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Solving partial differential equations (PDE) with strong form collocation and nonlocal approximation func-
tions such as orthogonal polynomials, trigonometric functions, and radial basis functions exhibits exponential
convergence rates; however, it yields a full matrix and suffers from ill conditioning. In this work, we discuss
a reproducing kernel collocation method, where the reproducing kernel (RK) shape functions with com-
pact support are used as approximation functions. This approach offers algebraic convergence rate, but the
method is stable like the finite element method. We provide mathematical results consisting of the optimal
error estimation, upper bound of condition number, and the desirable relationship between the number of
nodal points and the number of collocation points. We show that using RK shape function for collocation
of strong form, the degree of polynomial basis functions has to be larger than one for convergence, which
is different from the condition for weak formulation. Numerical results are also presented to validate the
theoretical analysis. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 554–580, 2011

Keywords: collocation method; convergence; inverse inequality; reproducing kernel approximation;
stability

I. INTRODUCTION

The development of meshfree methods can be traced back from two branches, one based on
Galerkin weak formulation and the other based on strong formulation. Compactly supported
moving least-squares (MLS) approximation [1] and reproduction kernel (RK) approximation [2]
are most commonly used in the methods based on weak formulation. On the other hand,
nonlocal radial basis functions [3, 4] is widely used in the strong form approach. Methods devel-
oped under weak form [5–16] are typically well-conditioned owing to the use of compactly
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supported approximation functions, and they exhibit algebraic convergence due to employment
of monomial basis functions. It is noteworthy that the seminal work of partition of unity by
Babuska et al. [17] provided the foundation of generalized finite element and meshfree method
developments. However, the need of quadrature rules in the domain integration of weak form and
the complications in imposing Dirichlet boundary conditions have caused considerable complex-
ity and high computational cost to this class of methods. On the other hand, methods based on
strong form collocation, such as the radial basis collocation method [18–26], eliminate the need
of quadrature rules and simplify the imposition of Dirichlet boundary conditions in addition to the
attractive exponential convergence property. However, these methods are overshadowed by their
fully dense and ill-conditioned discrete equation due to the use of nonlocal radial basis functions.

Efforts have been devoted to take complementary advantages between the two classes of meth-
ods described earlier. Among them, the most noticeable work is the finite point method by Onate
et al. [27], where they introduced compactly supported MLS approximation in the strong form
with direct collocation. Since this approach requires taking higher order derivatives of the MLS
approximation functions, several enhanced methods have been proposed based on RK approxima-
tion with derivative reproducing conditions [28] or diffuse derivatives [29]. The work in [25, 30]
introduced a concept commonly used in the radial basis function method, where the number
of collocation points used to enforce zero residual of the strong form and boundary conditions
is more than the number of nodal points for improved accuracy of the strong form collocation
method. This yields an over-determined system and is then solved by the least-squares method.
On the other hand, methods based on weak formulation have been modified by introducing nodal
integration with stabilization to avoid quadrature rules. However, nodal integration of weak form
yields rank instability, and this rank instability has been addressed by adding a least-squares
residual of the equilibrium equation in the nodally integrated weak form as a stabilization [31],
by introducing a correction of nodal integration for patch test in conjunction with a least-squares
stabilization [32], by embedding stress points under the smoothed particle hydrodynamics frame-
work [33], or by introducing a stabilized conforming nodal integration [34, 35] based on a strain
smoothing to avoid taking shape function derivatives at nodal points for stability and to satisfy
integration constraints for passing patch test.

Although the strong form collocation in conjunction with RK shape functions for numerical
solution of partial differential equations (PDE) has been introduced before as discussed earlier,
this is the first work to investigate the convergence and stability of this approach. The objective
of this study is to estimate error bounds and condition numbers of the methods developed based
on strong form collocation with reproducing kernel approximation, as many methods described
earlier resemble the essential features of this method. We term this class of method the repro-
ducing kernel collocation method (RKCM). A crucial point in the analysis discussed herein is
to realize that the over-determined discrete equation obtained by collocation of strong form and
solved by least-squares method is equivalent to minimization of least-squares functional with
quadrature rules [24, 25]. This property allows us to use inverse inequality of reproducing kernel
approximation in conjunction with partition of unity properties for the error analysis of RKCM.
We also obtain optimal relationship for the number of nodal points and the number of collocation
points. An important result extracted from this analysis is that the degree of monomial bases in
the reproducing kernel approximation has to be greater than one for convergence in RKCM, and
this is different from the convergence condition for weak form based method such as reproduc-
ing kernel particle method (RKPM). The analysis reveals that the condition number of RKCM
increases algebraically, similar to the conditioning of the finite element method.

The remaining part of this article is organized as follows. An introduction to reproducing kernel
function and its derivatives, approximation error, and inverse inequality are given in Section II. In
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Section III, the general collocation framework as well as implementation issues and complexity
analysis are presented. The analysis of convergence properties and stability of RKCM are given
in Section IV. Section V presents the numerical experiments to validate the results of the error
analysis. Conclusions are summarized in Section VI.

II. REPRODUCING KERNEL (RK) APPROXIMATION

A. One-Dimensional RK Shape Functions

Let function u(x) be approximated by

ur(x) =
NP∑
I=1

�I(x)uI , ∀x ∈ � ⊂ R1, (2.1)

where �I(x) are shape functions centered at xI , and uI are the coefficients to be sought. The
construction of the basis functions is based on a set of points in the domain,

Xp = {x1, x2, . . . , xNP
} ⊆ �̄, (2.2)

where �̄ = � ∪ ∂�, NP is the number of the discrete points, and we assume that the maximal
nodal distance is h.

In RK approximation, the shape functions �I(x) are constructed by the multiplication of two
functions

�I(x) = C(x; x − xI )φa(x − xI ), (2.3)

where φa(x−xI ) is a kernel function that defines the smoothness of approximation with a compact
support, ωI , measured by a and C(x; x − xI ) is called the correction function used to reproduce
of polynomial or other functions. For flexibility, we allow the support size a to be dependent on
I . Examples, the cubic B-spline,

φa(z) =


2

3
− 4z2 + 4z3, for 0 ≤ z <

1

2
,

4

3
− 4z + 4z2 − 4

3
z3, for

1

2
≤ z < 1,

0, for z ≥ 1,

(2.4)

and the quintic B-spline,

φa(z) =



11

20
− 9z2

2
+ 81z4

4
− 81z5

4
, for 0 ≤ z <

1

3
,

17

40
+ 15z

8
− 63z2

4
+ 135z3

4
− 243z4

8
− 81z5

8
, for

1

3
≤ z <

2

3
,

81

40
− 81z

8
+ 81z2

4
− 81z3

4
− 81z4

8
− 81z5

40
, for

2

3
≤ z < 1,

0, for z ≥ 1,

(2.5)
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where z = |x−xI |
a

. For reproduction of complete p-th order polynomial, the correction function
C(x; x − xI ) is formed by a set of polynomial basis as

