for balanced domain error and boundary error. The errors
of solution in L2-norm with various levels of refinement and reproducing degrees n are shown
in Figure 2. The results agree with the convergence behavior of RKCM given in (38) for n =1
and 2, and a superconvergence behavior is observed for n =3. Further, as was suggested in the
error analysis in (38), no convergence is achieved when linear basis is used in RKCM.

Next, we study the stability of the overdetermined discrete system constructed by RKCM of a
BVP in (37). Let matrix F be full rank and have an SVD as follows:

UTFV=∑=daig(
1,
2, . . . ,
N p) (44)

where 
i are the singular values of F, 
max =
1�
2� · · ·�
N p =
min >0, the matrices
∑

and F
are with the dimension Nc× N p, U= [u1,u2, . . . ,uNc], UTU=I, V= [v1,v2, . . . ,vN p], VTV=I,
u1,u2, . . . ,uNc are the left singular vectors, and v1,v2, . . . ,vN p are the right singular vectors. It
follows from (44) that

Fvi =
i ui , i =1,2, . . . , N p (45)

Since F=URVT, we have FTF=VRTRVT. The pseudoinverse of F, denoted as F+, is defined as

F+ = (FTF)−1FT =V(RTR)−1VTVRTUT =V(RTR)−1RTUT =:VR+UT (46)

We further denote an orthogonal projection P onto R(F) as

P=FF+ (47)

where R(F) is the range of F spanned by all column vectors of matrix F. This projection satisfies
P2 =P. The matrix I−P is orthogonal to the pseudoinverse F+, i.e.

F+(I−P)=F+−F+P=F+−F+FF+ =0 (48)

The optimal solution of the overdetermined system (37) is

y=F+r=F+(P+I−P)r=F+Pr (49)
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We discuss the perturbation properties of the system (37) as follows. The detail derivations are
given in Appendix A.

Case I: The vector r on the right-hand side of the linear system (37) is perturbed

Fŷ=r+�r (50)

Let the solution of the perturbed system (50) be expressed as ŷ=y+�y. The perturbed solution due
to the perturbation of right-hand side vector has the following perturbation property (see Appendix
A for derivation):

‖ŷ−y‖
‖y‖ = ‖�y‖

‖y‖ �Cond(F)
‖P�r‖
‖Pr‖ (51)

where Cond(F)=‖F‖‖F+‖ is the condition number of matrix F, and ‖‖ is the matrix norm. Note
that Cond(F)=
max/
min when matrix 2-norm is adopted.

Case II: The matrix F and the vector r of (37) are perturbed

(F+�F)ỹ=r+�r (52)

Let the perturbed solution of the perturbed system (52) be expressed as ỹ=y+�y. The perturbed
solution due to the perturbation of matrix and right-hand side vector has the following perturbation
property (see Appendix A for derivation):

‖ỹ−y‖
‖y‖ = ‖�y‖

‖y‖ �

( ‖r‖
‖Pr‖ + ‖�r‖

‖Pr‖
) ‖�F‖

‖F‖ +Cond(F)
‖P�r‖
‖Pr‖

1−
(

‖�F‖
‖F‖2

2

+(1+Cond(F))
‖�F‖
‖F‖

) (53)

When �F=0, the error bound in (53) reduces to (51). Note that these results are in alternative forms
of those results given in [21], where the orthogonal projection P onto R(F) was not considered
and thus the higher order terms in �F and �r were not included in [21] compared with our
results in (53).

3.3. Estimation of condition number of RKCM linear system

In this section, we provide the upper bounds for the condition number of RKCM linear system.
As a first step, it is crucial to realize that the collocation method in (34)–(36) solved by least-squares
method is equivalent to the minimization of discrete least-squares functional with quadrature [17]
as shown below

Ê(u R)=min
�∈V

Ê(v) (54)

where V is the finite-dimensional space (14), Ê(·) is a quadrature version of least-squares functional
E(·) defined as

Ê(v)= 1
2 {∫̂�(�v+ f )2d�+∫̂�N

(vn −q1)2d�+∫̂�R
(vn +�v−q2)2d�} (55)

Here, ∫̂ denotes the quadrature version of ∫. Minimization of least-squares functional in (55) yields

B̂(u R,v)= F̂(v) (56)

where

B̂(u,v) = ∫̂��u�vd�+∫̂�N
unvnd�+∫̂�R

(un +�v)(vn +�v)d� (57)

F̂(v) = −∫̂� f �vd�+∫̂�N
q1vnd�+∫̂�R

q2(vn +�v)d� (58)
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We define two norms for stability analysis

‖v‖E = B(v,v)1/2, ‖̂v‖E = B̂(v,v)1/2 (59)

where B(v,v) is the continuous version of B̂(v,v). The discrete norm in (B7) can be expressed as
a quadric form

