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Abstract A weighted strong form collocation framework
with mixed radial basis approximations for the pressure
and displacement fields is proposed for incompressible and
nearly incompressible linear elasticity. It is shown that with
the proper choice of independent source points and col-
location points for the radial basis approximations in the
pressure and displacement fields, together with the analyt-
ically derived weights associated with the incompressibil-
ity constraint and boundary condition collocation equations,
optimal convergence can be achieved. The optimal weights
associated with the collocation equations are derived based
on achieving balanced errors resulting from domain, bound-
aries, and constraint equations. Since in the proposed method
the overdetermined system of the collocation equations is
solved by a least squares method, independent pressure and
displacement approximations can be selected without suf-
fering from instability due to violation of the LBB stability
condition. The numerical solutions verify that the solution
of the proposed method does not exhibit volumetric lock-
ing and pressure oscillation, and that the solution converges
exponentially in both L2 norm and H1 semi-norm, consistent
with the error analysis results presented in this paper.
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1 Introduction

The recent development of meshfree and particle methods
[1–5] expands a new horizon to computational mechanics.
These methods for solving partial differential equations do
not rely on the mesh connectivity for construction of the
approximation functions. The approximation functions used
in meshfree methods can be classified into two families. One
family of approximation functions equips with the poly-
nomial reproductivity properties, for example, the moving
least squares (MLS) [1] and reproducing kernel (RK) [2,6]
approximation functions. These functions are compactly sup-
ported and are generally rational functions. The other fam-
ily of meshfree approximation functions, on the other hand,
does not enforce polynomial reproductivity in their con-
struction, for example, the nonlocal radial basis functions
(RBFs) [7,8]. Element Free Galerkin (EFG) [1] method and
Reproducing Kernel Particle Method (RKPM) [2,6] intro-
duce MLS and RK functions, respectively, into the Galerkin
weak formulation. Alternatively, the reproducing kernel col-
location method (RKCM) employs compactly supported RK
approximation directly in the strong form sampling at the
collocation points [9,10], whereas the radial basis colloca-
tion method (RBCM) introduces the nonlocal RBFs in the
strong form collocation. In general, the numerical methods
for solving PDEs based on weak formulation with compactly
supported approximation functions are more stable, however,
with convergence properties affected by both the employed
approximation functions and the quadrature rules used in
the domain integration. In contrast, the numerical methods
based on a direct discretization of strong form at colloca-
tion points, such as RBCM and RKCM exhibit convergence
behavior largely influenced by the employed approximation
functions without the restriction of meeting certain require-
ments in the quadrature rules. Comprehensive investigation
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has shown that RKCM with RK approximation offers an alge-
braic convergence [9,10], while RBCM with RBF approxi-
mation exhibits an exponential convergence [8,11,12].

Kansa [7,8] first introduced the multiquadrics RBF for
solving PDEs and initiated a widespread research and appli-
cation related to RBCM. Franke and Schaback [13] and
Hu et al. [14] studied the theoretical aspects of solving
PDEs with collocation based on RBF approximation. Wend-
land [15] derived error estimates of combining the RBF
and the Galerkin method for solving PDEs, and this com-
bined approach leads to the same error properties in the
energy norm as that in the classical finite element method.
Hu et al. [11] showed that the RBCM solution can be opti-
mized if boundary conditions are properly weighted. Cecil et
al. [16] provided a numerical scheme based on the RBF for
Hamilton-Jacobi equations using an unstructured discretiza-
tion in arbitrary dimensions. Pollandt [17] used RBFs as
the approximation in a multidimensional boundary element
method to solve nonlinear elliptic PDEs. Sonar [18] used
RBFs for local reconstruction of solutions in solving hyper-
bolic conservation law, and showed that the thin-plate RBF
helps to improve the accuracy of the finite volume methods
for the hyperbolic equations. Chi et al. [19] demonstrated a
significantly small dispersion error in RBCM compared to
that in the FEM for the same level of discretization. Chen et
al. introduced a subdomain collocation method for hetero-
geneous elasticity [12] and fracture mechanics [20]. Much
effort has been also devoted to the localization of RBFs to
yield a sparse system with better conditioning. Wendland
[21] introduced a class of positive definite and compactly
supported radial basis functions (CSRBF) which consist of a
univariate polynomial within their support. The accuracy of
the approach can be improved by using a large scaling factor
but is costly. Chen et al. [22] proposed a reproducing kernel
enhanced RBF approximation to achieve a local approxima-
tion, which holds the similar convergence property as that
of the RBF collocation method while yielding a banded and
better-conditioned discrete system.