C(x; x − xI ) =
p∑

i=0

bi(x)(x − xI )
i , p ≥ 0. (2.6)

The coefficient are to be obtained by satisfying the p-th order reproducing conditions [16, 34]

NP∑
I=1

�I(x)xi
I = xi , i = 0, 1, . . . , p, (2.7)

i.e.,

NP∑
I=1

C(x; x − xI )φa(x − xI )x
i
I = xi , i = 0, 1, . . . , p. (2.8)

Equation (2.8) is equivalent to

NP∑
I=1

C(x; x − xI )φa(x − xI )(x − xI )
i = δi0, i = 0, 1, . . . , p, (2.9)

where δij is the Kronecker delta. Equation (2.9) can be rewritten in a vector form

NP∑
I=1

C(x; x − xI )φa(x − xI )h(x − xI ) = h(0), (2.10)

where

h(z) = [1, z, z2, . . . , zp]T, (2.11)

and

h(0) = [1, 0, . . . , 0]T. (2.12)

Denote the correction function in (2.6) in a vector form

C(x; x − xI ) = hT(x − xI )b(x), (2.13)

where

b(x) = [b0(x), b1(x), . . . , bp(x)]T. (2.14)

Substituting (2.13) into (2.10), we obtain

NP∑
I=1

h(x − xI )φa(x − xI )hT(x − xI )b(x) = h(0). (2.15)
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We rewrite it as

M(x)b(x) = h(0), (2.16)

where

M(x) =
NP∑
I=1

h(x − xI )hT(x − xI )φa(x − xI ). (2.17)

Here, M(x) is called the moment matrix. It follows from (2.16) that

b(x) = M−1(x)h(0). (2.18)

Therefore, the shape function �I(x) is obtained as

�I(x) = hT(0)M−1(x)h(x − xI )φa(x − xI ). (2.19)

The function �I(x) is called reproducing kernel (RK) shape function.

Remark 2.1. At any position x ∈ �, a necessary condition for moment matrix M(x) to be
invertible is that x needs to be covered by at least p+1 RK shape functions. This is the restriction
on how the support size of the kernel functions should be chosen. In this article, we choose the
support size to be proportional to nodal distance h, say a = (p + δ)h, δ > 0 for any point
distribution. For computational efficiency and keeping well conditioning of discrete equations,
we also assume that any position x is covered by at most κ shape functions, p + 1 ≤ κ � Np.

Remark 2.2. The complexity of the RK shape function includes the formation of matrix M(x),
the calculation of M−1(x), the construction of correction function C(x; x −xI ), and the construc-
tion of shape function �I(x). The total operation counts for the formation of �I(x) are given as
follows [36]

M/D : s3 + (2κ + 1)s2 + s + 1,

A/S : s3 + (κ − 2)s2 + s − 1.
(2.20)

The abbreviations M/D and A/S are multiplication/division and addition/subtraction, respectively,
s is the dimension of the vector h(x − xI ), and κ is the value satisfying overlapping condition in
Remark 2.1.

B. Multidimensional RK Approximation

The basis function discussed in the previous section can be extended to multidimension. Figure 1
demonstrates a two-dimensional RK discretization, where the geometry of the compact supports
can be rectangular or circular shape.

In the three-dimensional approximation, let function u(x) be approximated by

ur(x) =
NP∑
I=1

�I(x)uI , ∀x ∈ � ⊂ R3, (2.21)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 1. (a,b) RK discretization and compact support in two-dimension and (c) RK shape function. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

where x = (x1, x2, x3)
T and shape functions are expressed in the form of

�I(x) = C(x; x − xI )φa(x − xI ), (2.22)

where the center xI = (x1I , x2I , x3I )
T, and the correction function is

C(x; x − xI ) =
p∑

i+j+k=0

(x1 − x1I )
i(x2 − x2I )

j (x3 − x3I )
kbijk(x)

=: hT(x − xI )b(x), (2.23)

and

h(x − xI ) = [1, x1 − x1I , x2 − x2I , x3 − x3I , . . . , (x3 − x3I )
p]T. (2.24)

The shape functions in (2.22) satisfy the following p-th order reproducing conditions

NP∑
I=1

�I(x)xi
1I x

j

2I x
k
3I = xi

1x
j

2 xk
3 , i + j + k = 0, 1, . . . , p. (2.25)

This approximation satisfies the partition of unity when i + j + k = 0, i.e.,

NP∑
I=1

�I(x) = 1. (2.26)

The coefficient vector b(x) in (2.23) are obtained by satisfying Eq. (2.25). Thus, we obtain a
three-dimensional RK shape function as follows

�I(x) = hT(0)M−1(x)h(x − xI )φa(x − xI ), (2.27)

where

M(x) =
NP∑
I=1

h(x − xI )hT(x − xI )φa(x − xI ). (2.28)
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The complexity for constructing the multidimensional shape function in (2.27) is the same
as that stated in Remark 2.2; they are different only in space dimension. The properties of the
reproducing kernel shape functions are summarized as follows.

(1) The construction of shape function �I(x) is based on a set of points, and it does not rely
on a mesh.

(2) The shape function �I(x) has the same compact support as that of the kernel function φa(x).
(3) For the moment matrix M(x) to be nonsingular, any position x ∈ � needs to be covered by

at least s non collinear or non coplanar kernel functions, where s = (p + 3)!/p!3! in three
dimension.

(4) The shape function �I(x) does not possess the Kronecker delta property, thus the coefficient
is not the nodal value, i.e.,

�I(xJ ) 	= δIJ , and ur(xI ) 	= uI .

(5) The smoothness of the shape function �I(x) is the same as the smoothness of the kernel
function φa(x) if monomial basis functions are used.

C. Derivatives of RK Shape Function

Following the construction of the shape functions �I(x) in (2.22), the first-order partial derivative
is given as

�I ,xi
(x) = C,xi

(x − xI )φa(x − xI ) + C(x − xI )φa,xi
(x − xI ), (2.29)

where i = 1, 2, . . . , d , and d is the space dimension. The second-order derivative is of the form

�I ,x2
i
(x) = C,x2

i
(x − xI )φa(x − xI ) + 2C,xi

(x − xI )φa,xi
(x − xI ) + C(x − xI )φa,x2

i
(x − xI ),

(2.30)

wherein the derivative of correction function is given as

C,xi
= hT(0)M−1

,xi
(x)h(x − xI ) + hT(0)M−1(x)h,xi

(x − xI ), (2.31)

and

C,x2
i

= hT(0)M−1
,x2

i

(x)h(x − xI ) + 2hT(0)M−1
,xi

(x)h,xi
(x − xI ) + hT(0)M−1(x)h,x2

i
(x − xI ).