‖̂v‖2
E =yTFTFy=:yTGy (60)

where matrix F and vector y are given in (34)–(37), and matrix G=FTF is symmetric and positive
definite. There exist the following relationships:

c1‖v‖E � ‖̂v‖E�c2‖v‖E (61)

c3‖v‖0,� � ‖v‖E�c4‖v‖2,� (62)

where ci are generic constants and ‖·‖2,� is the Sobolev H2-norm. We define a discrete zero norm
of ‖v‖0,� = (v,v)1/2, denoted as ‖̂v‖0,�

‖̂v‖2
0,� =yTATAy=:yTNy (63)

where AI J =�J (nI )is the collocation matrix of RK shape functions with Cond(N)≈ O(1). Using
the Rayleigh–Ritz theorem and the inequalities as well as (61) and (62), we obtain the bounds for
maximal and minimal eigenvalues of matrix G as follows:

�min(G) = min
yTGy
yTy

�min
yTGy
yTNy

·min
yTNy
yTy

�min
c1c3‖v‖2

0,�

‖v‖2
0,�

·�min(N) (64)

�max(G) = max
yTGy
yTy

�max
yTGy
yTNy

·max
yTNy
yTy

�max
c2c4‖v‖2

2,�

‖v‖2
0,�

·�max(N) (65)

Furthermore, by means of the inverse inequality (16) in Lemma 1, the condition number for matrix
G is given by

Cond(G)= �max(G)

�min(G)
�C1

‖v‖2
2,�

‖v‖2
0,�

·Cond(N)�C2
‖v‖2

2,�

‖v‖2
0,�

�C3�a−4n8 (66)

where � is the overlapping constant of reproducing kernel and n is the reproducing degree.
Therefore, the condition number of matrix F has the following bound:

Cond(F)={Cond(G)}1/2�C̃k1/2a−2n4 (67)

According to the bound in (67), we see that the condition number of F is closely related to the
support size of the RK shape function. As the support size is proportional to the nodal distance,
for example, a = (n+1) ·h, and n is typically small, we have

Cond(F)�C
n4

(n+1)2
·h−2 ≈ O(h−2) (68)

This result shows that the condition number increases with the order of O(h−2), similar to that of
FEM. It also indicates that increasing the reproducing degree n yields a marginal increase in the
condition number for small n.

Example 3.2
The condition numbers of a linear system resulting from RKCM discretization of BVP
(41)–(43) with different reproducing degrees n =2, 3 (n =1 does not converge) are demonstrated
in Table III. The results show that the condition numbers of matrix F in RKCM are insensitive
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Table III. The condition numbers of matrix F associated with
the BVP in (41)–(43) solved by RKCM.

n =2 n =3

N p Cond(F) Np Cond(F)

6 60.42 6 67.99
11 184.69 11 191.45
21 549.76 21 565.44

Table IV. Stability of RKCM linear system associated with the BVP
in (41)–(43) and the corresponding traditional condition number.

n =2, N p=21 n =3, N p=21

Cond(F) 549.76 565.44
‖�F‖ 1×10−13 1×10−13

‖F‖ 9453.6 6599.1
‖P�r‖ 0.15×10−13 0.17×10−13

‖Pr‖ 62.4 62.4
‖�y‖ 8.62×10−15 2.54×10−15

‖y‖ 3.16 3.16

to the reproducing degree n, while they increase significantly as the number of nodal points Np
increases. By examining the numerical results in Table III the condition numbers increase by five
times when the number of nodal points Np is doubled. In addition, the condition numbers slightly
increase as the reproducing degree n increases from 2 to 3, consistent with analytical result in (68).
The results in (38) and (68) suggest that increasing reproducing order in RK approximation is an
effective way of achieving higher convergent rate in solving PDE by RKCM without sacrificing
stability.

To identify stability, we then examine how a small perturbation in F and r affects the pertur-
bation in x as shown in Table IV. Interestingly, even with large condition numbers in matrix
F in this case, the perturbations in the solution are still at the order of the small perturbations
in matrix F and vector r. This indicates that using the tradition condition number overexagger-
ates the ill-conditioning of a linear system, and consequently the bounds in the error estimates
in (51) and (53) become too loose. As shown in Table IV, the measure of conditioning using
maximum and minimum eigenvalues in the traditional condition number over-amplifies the ill-
conditioning of a matrix, and thus yields misleading instability estimate of the linear system
according to the numerical test in Table IV and prediction in (41)–(43). This has also been observed
in [27–29]. The stability of the collocation methods for the BVP may not be as ill-conditioned
as what the traditional condition number indicates. The effective condition number will be intro-
duced in the following section which provides a more precious conditioning measure of a linear
system.