Despite great efforts for decades, incompressible prob-
lems remain challenging in computational mechanics. With-
out proper numerical techniques, the numerical solutions
suffer from either locking or instability in the incompress-
ible limit. Hermann [23] was the first to identify the funda-
mental difficulties associated with displacement based finite
element formulation. Many mixed formulations have been
introduced to resolve the locking. The u − p mixed formu-
lation by Herrmann [23] was the first effective method for
solving incompressible elasticity, and it can be considered as
a reduced form of the Hellinger-Reissner variational princi-
ple. Murakawsa and Atlur [24] introduced hybrid stress for-
mulations for nonlinear incompressible materials. Pian and
Sumihara [25] introduced two-field elements based on inter-
polation of stress and displacement fields, and later Simo and

Rifai [26] proposed an enhanced strain formulation based on
the three-field Hu-Washizu variational theorem. Although
the above mentioned mixed elements by Pian et al. and by
Simo et al. remove the incompressible locking, they are typ-
ically sensitive to mesh distortion due to the transformation
in stress or strain fields. Mixed formulation has also been
extended by Liu et al. [27] using Hu-Washizu theorem for
bending and incompressible hyperelasticity and Chen et al.
[28] by a volumetric strain projection method for nonlinear
incompressible problems. The mixed formulation, however,
yields a saddle point problem which could lead to instabil-
ity under improper combination of approximation functions
for different field variables. The celebrated Babuška-Brezzi
or LBB stability condition [29,30] provides the mathemat-
ical foundation of mixed methods though its verification is
not an easy task. Many attempts have been made to stabilize
the numerical solutions, such as those based the perturbed
Lagrangian and augmented Lagrangian formulations in the
displacement-pressure mixed formulation (Sani et al. [31];
Sussman and Bathe [32]; Hughes [33]; Chen et al. [34]) and
the pressure projection method (Chen et al. [35,36]).

On the other hand, many finite element formulations
have also been proposed using the displacement as the only
unknown. The concept of reduced integration by Fried [37]
and Zienkiewicz et al. [38] for constrained problems has
been extended to the selective reduced integration by Malkus
and Hughes [39] in which the unknowns for pressure and
enhanced strain are condensed locally, and it was later gen-
eralized as a B-bar method by Hughes [40]. Other effective
displacement-based methods are hourglass control on under
integrated elements by Belytschko et al. [41], and explicit
incompressible plane strain element using the Taylor series
expansion by Liu et al. [42]. Some researchers considered
embedding the divergence free condition in the displace-
ment approximation. Vidal et al. [43] imposed the pseudo-
divergence free approximate within the MLS shape func-
tion to partially alleviate the volumetric locking. Lovadina
et al. [44] reformulated the incompressible elastic problem
as an elliptic fourth order problem in terms of a stream func-
tion whose curl gives the displacement solution. The stream
function is constructed based on the non-uniform rational B-
splines (NURBS) [45] in order to fulfill the required regular-
ity, and the incompressibility constraint is exactly satisfied.
The divergence free condition has also been introduced into
the meshfree enhanced finite element formulation by Wu et
al. [46].

The convexity of least-squares methods for numerical
solution of PDEs naturally avoids the stability issue (vio-
lation of inf-sup condition) in the Galerkin type mixed for-
mulation, and hence, as long as the locking is avoided, the
formulation can be straightforward. Franca and Stenberg [47]
proposed a mixed finite element method in an augmented
Galerkin formulation with least-squares terms, in which the
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augmented stress, pressure, and displacement are separately
approximated. Cai et al [48] proposed a two-stage least-
squares finite element approach in which the displacement
gradient is first solved and followed by the solution of dis-
placement field. The drawback of using finite element in the
least-squares method is that the second order problem needs
to be broken down into a system of first order problems due
to the regularity limitation of finite elements. In this work, we
introduce a mixed formulation with smooth approximations
for incompressible problem based on the collocation of the
strong form. The pressure and displacement fields are inde-
pendent variables approximated by RBFs. Since the strong
form collocation method can be related to the discretization
of a least-squares functional, the selection of pressure and
displacement approximations is not restricted to the LBB sta-
bility condition in the proposed approach. In this approach,
the key to achieve optimal convergence is to properly weight
the collocation equations of the PDE, Neumann and Dirich-
let boundary conditions, and incompressibility constraint.
Error analysis will be performed in this work to obtain those
weights based on error balancing between the four sets of
collocation equations.