(2.32)

The terms φa,xi
and φa,x2

i
are obtained directly by taking differentiation on the kernel function φa ,

and the derivatives M,xi
and M,x2

i
are obtained by taking differentiation on moment matrix M;

furthermore, the inversions of the derivatives are obtained by using the following relationships

M−1
,xi

= −M−1M,xi
M−1, (2.33)

and

M−1
,x2

i

= −M−1{M,x2
i
M−1 + 2M,xi

M−1
,xi

}. (2.34)

The complexity of RK shape function derivatives are listed in the following remark.
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Remark 2.3. The operation counts for the first-order derivative of RK shape function are given
as follows

M/D : 3s3 + (8κ + 4)s2 + 3s + 2,

A/S : 3s3 + (4κ − 5)s2 + s + 1.
(2.35)

For the second-order derivative of RK shape function, the operation counts are

M/D : 6s3 + (20κ + 12)s2 + 6s + 4,

A/S : 6s3 + (10κ − 11)s2 + s + 12,
(2.36)

where s = (p + d)!/(p!d!), and d is space dimension.

D. The Interpolation Estimate and Inverse Inequality

Based on the choice of support size stated in Remark 2.1, we assume a quasi-uniform distribution
of the discrete points for approximation of a function or for solving PDE as defined below.

Defnition 2.1. A set of points is said to be quasi-uniform distribution if there exists two constants
c0 and c1 such that

c0 ≤ aI

aJ

≤ c1, ∀I , J , (2.37)

where aI and aJ denotes the support size of kernel functions centered at xI and xJ , respectively,
and the support sizes are proportional to nodal distance h.

Denote Vk , the finite dimensional collection of the RK shape function defined in (2.27),

Vk = span{�1(x), �2(x), . . . , �Np(x)}, (2.38)

and ‖ · ‖�,ωI
, ‖ · ‖�,�,| · |�,ωI

, and | · |�,� the Sobolev norms and seminorms.
Assume the kernel function φ(x − xI ) is �-times differentiable. The bounds for the RK shape

function and its derivatives are given in the lemma below [16, 34]. They are used for the error
estimation.

Lemma 2.1. Consider the quasi-uniform points distribution, there exist two constants C0 and
C1 such that

max
1≤I≤NP

‖�I‖∞ ≤ C0, (2.39)

max
1≤I≤NP

max
|α|=�

‖Dα�I‖∞ ≤ C1a
−�, (2.40)

where α = (α1, α2, . . . , αd) is a multi-index, α-th derivative operator is defined as

Dαf (x) = ∂ |α|f (x)

∂x
α1
1 ∂x

α2
2 · · · ∂x

αd
d

, (2.41)

and |α| = ∑d

i=1 αi is the length of α.

We have the following results concerning the global interpolation error.
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Lemma 2.2. Consider a quasi-uniform points distribution. For ur ∈ Vk , there exists a local
estimation

‖u − ur‖�,ωI
≤ Cap+1−�|u|p+1,ωI

, ∀� ≥ 0, (2.42)

where a is the maximal support size in �̄, p is the reproducing degree of ur , and C is a generic
constant.

Moreover, we obtain a global estimation

‖u − ur‖�,� ≤ Cκap+1−�|u|p+1,�, ∀� ≥ 0, (2.43)

where κ is the value satisfying overlapping condition, and C is a generic constant.

Proof. The local error estimation in Sobolev norm can be found in [16,34]. The global error
estimation is summarized as follows.

Using the property of partition of unity, we have

‖u − ur‖2
�,� =

∥∥∥∥∥
NP∑
I=1

�I(u − uI )

∥∥∥∥∥
2

�,�

=
∥∥∥∥∥D�

NP∑
I=1

�I(u − uI )

∥∥∥∥∥
2

0,�

≤ 2

∥∥∥∥∥
NP∑
I=1

(D��I )(u − uI )

∥∥∥∥∥
2

0,�

+ 2

∥∥∥∥∥
NP∑
I=1

�ID
�(u − uI )

∥∥∥∥∥
2

0,�

= 2
∫

�

NP∑
I=1

(D��I )
2(u − uI )

2 + 2
∫

�

NP∑
I=1

(�I )
2(D�(u − uI ))

2

≤ 2κ

∫
ωI

NP∑
I=1

(D��I )
2(u − uI )

2 + 2κ

∫
ωI

NP∑
I=1

(�I )
2(D�(u − uI ))

2

= 2κ max
1≤I≤NP

‖D��I‖2
∞

NP∑
I=1

∫
ωI

(u − uI )
2

+ 2κ max
1≤I≤NP

‖�I‖2
∞

NP∑
I=1

∫
ωI

(
D�(u − uI )

)2
. (2.44)

It follows from Lemmas 2.1 and 2.2 that

‖u − ur‖2
�,� ≤ 2κC2

1a
−2�

NP∑
I=1

‖u − ur‖2
0,ωI

+ 2κC2
0

NP∑
I=1

‖u − ur‖2
�,ωI

≤ 2κC2
1a

−2�κa2(p+1)|u|2p+1,ωI
+ 2κC2

0κa2(p+1)−2�|u|2p+1,ωI

≤ C2κ
2a2(p+1)−2�|u|2p+1,ωI

, (2.45)

where C2 = max{2C2
0 , 2C2

1 }. Thus, we obtain

‖u − ur‖�,� ≤ C3κap+1−�|u|p+1,ωI
≤ Cκap+1−�|u|p+1,�, (2.46)

where C is a generic constant independent of the parameters a, κ , and p.
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In the following, we provide an inverse inequality that is critical to the further error and stability
analysis.

Theorem 2.1. Assume that the discrete points have quasi-uniform distribution, there exists a
generic constant C such that

‖v‖�,� ≤ Cκ1/2a−�p2�‖v‖0,�, ∀� ≥ 1, (2.47)

where κ is the overlapping parameter, a is the kernel compact support parameter, and p is the
reproducing order.