4. STABILITY ESTIMATION BY AN EFFECTIVE CONDITION NUMBER

The perturbation and stability analysis in Section 3 shows that condition number plays a critical
role in the stability of linear systems. However, the numerical results in Table IV suggest the
need for a more precious conditioning measure to provide tighter bounds in stability estimation in
(41)–(43). Here, we discuss an alternative measure of matrix conditioning and its implication to
the stability of a linear system. We start with a matrix 2-norm used in the traditional definition of
condition number.
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(i) For a square linear system Ax=b, where A∈RN p×N p, b∈RN p

Cond(A)= �max

�min
(69)

where �max and �min are the maximum and minimum eigenvalues of A.
(ii) For an overdetermined linear system Fy=r, where F∈RNc×N p, Nc> N p, r∈RNc

Cond(F)= 
max


min
(70)

where 
max and 
min are the maximum and minimum singular values of F

Various measures of condition numbers have been proposed [22–24]. An effective condition
number has been introduced by considering the perturbation properties of matrix and right-hand
side vector in a linear system based on eigenvector expansion. The detailed derivations are given
in Appendix B, and here we summarize the important results. The main difference in perturbation
analysis using the traditional condition number and the improved effective condition number is
on the estimation of lower bound for norm ‖x‖. This is reflected in (B12) in Appendix B, where
a rigorous derivation is given. Similarly, for the overdetermined system, the estimation of lower
bounds for norm ‖y‖ given in (A7) of Appendix A for the traditional condition number is more
rigorously estimated in (B25) of Appendix B for the effective condition number. The comparison of
the effective condition number and the corresponding perturbation analysis in Appendix B are first
summarized below, and the numerical tests are used to validate the analytical stability estimation.
According to Christiansen and Hansen [23] and Huang and Li [25], as described in Appendix B,
the effective condition number has the following form:

CondEff(A)= ‖b‖√
‖b‖2 −�2

min

Cond(A)2
+�2

min

(71)

where �min =�N p is an inner product of the N pth eigenvector of matrix A and the right-hand side
vector b, i.e.

�min =uT
N pb (72)

The effective condition number defined in (71) can be rewritten as

CondEff(A)=Cond(A)×
√∑N p

i=1 �2
i√∑N p−1

i=1 �2
i +Cond(A)2 ·�2

N p

(73)

As shown in (73), the effective condition number is always smaller than the traditional condition
number if the value Cond(A)2 in the denominator of (73) is greater than 1. This gives a tighter
stability estimation by perturbation analysis of the solution x due to the perturbation of the vector b
(see Appendix B for details):

‖�x‖
‖x‖ �CondEff(A)

‖�b‖
‖b‖ (74)

Further, the perturbation of solution x due to perturbation of matrix A and vector b can be derived
following the same procedures in Appendices A and B:

‖�x‖
‖x‖ � 1

1−‖A−1‖‖�A‖
{

Cond(A)
‖�A‖
‖A‖ +CondEff(A)

‖�b‖
‖b‖

}
(75)

Note that when �min =0, the effective condition number in (71) reduces to the traditional condition
number. In general, �min �=0, and from (73) we have:

CondEff(A)<Cond(A) (76)
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In fact, the value of effective condition number is much smaller than the traditional condition
number in practice. For an overdetermined linear system, the effective condition number of matrix F
based on eigenvector expansion has the following form (see Appendix B for details):

CondEff(F)= ‖Pr‖√
‖Pr‖2 −�2

min

Cond(F)2
+�2

min

(77)

where �min is an inner product of the N pth left singular vector of matrix F and projection
vector Pr, i.e.

�min =uT
N pPr (78)

Note that this result is a correction of [24] in which the orthogonal projection P onto R(F) was
not considered. There exist tighter perturbation bounds for perturbed problems with perturbation
in vector

‖�y‖
‖y‖ �CondEff(F)

‖P�r‖
‖Pr‖ (79)

and perturbations in vector and matrix

‖�y‖
‖y‖ � 1

1−‖F+‖‖�F‖
{

Cond(F)
‖�F‖
‖F‖ +CondEff(F)

‖P�r‖
‖Pr‖

}
. (80)

We observe that the CondEff(F) reduces to Cond(F) when �min =0. Similarly, the effective condition
number is much smaller than the traditional one, which will be numerically validated in the
numerical examples

CondEff(F)<Cond(F) (81)

We further give an estimate of the bound of CondEff(F). From (77), one has

CondEff(F)� ‖Pr‖
|�min|

(82)

Recall BVP in (30)–(32) with the Dirichlet boundaries and their weighted collocation in (34)–(36),
we have the following bound for s-dimension:

‖Pr‖�√
	J h̄−s‖ f ‖0,�+

√
	R

J h̄−1‖q2‖0,�R (83)

where h̄ denotes the spacing of collocation points given in Section 3.2, and h̄ = O(h)= O(N p1/s).
For balanced domain and boundary errors derived in [26], we have introduced the following weights
for the weighted collocation (34)–(36):

√
	J = O(1),

√
	R

J = O(Np) (84)

Further considering the order of |�min|:
|�min|≈ O(h̄−s) (85)

Hence, the estimate in (82) becomes

CondEff(F)�C1‖ f ‖0,�+C2 N 1/s
p ‖q2‖0,�R (86)

This implies that when the domain term is dominating, CondEff(F)≈ O(1).