This paper is organized as follows. Section 2 demonstrates
the numerical difficulties in the displacement based RBCM
for incompressible elasticity. We show that the displacement
based RBCM exhibits volumetric locking in the incompress-
ible limit through the eigenvalues in the modal analysis and
an elasticity benchmark problem. The pressure-displacement
mixed formulation in conjunction with the strong form col-
location method is introduced in Sect. 3. The proper weights
to balance the errors between domain, boundary, and incom-
pressible constraint collocation equations for optimal con-
vergence are also derived. Several numerical examples are
given in Sect. 4 to demonstrate the performance of the pro-
posed method in the incompressible problem. Conclusions
and remarks are given in Sect. 5.

2 Difficulty of RBCM in the limit of incompressibility

In this Section we examine the numerical performance of
radial basis collocation method for linear elasticity in the
limit of incompressibility. For this purpose, consider the fol-
lowing boundary value problem:

σi j, j + bi = 0 in � (1)

σi j n j = hi on ∂�h (2)

ui = gi on ∂�g (3)

with the homogenous isotropic constitutive law

σi j = λεkkδi j + 2μεi j (4)

where σi j is the Cauchy stress tensor; εi j = u(i, j) =
1
2 (ui, j + u j,i ) is the strain tensor; (·), j ≡ ∂(·)/∂x j ; λ and μ

are Lamé constants; bi is the body force; ui is the displace-
ment; � is the open domain with a closed boundary ∂�; ∂�h

and ∂�g are the Neumann and Dirichlet boundaries, respec-
tively; ∂� = ∂�h ∪ ∂�g; hi is the surface traction on ∂�h ;
ni is the surface outward normal on ∂�h ; gi is the prescribed
displacement on ∂�g .

A set of RBFs, {gI (x)}NS
I=1, is constructed entirely based

on a set of Ns points, called the source points, in a closed
domain, S = [x1, x2, · · · xNs ] ⊆ �̂. Although not a necessity,
�̂ is often chosen to be identical to the problem domain,
�∪∂�. It has been shown that gI (x) are linearly independent
if the source points are distinct [49]. Thus, the displacement
ui can be approximated by the linear combination of RBFs
as

ui ≈ uh
i =

Ns∑

I=1

gI di I (5)

or in a matrix form:

uh = Gd (6)

where G = [
g1, g2, . . . , gNs

]
, gI = gI I, d = [d1, d2, . . . ,

dNs]T , and dI = [d1I , d2I , d3I ]T .
As RBFs are continuous functions, the derivatives of the

approximation can be obtained in a straightforward man-
ner by Dαuh

i (x) = ∑Ns
I=1 DαgI (x)di I , where Dαui ≡

∂ |α|ui/∂xα1
1 · · · ∂xαd

d , |α| = ∑d
i=1 αi , is the differential

operator. Commonly used RBFs, multiquadric (MQ) and
Gaussian RBFs are given as follows:

gI (x) = (r2
I + a2)n− 3

2 , n = 1, 2, . . . (MQ RBF) (7)

gI (x) = exp

(
− r2

I

a2

)
(Gaussian RBF) (8)

where rI = ‖x − xI ‖ and a is a constant, called the shape
parameter. For MQ RBF, when n = 1, the function is called
the inverse MQ (IMQ). Unless otherwise stated, the IMQ is
adopted in this study.