Proof. For simplicity, we consider the case in a two-dimensional setting here. Let v be an
approximate function defined in a rectangular support ωI ,

ωI = {(x1, x2)|x1I − aI ≤ x1 ≤ x1I + aI , x2I − bI ≤ x2 ≤ x2I + bI }, (2.48)

which the compact support is centered at (x1I , x2I ) with dimension 2aI × 2bI . Denote a reference
support by

� = {(ξ , η)| − 1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1}, (2.49)

where the support is defined in reference coordinate system.
The support ωI can be mapped onto � by a linear transformation, µ = TI (v), and the reference

coordinates are defined as

ξ = 1

aI

(x1 − x1I ), η = 1

bI

(x2 − x2I ), (2.50)

so that

dx1 = aIdξ , dx2 = bIdη. (2.51)

Moreover, we have

v(x1, x2)|ωI
= v(x1(ξ), x2(η)) = µ(ξ , η)|�. (2.52)

and let

vx1 = ∂v

∂x1
= ∂µ

∂ξ

dξ

dx1
= µξ

aI

, vx2 = ∂v

∂x2
= ∂µ

∂η

dη

dx2
= µη

bI

. (2.53)

It follows that

‖v‖2
0,ωI

=
∫

ωI

v2dx1dx2 = aIbI

∫
�

µ2dξdη = aIbI‖µ‖2
0,�. (2.54)

Express a monomial with degree p in support � as

µ = µ(ξ , η) =
p∑

i,j=0

bij ξ
iηj . (2.55)
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The above can be expressed by the Legendre polynomials, and there exist the following
inequalities [37] ∥∥∥∥∂µ

∂ξ

∥∥∥∥
0,�

= ‖µξ‖0,� ≤ c1p
2‖µ‖0,�, (2.56)∥∥∥∥∂µ

∂η

∥∥∥∥
0,�

= ‖µη‖0,� ≤ c2p
2‖µ‖0,�, (2.57)

and

|µ|1,� ≤ c3p
2‖µ‖0,�, ‖µ‖1,� ≤ c4p

2‖µ‖0,�. (2.58)

For the function v defined in support ωI , we obtain a relation as follows

|v|21,ωI
=

∫
ωI

(
v2

x1
+ v2

x2

)
dxdy

= aIbI

∫
�

{(
µξ

aI

)2

+
(

µη

bI

)2
}

dξdη

= bI

aI

‖µξ‖2
0,� + aI

bI

‖µη‖2
0,� ≤ c1

bI

aI

p4‖µ‖2
0,� + c2

aI

bI

p4‖µ‖2
0,�

≤
(

c1
bI

aI

+ c2
aI

bI

)
p4

aIbI

‖v‖2
0,ωI

≤
(

c3

a2
I

+ c4

b2
I

)
p4‖v‖2

0,ωI
. (2.59)

We consider the case of aI = bI = a, the inequality in (2.59) leads to

|v|21,ωI
≤ c5a

−2p4‖v‖2
0,ωI

, ‖v‖2
1,ωI

≤ c6a
−2p4‖v‖2

0,ωI
. (2.60)

Furthermore, the second partial derivatives of function v are given by

vx1x1 = µξξ

a2
I

, vx1x2 = µξη

aIbI

, vx2x2 = µηη

b2
I

. (2.61)

Similarly, there exist

|µξξ |0,� ≤ c̄1p
4‖µ‖0,�, |µξη|0,� ≤ c̄2p

4‖µ‖0,�, |µηη|0,� ≤ c̄3p
4‖µ‖0,�. (2.62)

Correspondingly, we have

|v|22,ωI
=

∫
ωI

(
v2

x1x1
+ 2v2

x1x2
+ v2

x2x2

)
dxdy

= aIbI

∫
�

{(
µξξ

a2
I

)2

+ 2

(
µξη

aIbI

)2

+
(

µηη

b2
I

)2}
dξdη

= bI

a3
I

‖µξξ‖2
0,� + 2

aIbI

‖µξη‖2
0,� + aI

b3
I

‖µηη‖2
0,�

≤
(

c̄1
bI

a3
I

+ c̄2
2

aIbI

+ c̄3
aI

b3
I

)
p8‖µ‖2

0,�

≤
(

c̄4
bI

a3
I

+ c̄5
2

aIbI

+ c̄6
aI

b3
I

)
p8

aIbI

‖v‖2
0,ωI

(2.63)
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Considering the case of aI = bI = a, the inequality in (2.63) becomes

|v|22,ωI
≤ c̄7a

−4p8‖v‖2
0,ωI

, ‖v‖2
2,ωI

≤ c̄8a
−4p8‖v‖2

0,ωI
. (2.64)

More generally, for any � ≥ 1, we have the following result

‖v‖�,� ≤ C1

{ NP∑
I=1

‖v‖2
�,ωI

}1/2

≤ C2

{
κ‖v‖2

�,ωI

}1/2

≤ C3

√
κa−�p2�‖v‖0,ωI

≤ C
√

κa−�p2�‖v‖0,�, (2.65)

where � = 1, 2, . . .. This proves (2.47).

III. REPRODUCING KERNEL COLLOCATION METHOD (RKCM)

A. Strong Form Collocation Method

Consider a Poisson problem

−�u = f , in �, (3.1)

uν = q1, on �N , (3.2)

uν + βu = q2, on �R , (3.3)

where � is a bounded domain with boundary ∂�, uν is the outward normal derivative with respect
to the boundary ∂� = �N ∪ �R , and β is a non-negative value.

To obtain the approximation solution of model problem (3.1)–(3.3), we consider the collocation
method based on reproducing kernel approximation,

ur =
Np∑
I=1

�I(x)uI , ur ∈ Vk , (3.4)

where the coefficients uI will be obtained by strong form collocation method to be discussed in
this section.

The collocation method can be regarded as the least-squares method with integration
quadratures [24]. The least-squares method is to seek the solution ur ∈ Vk such that

E(ur) = min
v∈Vk

E(v), (3.5)

where

E(v) = 1

2

{ ∫
�

(�v + f )2d� +
∫

�N

(vν − q1)
2d� +

∫
�R

(vν + βv − q2)
2d�

}
. (3.6)

The minimization problem in (3.5) can be described equivalently in the following variational
formulation

B(ur , v) = F(v), ∀v ∈ Vk , (3.7)
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where

B(u, v) =
∫

�

�u�vd� +
∫

�N

uνvνd� +
∫

�R

(uν + βu)(vν + βv)d�, (3.8)

F(v) = −
∫

�

f �vd� +
∫

�N

q1vνd� +
∫

�R

q2(vν + βv)d�. (3.9)

The integrals in (3.6), (3.8), and (3.9) can be numerically evaluated using quadrature rules, for
example, the Newton-Cotes or the Gaussian quadrature rules∫

�

gd� ≈
∫̂

�

gd� =
∑

ij

αijg(Qij ), ∀Qij ∈ �, (3.10)

∫
�N

gd� ≈
∫̂

�N

gd� =
∑

i

αN
i g(QN

i ), ∀QN
i ∈ �N , (3.11)

∫
�R

gd� ≈
∫̂

�R

gd� =
∑

j

αR
j g(QR

j ), ∀QR
j ∈ �R , (3.12)

where αij , αN
i and αR

j are weights and Qij , QN
i and QR

j are integration points (collocation points).
The problem (3.5) involving quadrature approximation leads to a discrete problem. The

collocation method is to seek the solution ũr ∈ Vk such that

Ê(ũr ) = min
v∈Vk

Ê(v), (3.13)

where Ê(·) denotes the quadrature approximation of E(·) in (3.6). This also can be described
equivalently

B̂(ũr , v) = F̂ (v), ∀v ∈ Vk , (3.14)

where B̂(·, ·) and F̂ (·) denote the quadrature versions of B(·, ·) and F(·) in (3.8) and (3.9),
respectively.