Example 4.1
We re-evaluate the stability of the RKCM linear system associated with the Dirichlet BVP in (41)–
(43) using the effective condition number as shown in Table V. It is clear that using the effective
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Table V. Stability of RKCM linear system associated with the BVP
in (41)–(43) and the corresponding effective condition number.

n =2, N p=21 n =3, N p=21

CondEff(F) 3.54 3.54
‖�F‖ 1×10−13 1×10−13

‖F‖ 9453.6 6599.1
‖P�r‖ 0.15×10−13 0.17×10−13

‖Pr‖ 62.4 62.4
‖�y‖ 8.62×10−15 2.54×10−15

‖y‖ 3.16 3.16

Table VI. The condition numbers for RKCM linear system of (41)–(43) with reproducing degree n =2.

Np h =1/(N p−1) Cond(F) CondEff(F) 
max 
min |�min|
6 1/5 60.42 7.24 207.3 3.43 4.20
11 1/10 184.69 4.98 848.9 4.59 8.83
21 1/20 549.75 3.54 3420.7 6.22 17.63
41 1/40 1640.32 2.56 13715.2 8.36 34.43
101 1/100 7263.23 1.75 85788.4 11.81 79.56

Table VII. The condition numbers for RKCM linear system of (41)–(43) with reproducing degree n =3.

N p h =1/(N p−1) Cond(F) CondEff(F) 
max 
min |�min|
6 1/5 67.99 7.08 233.2 3.43 4.38
11 1/10 191.45 4.97 879.8 4.59 8.88
21 1/20 565.44 3.54 3518.1 6.22 17.64
41 1/40 1683.07 2.56 14072.5 8.36 34.43
101 1/100 7446.50 1.75 87953.1 11.81 79.56

condition in conjunction with the perturbation analysis in (79) yields a much tighter bound for a
more precious stability estimation compared with the results in Table IV of Example 3.2 using the
traditional condition numbers.

More detailed comparisons of the traditional and effective condition numbers of the matrix F
resulting from RKCM discretization of (41)–(43) using various reproducing order and discretization
points are given in Tables VI and VII. We observe from Tables VI and VII that Cond(F)’s are
much larger than CondEff(F)’s for larger |�min|. Further, the numerical data confirm the estimated
asymptotic behavior of Cond(F)≈ O(N p2)≈ O(h−2) and CondEff(F)≈ O(1).

Example 4.2
Consider another BVP:

d2u

dx2
= ex , 0< x <1 (87)

u(0) = 1 (88)

u(1) = e (89)

In comparison with the problem (41)–(43), their linear systems have the same matrices but with
different right-hand side vectors.

We list the condition numbers for reproducing degree n =2 and n =3 in Tables VIII and IX,
respectively. The results show that the traditional condition numbers are about the same order as
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Table VIII. The condition numbers for RKCM linear system of (87)–(89) with reproducing degree n =2.

N p h =1/(N p−1) Cond(F) CondEff(F) 
max 
min |�min|
6 1/5 60.41 1.29 207.3 3.43 14.67
11 1/10 184.70 1.28 848.9 4.59 26.37
21 1/20 549.76 1.28 3420.7 6.22 49.07
41 1/40 1640.30 1.32 13715.2 8.36 91.65
101 1/100 7263.23 1.46 85788.4 11.81 200.65

Table IX. The condition numbers for RKCM linear system of (87)–(89) with reproducing degree n =3.

N p h =1/(N p−1) Cond(F) CondEff(F) 
max 
min |�min|
6 1/5 67.99 1.29 233.2 3.43 14.66
11 1/10 191.44 1.28 879.8 4.59 26.37
21 1/20 565.44 1.28 3518.1 6.22 49.07
41 1/40 1683.07 1.32 14072.5 8.36 91.65
101 1/100 7446.51 1.46 87953.1 11.81 200.64

those given in Tables VI and VII, whereas the effective condition numbers are much smaller in
the linear system of (87)–(89) compared with those of the linear system of (41)–(43) given in
Tables VI and VII. These results are consistent with the definition of traditional condition number
and effective condition number, in that the traditional condition considers only the property of the
matrix, whereas the effective condition number takes the properties of both the matrix and the
right-hand side vector into account. We also note that the results show an asymptotic behavior
CondEff(F)≈ O(1) different from Cond(F)≈ O(h−2) as shown in (68).

Example 4.3
Here, we validate the stability analysis by considering a two-dimensional problem given below

�2u

�x2
+ �2u

�y2
= −2�2 sin(�x) sin(�y), 0< x <1, 0< y <1 (90)

u = 0 on

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y =0, 0< x <1

y =1, 0< x <1

x =0, 0< y <1

x =1, 0< y <1

(91)

We first consider pure Dirichlet boundary conditions in (91). This problem is solved by RKCM
with reproducing degree n =2 and kernel function constructed by the multiplication of one-
dimensional quintic B-spline functions. In each direction of the two-dimensional domain, the
density of collocation points is twice the density of the nodal points in each direction and thus
yields an overdetermined discrete system. The weights for the boundary collocation equations are
selected according to Hu et al. [26] for balanced domain error and boundary error. The results
in Table X again show a much smaller effective condition numbers than the traditional condition
numbers. It is also noticed that the effective condition numbers do not increase as the number
of nodal points Np increases. The perturbation of RKCM solution in response to the perturba-
tion of the matrix and right-hand side vector, as shown in Tables X and XI, shows the excellent
stability of RKCM and the good performance of the effective condition number in estimating
the stability of the discrete system. The numerical results demonstrate good agreement with
the estimated asymptotic behavior CondEff(F)≈ O(1) that is different from Cond(F)≈ O(h−2) as
shown in (68).
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Table X. The condition numbers for RKCM linear system associated
with (90) and (91) with reproducing degree n =2.

Np Cond(F) CondEff(F) 
max 
min |�min|
62 6.89 1.49 201.9 29.28 65.02
112 22.49 1.06 841.5 37.41 186.43
212 87.22 1.01 3415.7 39.16 391.56
412 347.97 1.001 13722.2 39.43 788.68
812 1392.18 1.0001 54953.5 39.47 1578.90

Table XI. Stability of RKCM linear system associated with the BVP
in (90) and (91) and the corresponding effective condition number.

n =2, N p=212

CondEff(F) 1.01
‖�F‖ 1×10−13

‖F‖ 3415.7
‖P�r‖ 0.9×10−13

‖Pr‖ 394.76
‖�y‖ 1.86×10−14

‖y‖ 9.99

5. CONCLUSION

In this paper, we discuss the stability of RKCM for solving BVPs. Using RKCM for solution
of BVPs leads to sparse linear systems as opposed to the popularly used strong form collocation
based on RBFs, collectively called the RBCM [5–7, 16, 17]. Although RKCM approach offers
algebraic convergence (compared with exponential convergent RBCM), the method is very stable
according to our stability analysis and offers a significant stability enhancement over RBCM. More
specifically, we proved that the condition numbers of the matrix in RKCM are of the order of:

Cond(F)≈ O(h−2) (92)

This stability property is similar to that of the finite element or finite difference method.
From the perturbation analysis, we show how the stability of an overderetmined linear system

Fy=r is closely related to the condition number of the overdetermined matrix F. We obtained the
bound of the perturbation in solution y due to the perturbation of overdetermined matrix F and
vector r

‖�y‖
‖y‖ �

( ‖r‖
‖Pr‖ + ‖�r‖

‖Pr‖
) ‖�F‖

‖F‖ +Cond(F)
‖P�r‖
‖Pr‖

1−
(

‖�F‖
‖F‖2

2

+(1+Cond(F))
‖�F‖
‖F‖

) (93)

where P is the projection operator. Further, we study an alternative measure of the stability of a
linear system based on the effective condition number CondEff(·). The effective condition number
offers a better measure of conditioning of a linear system than the traditional condition numbers,
where both matrix and right-hand side vector are taken into account in the effective condition
number, that is

Cond(·) = Cond(F) (94)

CondEff(·) = Cond(F,Pr) (95)
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The numerical results verified that the use of effective condition number gives a tighter bound
of perturbation properties in Section 4, and offers a more precious estimate of the stability of
linear systems. The traditional conditional number, on the other hand, could lead to a significant
overexaggeration of the ill-conditioning of a linear system under certain conditions. In general,
we obtain the relationship CondEff(·)<Cond(·) and its effectiveness in improving the stability
estimation of the linear systems has been analytically proved and numerically validated. Further,
the effective condition number shows that the stability of RKCM is not affected by the refinement
in the discretization:

CondEff(F)≈ O(1) (96)

This estimation agrees well with the numerical results in the one- and two-dimensional verification
problems.

APPENDIX A

The detail perturbation analysis for overdetermined linear systems is derived in this section. The
results are in the alternative forms of those given in [21].

Theorem A.1
Let Fy=r , F∈Rm×n, m�n, be a full rank non-square matrix, y∈Rn,b∈Rm . Consider a perturbed
problem F(y+�y)= (r+�r)�y∈Rn , �r∈Rm , then

‖�y‖
‖y‖ �Cond(F)

‖P�r‖
‖Pr‖ (A1)

where

Cond(F)= 
max


min
(A2)

and P=FF+ is the orthogonal projection.

Proof
Suppose F has an SVD, F=URVT, where R=diag(
i ), 
i are singular values, with 
max =

1�
2� · · ·�
n =
min >0. The matrices U, V are orthonormal, i.e., UTU= I , VTV= I , and
Fvi =
i ui ,∀i . Let y and ŷ=y+�y are the optimal solution of system Fy=r and Fŷ=r+�r,
respectively. We have

�y= ŷ−y=F+(r+�r)−F+r=F+�r=F+(P�r+(I−P)�r) (A3)

where F+ = (FTF)−1FT is the pseudoinverse of F.