B. The Implementation Scheme

The detailed algorithm and the complexity of the reproducing kernel collocation method are given
in this section.

The discrete functional Ê(v) in (3.13) can be further manipulated as

Ê(v) = 1

2

No∑
J=1

αJ {(�v + f )(ξJ )}2 + 1

2

Na∑
J=1

αN
J {(vν − q1)(ξJ )}2

+ 1

2

Nb∑
J=1

αR
J {((vν + βv − q2))(ξJ )}2, (3.15)

where ξJ denotes the integration nodes (collocation points), αJ , αN
J , αR

J are the weights, No, Na ,
and Nb are the number of integration nodes in �, �N , and �R , respectively. Since

v ∈ Vk , Vk = span{�1, �2, . . . , �Np }, (3.16)
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the minimization of (3.15) leads to solving a linear system below,

−√
αJ

NP∑
I=1

��I(ξJ )uI = √
αJ f (ξJ ), ∀ξJ ∈ �, (3.17)

√
αN

J

NP∑
I=1

�I ,ν(ξJ )uI =
√

αN
J q1(ξJ ), ∀ξJ ∈ �N , (3.18)

√
αR

J

NP∑
I=1

{�I ,ν + β�I }(ξJ )uI =
√

αR
J q2(ξJ ), ∀ξJ ∈ �R . (3.19)

The above equations can be written as

Ay = b, (3.20)

where the entry of matrix A is given by

[A]IJ =


−√

αJ ��I(ξJ ), J = 1, . . . , No,√
αN

J �I ,ν(ξJ ), J = No + 1, . . . , No + Na ,√
αR

J {�I ,ν + β�I }(ξJ ), J = No + Na + 1, . . . , No + Na + Nb,

(3.21)

where I = 1, 2, . . . , NP , NP is the number of discrete points. The coefficient vector y is defined
as

y = [u1, u2, . . . , uNP
]T, (3.22)

and the component of vector b is given by

[b]J =


√

αJ f (ξJ ), J = 1, . . . , No,√
αN

J q1(ξJ ), J = No + 1, . . . , No + Na ,√
αR

J q2(ξJ ), J = No + Na + 1, . . . , No + Na + Nb.

(3.23)

The matrix A in (3.20) is with dimension Nc × NP , the vector y is with dimension NP , and the
vector b is with dimension Nc, where Nc = No + Na + Nb is the total number of collocation
points in � ∪ �N ∪ �R .

To ensure an optimal solution, the number of collocation points Nc should be greater than the
number of nodal points NP and this leads to an over-determined system. A relationship for the
choice of the values Nc and NP will be discussed in Section IVA.

For solving the over-determined system (3.20), we use the following algorithm:

(i) Compute ATA and c = ATb.
(ii) Compute the Cholesky decomposition ATA = LLT.

(iii) Solve Lz = c for z by backward substitution (BS).
(iv) Solve LTy = z for y by forward substitution (FS).

Remark 3.1. For solving the over-determined system, we may use QR decomposition or sin-
gular value decomposition (SVD), however, the costs for these two decompositions are much
higher than the Cholesky decomposition.
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The total operation counts for RKCM consists of (1) forming a linear system (3.20) and (2)
solving the over-determined system by the algorithm described above. For forming a matrix A
and vector b in a 1D Poisson’s problem with Dirichlet and Neumann boundary conditions, the
operation count is

op : κ · {s3 + (2κ + 1)s2 + s + 1} + κ · {3s3 + (8κ + 4)s2 + 3s + 2}
+ κ · (Nc − 2) · {6s3 + (20κ + 12)s2 + 6s + 4}, (3.24)

where s = p + 1. The operation count in forming ATA and ATb, and using the Cholesky
decomposition with substitutions to find y is

op : Nc · N 2
P /2 + Nc · NP + N 3

P /6 + N 2
P /2 + N 2

P /2. (3.25)

By considering κ ≈ s = p + 1 and Nc = 4 · NP , the total operation count is

op : O
(
(104 · NP − 38) · (p + 1)4

) + O
(
13 · N 3

P /6
)
. (3.26)

IV. ANALYSIS OF RKCM

In this section, we first discuss the convergence property of RKCM for the model problem in
(3.1)–(3.3). Considering that the minimization problem is equivalent to variational formulations,
the implementation scheme is based on the minimization problem, whereas the error analysis is
based on the variational formulation.

The error analysis consists of two steps: the continuous formulation without any quadrature
rules involved, and the formulation with the quadrature rules. For the stability analysis, the inverse
inequality stated in Theorem 2.1 is used.

A. Convergence

Denote the space

H = {v|v ∈ H 1(�), �v ∈ L2(�)}, (4.1)

where H 1 is the Sobolve space, accompanied with the norm

‖|v‖| = {‖v‖2
1,� + ‖�v‖2

0,� + ‖vν‖2
0,�N

+ ‖vν + βv‖2
0,�R

} 1
2 . (4.2)

The following Lemma is used for the derivation later.

Lemma 4.1. Assume a quasi-uniform points distribution. For v ∈ Vk , there exist the following
inverse inequalities

‖v‖�,� ≤ C
√

κa−�p2� ‖v‖0,�, (4.3)

‖v‖�,� ≤ C
√

κa−�p2�‖v‖0,� ≤ C
√

κa−�p2�‖v‖1,�, (4.4)

‖vν‖�,� ≤ C
√

κa−(�+1)p2�+2‖v‖0,� ≤ C
√

κa−(�+1)p2�+2‖v‖1,�, (4.5)

for � ≥ 1, where C is a generic constant.
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Note that the detailed proof for (4.3) is given in Section IID, see Theorem 2.1, and the
inequalities (4.4) and (4.5) can be derived in a similar manner.

In the first step of analysis, we need the following Lemmas.