Using the relation (48) in Section 3.2 yields

�y=F+P�r+F+(I−P)�r=F+P�r (A4)

Consequently, we have

‖�y‖�‖F+‖‖P�r‖ (A5)

As y=F+Pr, thus Fy=Pr, and therefore

‖Pr‖=‖Fy‖�‖F‖‖y‖ (A6)

Rewrite (A6) as

1

‖y‖� ‖F‖
‖Pr‖ (A7)
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Combining (A5) and (A7), we have

‖�y‖
‖y‖ �‖F+‖‖F‖‖P�r‖

‖Pr‖ =:Cond(F)
‖P�r‖
‖Pr‖ (A8)

Consider the matrix 2-norm and use the unitary invariant properties

‖F‖=‖F‖2 =‖URVT‖2 =‖RVT‖2 =‖R‖2 =
max (A9)

and

‖F+‖=‖F+‖2 =‖UR+VT‖2 =‖R+VT‖2 =‖R+‖2 = 1


min
(A10)

Thus, the condition number is

Cond(F)= 
1


n
= 
max


min
(A11)

Theorem A.2
Let Fy=r, F∈Rm×n , m�n, be full rank, y∈Rn , b∈Rm , and consider the perturbed problem
(F+�F)(y+�y)= (r+�r)�F∈Rm×n,�y∈Rn,�r∈Rm , then

‖�y‖
‖y‖ �

( ‖r‖
‖Pr‖ + ‖�r‖

‖Pr‖
) ‖�F‖

‖F‖ +Cond(F)
‖P�r‖
‖Pr‖

1−
(

‖�F‖
‖F‖2

2

+(1+Cond(F))
‖�F‖
‖F‖

) (A12)

The condition number is defined in Theorem B.1.

Proof
Let y and ỹ=y+�y be the optimal least-squares solution to Fy=r and (F+�F)ỹ=r+�r, respec-
tively. We have

�y = ỹ−y= (F+�F)+(r+�r)−F+r

= ((F+�F)T(F+�F))−1(F+�F)T(r+�r)−F+r (A13)

where F+ = (FTF)−1FT is the pseudoinverse of F. Furthermore, we have

�y = (FTF+�FTF+FT�F+�FT�F)−1(F+�F)T(r+�r)−F+r

= [I+(FTF)−1�FTF+(FTF)−1FT�F+(FTF)−1�FT�F]−1

×(FTF)−1(F+�F)T(r+�r)−F+r (A14)

Let F∗ := (FTF)−1�FT, and I< (I+F∗F+F+�F+F∗�F)−1, we have

�y = (I+F∗F+F+�F+F∗�F)−1(F++F∗)(r+�r)−F+r

� (I+F∗F+F+�F+F∗�F)−1(F+�r+F∗r+F∗�r)

= (I+F∗F+F+�F+F∗�F)−1(F+P�r+F∗r+F∗�r) (A15)

Consider the following conditions:

‖F∗‖�‖�F‖
‖F‖2

and ‖F∗‖‖F‖�‖�F‖
‖F‖ (A16)
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and

‖(I+F∗F+F+�F+F∗�F)−1‖ � 1

1−‖F∗F+F+�F+F∗�F‖

� 1

1−(‖F∗‖‖F‖+‖F+‖‖�F‖+‖F∗‖‖�F‖)
. (A17)

From (A16) and (A17), we obtain

‖�y‖� ‖F+‖‖P�r‖+‖F∗‖‖r‖+‖F∗‖‖�r‖
1−(‖F∗‖‖F‖+‖F+‖‖�F‖+‖F∗‖‖�F‖)

(A18)

Further, we have

1

‖y‖� ‖F‖
‖Pr‖ (A19)

Combining (A18) and (A19) leads to

‖�y‖
‖y‖ � ‖F+‖‖Pr‖+‖F∗‖‖r‖+‖F∗‖‖r‖

1−(‖F∗‖‖F‖+‖F+‖‖�F‖+‖F∗‖‖�F‖)
· ‖F‖
‖Pr‖ (A20)

By using (A16), (A20) becomes

‖�y‖
‖y‖ �

( ‖r‖
‖Pr‖ + ‖�r‖

‖Pr‖
) ‖�F‖

‖F‖ +Cond(F)
‖P�r‖
‖Pr‖

1−
(

‖�F‖
‖F‖2

2

+(1+Cond(F))
‖�F‖
‖F‖

) (A21)

The condition number is defined in (A11).

�

APPENDIX B

Here, we provide the detailed discussions about the effective condition numbers for both square
and overdetermined linear systems.

Theorem B.1
Consider Ax=b, A∈Rn×n , x∈Rn , b∈Rn . Let x̂=x+�x be the solution of the perturbed problem:
A(x+�x)=b+�b, �b∈Rn . The perturbation of solution x due to the perturbation of b is given by

‖�x‖
‖x‖ �CondEff(A)× ‖�b‖

‖b‖ (B1)

where

CondEff(A)= ‖b‖√
‖b‖2 −�2

min

Cond(A)2
+�2

min

(B2)

and un is the nth (last) eigenvector of matrix A.