Lemma 4.2. There exists an inequality between the bilinear form and the Sobolev one norm

B(v, v) ≥ C‖v‖2
1,�, ∀v ∈ Vk , (4.6)

where C is a positive generic constant.

Proof. Using the integration by parts, we have

|v|21,� =
∫

�

(∇v)2d� = −
∫

�

v�vd� +
∫

∂�

vνvd�

= −
∫

�

v�vd� +
∫

�N

vνvd� +
∫

�R

vνvd� (4.7)

where ν is the outward normal. The following bounds exist

‖v‖0,�N
≤ C‖v‖1,�, ∀v ∈ Vk , (4.8)

‖v‖0,�R
≤ C‖v‖1,�, ∀v ∈ Vk , (4.9)

and ∣∣∣∣ ∫
�

v�vd�

∣∣∣∣ ≤ C‖�v‖0,�‖v‖0,�, (4.10)∣∣∣∣ ∫
�N

vνvd�

∣∣∣∣ ≤ C‖vν‖0,�N
‖v‖0,�N

, (4.11)∣∣∣∣ ∫
�R

vνvd�

∣∣∣∣ ≤ C‖vν‖0,�R
‖v‖0,�R

. (4.12)

It follows from (4.7) that

|v|21,� ≤ C{‖�v‖0,� + ‖vν‖0,�N
+ ‖vν‖0,�R

}‖v‖1,�. (4.13)

Using Poincare’s inequality,

‖v‖1,� ≤ C|v|1,�, (4.14)

Eq. (4.13) becomes

‖v‖1,� ≤ C{‖�v‖0,� + ‖vν‖0,�N
+ ‖vν‖0,�R

}. (4.15)

Moreover, we have

‖v‖2
1,� ≤ C0

{‖�v‖2
0,� + ‖vν‖2

0,�N
+ ‖vν‖2

0,�R

}
≤ C1

{‖�v‖2
0,� + ‖vν‖2

0,�N
+ ‖vν + βv‖2

0,�R

} = C1B(v, v), (4.16)
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where β is a positive number. Hence

B(v, v) ≥ C‖v‖2
1,�. (4.17)

This proves (4.6).

Lemma 4.3. There exist two inequalities

B(u, v) ≤ C1‖|u|‖ ‖|v|‖, ∀v ∈ Vk , (4.18)

B(v, v) ≥ C0‖|v|‖2, ∀v ∈ Vk , (4.19)

where C0 and C1 are two positive generic constants.

Proof. First, from definitions (3.8) and (4.2), we have

B(u, v) ≤ C
{‖�u‖2

0,� + ‖uν‖2
0,�N

+ ‖uν + βu‖2
0,�R

} 1
2

× {‖�v‖2
0,� + ‖vν‖2

0,�N
+ ‖vν + βv‖2

0,�R

} 1
2

≤ C1

{‖u‖2
1,� + ‖�u‖2

0,� + ‖uν‖2
0,�N

+ ‖uν + βu‖2
0,�R

} 1
2

× {‖v‖2
1,� + ‖�v‖2

0,� + ‖vν‖2
0,�N

+ ‖vν + βv‖2
0,�R

} 1
2

= C1‖|u‖|‖|v‖|. (4.20)

Second, by using (4.6), we have

B(v, v) = 1

2
B(v, v) + 1

2
B(v, v)

≥ C‖v‖2
1,� + 1

2

{‖�v‖2
0,� + ‖vν‖2

0,�N
+ ‖vν + βv‖2

0,�R

}
≥ C0‖|v‖|2, (4.21)

where C0 = min{ 1
2 , C}. The result (4.19) is obtained.

For the second step for analysis, the following two Lemmas are needed.

Lemma 4.4. For a quadrature rule with order γ , and for v ∈ Vk , there exist the bounds,∣∣∣∣( ∫
�

−
∫̂

�

)
(�v)2

∣∣∣∣ ≤ C1(κ , p)�(γ+1)a−(γ+3)‖v‖2
1,�, (4.22)∣∣∣∣( ∫

�N

−
∫̂

�N

)
(vν)

2

∣∣∣∣ ≤ C2(κ , p)�(γ+1)a−(γ+3)‖v‖2
1,�, (4.23)

∣∣∣∣( ∫
�R

−
∫̂

�R

)
(vν + βv)2

∣∣∣∣ ≤ C3(κ , p)�(γ+1)a−(γ+3)‖v‖2
1,�, (4.24)
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where � denotes the maximal spacing of the collocation points and Ci are the constants dependent
on κ and p.

Proof. Let g = (vν)
2. By using the Mean Value Theorem for Integrals and the inverse

inequalities stated in Lemma 4.1, we have∣∣∣∣( ∫
�N

−
∫̂

�N

)
(vν)

2

∣∣∣∣ =
∣∣∣∣ ∫

�N

g −
∫̂

�N

g

∣∣∣∣ =
∣∣∣∣ ∫

�N

(g − ĝ)

∣∣∣∣ ≤ C�
γ+1|g|γ+1,�N

(4.25)

where

|g|γ+1,�N
= |(vν)

2|γ+1,�N
≤ C

γ+1∑
i=0

|vν |γ+1−i,�N
|vν |i,�N

≤ C

γ+1∑
i=0

√
κa−(γ+1−i+1)p2γ+2−2i+2‖v‖1,� · √

κa−(i+1)p2i+2‖v‖1,�

≤ Cκa−(γ+3)p2(γ+3)‖v‖2
1,�. (4.26)

Combining (4.25) and (4.26), we obtain∣∣∣∣( ∫
�N

−
∫̂

�N

)
(vν)

2

∣∣∣∣ ≤ C�
γ+1κa−(γ+3)p2(γ+3)‖v‖2

1,�

≤ C1(κ , p)�γ+1a−(γ+3)‖v‖2
1,�. (4.27)

The other inequalities in (4.22) and (4.24) can be derived in a similar manner.

Lemma 4.5. Suppose that Lemmas 4.3 and 4.4 hold, we choose � to satisfy

�
γ+1a−(γ+3) = o(1), (4.28)

then there exist

B̂(u, v) ≤ C1‖|u|‖ ‖|v|‖, ∀v ∈ Vk , (4.29)

B̂(v, v) ≥ C0‖|v|‖2, ∀v ∈ Vk , (4.30)

where C0 and C1 are positive generic constants.