Proof
Let A be a symmetric matrix with full rank and has a diagonal canonical form UTAU=D=
diag(�1,�2, . . . ,�n), where �i are the eigenvalues of A with the order �max =�1��2� · · ·��n =
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�min >0. The column vectors of U= [u1,u2, . . . ,un] are the corresponding orthonormalized eigen-
vectors, i.e., uT

i u j =i j . By definition, we have:

Aui =�i ui , A−1ui = 1

�i
ui , i =1,2, . . . ,n (B3)

Consider eigenvector expansions of b and �b

b=
n∑

i=1
�i ui , �b=

n∑
i=1

	i ui (B4)

then �i =uT
i b, 	i =uT

i �b and

‖b‖=
√

n∑
i=1

�2
i , ‖�b‖=

√
n∑

i=1
	2

i (B5)

where ‖‖ is a 2-norm.
By means of (B3), we have

x=A−1b=A−1
n∑

i=1
�i ui =

n∑
i=1

�i A
−1ui =

n∑
i=1

(
�i

�i

)
ui (B6)

It follows that

‖x‖=
√

n∑
i=1

(
�i

�i

)2

(B7)

Moreover, �x=A−1�b, then

‖�x‖=
√

n∑
i=1

(
	i

�i

)2

(B8)

Combining (B8) with (B5), we have

‖�x‖2 =
n∑

i=1

	2
i

�2
i

�
∑n

i=1 	2
i

�2
n

= ‖�b‖2

�2
n

(B9)

and

‖�x‖�‖�b‖
�n

(B10)

Similarly, Equation (B7) yields

‖x‖2 =
n−1∑
i=1

�2
i

�2
i

+ �2
n

�2
n

�
∑n−1

i=1 �2
i

�2
1

+ �y
n2

�2
n

= 1

�2
n

{
‖b‖2 −�2

n

(�1/�n)2
+�2

n

}
, (B11)

and consequently

1

‖x‖� �n√
‖b‖2 −�2

n

Cond(A)2
+�2

n

(B12)

where Cond(A)=�n/�1. Combining (B10) and(B12), we have

‖�x‖
‖x‖ � ‖b‖√

‖b‖2 −�2
n

Cond(A)2
+�2

n

· ‖�b‖
‖b‖ =:CondEff

‖�b‖
‖b‖ (B13)

This proves (B1). �
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Theorem B.2
Consider Fy=r, F∈Rm×n , y∈Rn , r∈Rm . Let ŷ=y+�y be the solution of the perturbed problem:
F(y+�y)=r+�r, �r∈Rm . The perturbation of solution y due to the perturbation of r is given by

‖�y‖
‖y‖ �CondEff(F)× ‖P�r‖

‖Pr‖ (B14)

where

CondEff(F)= ‖Pr‖√
‖Pr‖2 −�2

n

Cond(F)2
+�2

n

, �n =uT
n Pr (B15)

and un is the nth (last) left eigenvector of matrix F .

Proof
Let matrix F be full ranked and has an SVD: UTFV=∑=diag(
1,
2, . . . ,
n), where 
i are the
singular values of F, 
max =
1�
2 · · ·�
n =
min >0, and the matrix

∑
is of dimension m×n.

The columns u1,u2, . . . ,um of matrix U are the left singular vectors, and columns v1,v2, . . . ,vn
of matrix V are the right singular vectors. Further, we have FV=U

∑
, i.e.

Fvi =
i ui , F+ui = 1


i
vi , i =1,2, . . . ,n (B16)

Consider the following eigenvector expansion:

Pr=
n∑

i=1
�i ui , P�r=

n∑
i=1

�i ui (B17)

It follows that �i =uT
i Pr, �i =uT

i P�r, and

‖Pr‖=
√

n∑
i=1

�2
i , ‖P�r‖=

√
n∑

i=1
�2

i (B18)

By means of (B16), we have

y=F+r=F+Pr=F+ n∑
i=1

�i ui =
n∑

i=1
�i F

+ui =
n∑

i=1
�i

1


i
vi =

n∑
i=1

�i


i
vi (B19)

Consequently, we have the following 2-norms:

‖y‖ =
√

n∑
i=1

(
�i


i

)2

(B20)

‖�y‖ =
√

n∑
i=1

(
�i


i

)2

(B21)

Combining (B18) and (B21), we obtain

‖�y‖2 =
n∑

i=1

�2
i


2
i

�
∑n

i=1 �2
i


y
n2

= ‖P�r‖2


2
n

(B22)

and thus

‖�y‖�‖P�r‖

n

(B23)
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From (B20), we have

‖y‖2 =
n−1∑
i=1

�2
i


2
i

+ �2
n


2
n
�
∑n−1

i=1 �2
i


2
1

+ �2
n


2
n

= 1


2
n

{‖Pr‖2 −�2
n

(
1/
n)2
+�y

n2

}
(B24)

Consequently

1

‖y‖� 
n√
‖Pr‖2 −�2

n

Cond(F)2
+�2

n

(B25)

where Cond(F)=
n/
1. Combining (B23) and (B25), we have

‖�y‖
‖y‖ � ‖Pr‖√

‖Pr‖2 −�2
n

Cond(F)2
+�2

n

· ‖P�r‖
‖Pr‖ =:CondEff(F)

‖P�r‖
‖Pr‖ (B26)

This proves (B14). �

ACKNOWLEDGEMENTS

The support of this work by National Science Council of Taiwan, R. O. C., under project number
NSC 98-2115-M-029-001-MY2 to the first author, and the support by US Army ERDC under contract
W912HZ-07-C-0019 to the second and third authors are greatly acknowledged.

REFERENCES

1. Liu WK, Belytschko T, Oden JT. Special issue on meshless methods. Computer Methods in Applied Mechanics
and Engineering 1996; 139.

2. Chen JS, Liu WK. Special issue on meshfree methods: recent advances and new applications. Computer Methods
in Applied Mechanics and Engineering 2004; 193:933–1321.

3. Dolbow J, Belytschko T. Numerical integration of Galerkin weak form in meshfree methods. Computational
Mechanics 1999; 23:219–230.

4. Chen JS, Wu CT, Yoon S, You Y. A stabilized conforming nodal integration for Galerkin meshfree method.
International Journal for Numerical Methods in Engineering 2001; 50:435–466.

5. Kansa EJ. Multiqudrics—a scattered data approximation scheme with applications to computational fluid
dynamics I. Surface approximations and partial derivatives. Computers and Mathematics with Applications 1990;
19:127–161.

6. Kansa EJ. Multiquadrics—a scattered data approximation scheme with applications to computational fluid
dynamics I. Solution to parabolic, hyperbolic and elliptic partial differential equations. Computers and Mathematics
with Applications 1990; 19:127–161.

7. Schaback R. Error estimates and condition numbers for radial basis function interpolation. Advances in
Computational Mathematics 1995; 3:251–264.

8. Aluru NR. A point collocation method based on reproducing kernel approximation. International Journal for
Numerical Methods in Engineering 2000; 47:1083–1121.

9. Kim DW, Kim Y. Point collocation method using the fast moving least-square reproducing kernel approximation.
International Journal for Numerical Methods in Engineering 2003; 56:1445–1464.

10. Hu HY, Chen JS, Hu W. Error analysis of collocation method based on reproducing kernel approximation.
Numerical Methods for Partial Differential Equations 2010; DOI: 10.1002/num20539.

11. Lancuster P, Salkauskas K. Surface generated by moving least squares methods. Mathematics of Computation
1981; 37:141–158.

12. Belytschko T, Lu YY, Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in
Engineering 1994; 37:229–256.

13. Liu WK, Jun S, Zhang YF. Reprodicing kernel particle methods. International Journal for Numerical Methods
in Fluids 1995; 20:1081–1106.

14. Chen JS, Pan C, Wu CT, Liu WK. Reproducing kernel particle methods for large deformation analysis of
nonlinear structures. Computer Methods in Applied Mechanics and Engineering 1996; 139:195–227.

15. Chen JS, Han W, You Y, Meng X. A reproducing kernel method with nodal interpolation property. International
Journal for Numerical Methods in Engineering 2003; 56:935–960.

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 88:157–179
DOI: 10.1002/nme



PERTURBATION AND STABILITY ANALYSIS 179

16. Frank C, Schaback R. Solving partial differential equations by collocation using radial basis function. Applied
Mathematics and Computation 1998; 93:73–82.

17. Li ZC, Lu TT, Hu HY, Cheng AH-D. Trafftz and Collocation Methods. WIT Press: Southampton, U.K., 2008.
18. Hu HY, Lai CK, Chen JS. A study on convergence and complexity of reproducing kernel collocation method.

Interaction and Multiscale Mechanics 2009; 2(3):295–319.
19. Atkinson KE. An Introduction to Numerical Analysis. Wiley: New York, 1988.
20. Horn RA, Johnson CR. Matrix Analysis. Cambridge University Press: Cambridge, 1990.
21. Demmel JW. Applied Numerical Linear Algebra. SIAM: Philadelphia, PA, 1997.
22. Chan FC, Foulser DE. Effectively well-conditioned linear systems. SIAM Journal on Scientific and Statistical

Computing 1988; 9:963–969.
23. Christiansen S, Hansen PC. The effective condition number applied to error analysis of certain boundary

collocation methods. Journal of Computational and Applied Mathematics 1994; 54:15–36.
24. Li ZC, Chien CS, Huang HT. Effective Condition number for finite difference method. Journal of Computational

and Applied Mathematics 2007; 198:208–235.
25. Huang HT, Li ZC. Effective condition number and superconvergence of the Trefftz method coupled with high

order FEM for singularity problems. Engineering Analysis with Boundary Elements 2006; 30:270–283.
26. Hu HY, Chen JS, Hu W. Weighted radial basis collocation method for boundary value problem. International

Journal for Numerical Methods in Engineering 2007; 69:2736–2757.
27. Lu TT, Hu HY, Li ZC. Highly accurate solutions of Motz’s problem and the cracked beam problem. Engineering

Analysis with Boundary Elements 2004; 28(11):1387–1403.
28. Li ZC, Lu TT, Hu HY. Collocation Trefftz methods for biharmonic equations with crack singularities. Engineering

Analysis with Boundary Elements 2004; 28(1):79–96.
29. Hu HY, Li ZC. Collocation methods for Poisson’s equation. Computer Methods in Applied Mechanics and

Engineering 2006; 195:4139–4160.

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 88:157–179
DOI: 10.1002/nme