Proof. We prove (4.30) only; Eq. (4.29) is easy to obtain.
It can be derived from Lemmas 4.3 and 4.4 that

B̂(v, v) ≥ B(v, v) − C�
γ+1a−(γ+3)‖v‖2

1,�

≥ C0‖|v‖|2 − C�
γ+1a−(γ+3)‖v‖2

1,�

≥ C0

{(
1 − C

C0
�

γ+1a−(γ+3)

)
‖v‖2

1,� + ‖�v‖0,� + ‖vν‖2
0,�N

+ ‖vν + βv‖2
0,�R

}
≥ C0

2
‖|v‖|2, (4.31)
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provided that

C

C0
�

γ+1a−(γ+3) ≤ 1

2
. (4.32)

This proves (4.30).

Using two important Lemmas 4.3 and 4.5, we have an optimal error estimation for the
solution ũr .

Theorem 4.1. Under the conditions in Lemma 4.5, the solution of the reproducing kernel
collocation method (RKCM) has the bound

‖|u − ũr |‖ ≤ C inf
v∈Vk

‖|u − v|‖, (4.33)

where C is a constant independent on a and NP .

Proof. From Lemmas 4.3 and 4.4, we have

B̂(u, v) ≤ F̂ (v) + C�
γ+1a−(γ+3)‖v‖2

1,�, ∀v ∈ Vk , (4.34)

and the solution ũr satisfies

B̂(ũr , v) = F̂ (v), ∀v ∈ Vk . (4.35)

Therefore,

B̂(u − ũr , v) ≤ C�
γ+1a−(γ+3)‖v‖2

1,�, ∀v ∈ Vk . (4.36)

Let w = ũr − v ∈ Vk , and using the results stated in Lemma 4.5 and (4.36), it follows that

C0‖|w‖|2 ≤ B̂(ũr − v, w) = B̂(ũr − u + u − v, w)

≤ B̂(u − v, w) + B̂(u − ũr , w)

≤ C1‖|u − v|‖ ‖|w|‖ + C�
γ+1a−(γ+3)‖w‖2

1,�

≤ C1‖|u − v|‖ ‖|w|‖ + C�
γ+1a−(γ+3)‖|w|‖2. (4.37)

This leads to

‖|ũr − v|‖ = ‖|w|‖ ≤ C1

C0 − C × o(1)
‖|u − v|‖ =: C2‖|u − v|‖, (4.38)

and consequently

‖|u − ũr |‖ ≤ ‖|u − v|‖ + ‖|v − ũr |‖ ≤ (1 + C2)‖|u − v|‖. (4.39)

The result (4.33) is obtained.
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Remark 4.1. Recall the condition between the collocation points and the nodal points of the
RK shape function described in Lemma 4.5

� ≈ o(a
1+ 2

γ+1 ). (4.40)

Since a = O(h), where h is nodal distance, we have

� ≈ o(h2), when γ = 1, (4.41)

� ≈ o(h
5
3 ), when γ = 2, (4.42)

� ≈ o(h
3
2 ), when γ = 3, (4.43)

...
...

� ≈ o(h), very high order. (4.44)

It can be seen from (4.41)–(4.44) that 0 < � ≤ h << 1. This means that according to (4.40), the
density of collocation points is selected much denser than the density of the nodal points if low
order integration rules are used, i.e., Nc > NP .

Corollary 4.1. According to Theorem 4.1 and Lemma 2.2, the error of RKCM solution is
bounded by

‖|u − ũr |‖ ≤ C
{‖u − v‖2,� + ‖(u − v)ν‖0,�N

+ ‖(u − v)ν + β(u − v)‖0,�R

}
,

≤ Cκap−1|u|p+1,�. (4.45)

where p is reproducing degree and C is generic constant.

Remark 4.2. In the proposed collocation approach, it is important to note that the solution
does not converge when reproducing degree p = 1 is used for the Poisson problem. Recall the
reproducing conditions for two-dimension

NP∑
I=1

�I(x) xi
I y

j

I = xiyj , i + j = 0, 1, . . . , p. (4.46)

According to (4.45), the reproducing degree p should be at least 2.
To meet reproducing conditions in (4.46), any position x ∈ � needs to be covered by 6 non-

collinear RK kernel functions for p = 2 and be covered by 10 non-collinear RK kernel functions
for p = 3. For uniform points distribution, support size a should be chosen as

a ≥ 3h, for p = 2, (4.47)

a ≥ 4h, for p = 3, (4.48)

where h is the nodal distance.
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B. Stability

In this section, we perform the stability analysis for RKCM. For analysis purposes, we use different
norms defined as follows, where they are related to the bilinear forms defined in Section III.

Define two norms

‖v‖E = {‖�v‖2
0,� + ‖vν‖2

0,�N
+ ‖vν + βv‖0,�R

} 1
2 = B(v, v)

1
2 . (4.49)

and

‖v‖E =
{∫̂

�

(�v)2d� +
∫̂

�N

(vν)
2d� +

∫̂
�R

(vν + βv)2d�

} 1
2 = B̂(v, v)

1
2 . (4.50)

The norm discrete ‖v‖2

E can be expressed as

‖v‖2

E = B̂(v, v) = yTGy := yTATAy, (4.51)

where A and y are defined in (3.21) and (3.22), respectively.

Lemma 4.6. Following (4.49) and (4.50), there exists a relationship

C1‖v‖E ≤ ‖v‖E ≤ C2‖v‖E , (4.52)

where C1 and C2 are positive constants.

Proof. First, we have

‖v‖E − ‖v‖E ≤ ‖v − v̂‖E ≤ C�
γ+1‖Dγ+1v‖E ≤ C0�

γ+1a−(γ+1)‖v‖E , (4.53)

wherein the following relation is used:∫
�

g −
∫̂

�

g =
∫

�

g −
∫

�

ĝ =
∫

�

(g − ĝ). (4.54)

It follows that (
1 − C0�

γ+1a−(γ+1)
)‖v‖E ≤ ‖v‖E . (4.55)

Assume �
γ+1a−(γ+1) = o(1), and denote C1 = (1 − C0�

γ+1a−(γ+1)) > 0.
Similarly, we obtain

‖v‖E − ‖v‖E ≤ ‖v̂ − v‖E = ‖v − v̂‖E ≤ C0�
γ+1a−(γ+1)‖v‖E . (4.56)

Therefore, we have

‖v‖E ≤ (1 + C0�
γ+1a−(γ+1))‖v‖E =: C2‖v‖E . (4.57)

This proves (4.52).
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Lemma 4.7. For the norm defined in (4.49), there exists a relationship

C3‖v‖2,� ≤ ‖v‖E ≤ C4‖v‖2,�, (4.58)

where C3 and C4 are positive constants independent of a and NP .

In the following, the bound for condition number is given, and it is inversely proportional to
the square of the support size a.

Theorem 4.2. Under the conditions in lemmas 4.6 and 4.7, there exist

λmin(ATA) ≥ Ca‖v‖2
0,�

yTy
, (4.59)

λmax(ATA) ≤ Cb‖v‖2
2,�

yTy
, (4.60)

where Ca and Cb are positive constants. Furthermore, there exist

Cond (A) ≤ Cda
−2. (4.61)

where Cd = Cd(κ , p) is constant dependent on κ and p.

Proof. Since yTGy = ‖v‖2

E , and using the Rayleigh-Ritz Theorem, we have

λmin(G) = min
yTGy
yTy

≥ min
C1‖v‖2

E

yTy
≥ min

C3‖v‖2
0,�

yTy
, (4.62)

λmax(G) = max
yTGy
yTy

≤ max
C2‖v‖2

E

yTy
≤ max

C4‖v‖2
2,�

yTy
. (4.63)

Using the inverse inequality (2.47), the condition number for matrix G is given by

Cond(G) = λmax(G)

λmin(G)
≤ C3‖v‖2

2,�

C4‖v‖2
0,�

≤ C5κa−4p8‖v‖2
0,�

C4‖v‖2
0,�

≤ Cκa−4p8. (4.64)

Since

Cond(G) = Cond(ATA) = {Cond(A)}2, (4.65)

therefore

Cond(A) ≤ Cκa−2p4 =: Cd(κ , p)a−2. (4.66)

This proves (4.61).

Remark 4.3. For uniform points distribution, κ is selected close to p so that the constant Cd in
(4.61) is bounded in a reasonable range. The condition number increases as the model is refined,
and it shows that RKCM is well-conditioned like the finite element method (FEM). The rate of
condition number of FEM is of −2, i.e., O(h−2), where h denotes the maximal mesh size.
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V. NUMERICAL EXPERIMENTS

In this section, we present two numerical tests for one- and two-dimensional model problems to
validate the theoretical analysis given in Sections IVA and IVB.

Since the support size a is proportional to the nodal distant h, it can be seen from Corollary 4.1
that

‖|u − ũr |‖ ≈ O(hp−1), (5.1)

where p has to be greater than one. Furthermore, we have the following estimations

‖u − ũr‖0,� ≈ O(hp+1), (5.2)

‖u − ũr‖1,� ≈ O(hp), (5.3)

‖u − ũr‖2,� ≈ O(hp−1). (5.4)

By choosing support size a = (p + δ)h, where δ > 0, the bound of condition number is

Cond(A) ≤ Cd(κ , p)a−2 = Cκp4

(p + δ)2
· h−2 ≈ O(h−2). (5.5)

In numerical results given in the following examples, we illustrate how error and condition number
are related to discretization.

A. Example I

Consider a one-dimensional (1D) model problem of the form

u′′(x) = ex in �, (5.6)

u(0) = 1, (5.7)

u(1) = e, (5.8)

where � = {x| 0 < x < 1}. The analytical solution is u(x) = ex . We use the reproducing degree
p = 1, 2, 3, the number of nodal points NP = 6, 8, . . . , 16, and the number of collocation points
Nc = 24, 32, . . . , 64. Equally spaced collocation points and nodal points are adopted. We define
h = 1/NP and choose a = (p + 1)h as support size of RK shape function. Theoretical analysis,
see Remark 4.1, states that the number of collocation points should be greater than the number of
nodal points. Here, the total number of collocation points used is four times the number of nodal
points.

The curves of the error in Sobolev zero norm with various level of nodal refinements are shown
in Fig. 2(a). It is worth noting that the case of linear basis, p = 1, does not converge at all, and
for p = 2, 3, the rates of convergence agree well with the analytical predication. The condition
numbers are shown in Fig. 2(b). It can be seen that these numerical rates are in fact better than
the analytical prediction of −2 as given in Section IVB.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



ERROR ANALYSIS OF RKCM 577

FIG. 2. The convergence and the condition number of RKCM with p = 1, 2, 3 for the 1D model problem.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

B. Example II

Consider a two-dimensional (2D) model problem as follows

�u = f (x, y) in �, (5.9)

u = 1 on x = 0, (5.10)

u = 1 on y = 0, (5.11)

u = ey on x = 1, (5.12)

u = ex on y = 1, (5.13)

where � = {(x, y)| 0 < x < 1, 0 < y < 1}. The function f (x, y) is given as f (x, y) =
(x2+y2) exy . The analytical solution is u(x, y) = exy . The cases for reproducing degree p = 1, 2, 3
are considered, and we use the number of nodal points NP = 62, 82, . . . , 162, and the number of
collocation points Nc = 242, 322, . . . , 642. We define h = 1/

√
NP and choose a = (p + 1)h as

support size.
A convergence behavior similar to Example I is shown in Fig. 3(a), and again the case with

p = 1 the solution does not converge. The condition numbers have rate close to −2 as predicted
by the analysis given in Section IVB.

VI. CONCLUSIONS

Reproduction kernel approximation has been widely used in the arena of “meshfree method” under
the Galerkin weak framework. Despite its mathematical robustness in solving PDE with versatil-
ity in adjusting smoothness and locality in the approximation, performing adaptive refinement in
discretization, and in dealing with fracture and large deformation problems, the need for domain
integration and treatment of Dirichlet boundary conditions adds considerable complexity in the
numerical calculation. Alternatively, strong form collocation has been introduced in conjunction
with radial basis functions for numerical solution of PDE. This approach eliminates the need for
quadrature rule and offers a straightforward imposition of boundary conditions. Nevertheless, the
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FIG. 3. The convergence and the condition number of RKCM with p = 1, 2, 3 for the 2D model problem.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

nonlocality of radial basis functions yields a full and ill-conditioned discrete system that limits
it application to simple geometry, small-scale calculation. Thus, the employment of reproducing
kernel approximation with compact support in conjunction with the strong form collocation offers
complementary advantages of the above-mentioned methods.

The objective of this article is to offer a mathematical analysis of reproducing kernel colloca-
tion method. Specifically, we provide an inverse inequality of reproducing kernel approximation,
the optimal estimation, the bounds for condition number, and the optimal relationship for the
number of nodal points and the number of collocation points. The theoretical analysis shows
that the degree of monomial basis functions in the reproducing kernel approximation has to be
greater than one for convergence in this approach. This result is different from the weak form
type reproducing kernel particle method, in that monomial degree of zero is sufficient for con-
vergence. In addition, the condition number of this approach increases algebraically, indicating a
stability character similar to the finite element method and thus yields a significant improvement
in stability over the radial basis collocation method.

Several numerical examples have been given to validate the agreement between theoretical
prediction and numerical solution in terms of convergence, stability, especially the necessary
condition of the minimum monomial reproducing order for convergence.
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