In the RBCM, the approximation in Eq. (5) is introduced
into Eqs. (1)–(3), and the residuals are enforced to be zero at
a set of collocation points {ξJ }Nc

J=1 ∈ � ∪ ∂�, to yield:

L(G(ξJ ))d = f(ξJ ) ∀ξJ ∈ �

Bh(G(ξJ ))d = h(ξJ ) ∀ξJ ∈ ∂�h

Bg(G(ξJ ))d = g(ξJ ) ∀ξJ ∈ ∂�g
(9)

In the two dimensional elasticity as an example, the operator
matrices L, Bh , and Bg are

L =
⎡

⎣
(λ+2μ) ∂2

∂x2
1
+μ ∂2

∂x2
2

(λ+μ) ∂2

∂x1∂x2

(λ+μ) ∂2

∂x1∂x2
(λ+2μ) ∂2

∂x2
2
+μ ∂2

∂x2
1

⎤

⎦ (10)
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Bh =
[

(λ+2μ)n1
∂

∂x1
+μn2

∂
∂x2

λn1
∂

∂x2
+μn2

∂
∂x1

λn2
∂

∂x1
+μn1

∂
∂x2

(λ+2μ)n2
∂

∂x2
+μn1

∂
∂x1

]

(11)

Bg =
[

1 0
0 1

]
(12)

The above equation for boundary value problem in
Eqs. (1)–(3) has the following exponential convergence prop-
erty:
∥∥∥u − uh

∥∥∥



≤ Cνη
a/H ‖u‖t (13)

where 0 < η < 1, H is the radial distance H := H(�, S) =
sup
x∈�

min
xI ∈S

‖x − xI ‖, Cν is a generic constant with the sub-

script ν denoting that it is dependent on the Poisson’s ratio
ν, ‖·‖
 is the Sobolev 
-norm, and ‖·‖t is induced from the
regularity requirements of the approximated function u and
RBFs, see [50,51].

Equation 9 can be recast into a matrix form as:

Kd = f (14)

Note that when Nc > Ns, Eq. (14) leads to an overdetermined
system, and a least-squares method can be applied for the
solution by minimizing a weighted residual. The residual
can be defined as e(d) = 1

2 (Kd − f)T W(Kd − f), where W
a symmetric weighting matrix, Minimizing e(d) yields

KT WKd = KT Wf (15)

It has been shown [11] that solving strong form collocation
by a least-squares method is equivalent to minimizing a least-
squares functional with quadrature. The problem statement
can be rephrased as: find uh such that

E(uh) = inf E
v∈V

(v) (16)

where V is the finite dimensional space spanned by RBFs,
and

E(v) = 1
2

∧∫

�

(Lv − f)2d� + 1
2

∧∫

∂�h

(Bhv − h)2d

+ 1
2

∧∫

∂�g
(Bgv − g)2d

(17)

Here ∫̂ denotes the integration with quadrature. In Chen
et al. [11], an error estimate has been provided as follows:

‖u − uNs‖A ≤ C1κ ‖u − v‖2,�+C2κ ‖∂(u − v)/∂n‖0,∂�h

+C3 ‖u − v‖0,∂�g

(18)

with a norm defined as

‖v‖A =
(

‖Lv‖2
0,� + ‖v‖2

1,� +
∥∥∥Bhv

∥∥∥
2

0,∂�h
+ ∥∥Bgv

∥∥2
0,∂�g

)1/2

(19)

It is evident from Eq. (18) that the errors in Eq. (17) are
unbalanced, with a factor of material constant κ = 2μ + 3λ,
between terms associated with the domain � and boundaries
∂�h and ∂�g . Therefore, a weighted collocation method has
been introduced to obtain an optimal solution accurate and
convergent. To formulate the weighted collocation equation,
consider its least-squares functional counterpart:

E(v) = 1
2

∧∫

�

(Lv − f)2d� + αh

2

∧∫

∂�h

(Bhv − h)2d

+αg

2

∧∫

∂�g
(Bgv − g)2d

(20)

Define a norm as

‖v‖B = (‖Lv‖2
0,� + ‖v‖2

1,� + αh
∥∥∥Bhv

∥∥∥
2

0,∂�h

+αg
∥∥Bgv

∥∥2
0,∂�g )

1/2 (21)

Correspondingly, we have the following error estimate [11]:

‖u − uNs‖B ≤ C4κ ‖u − v‖2,� + C5κ
√

αh ‖∂(u − v)/∂n‖0,∂�h

+C6
√

αg ‖u − v‖0,∂�g

≤ C7κ Ns ‖u − v‖1,� + C8κ Ns
√

αh ‖u − v‖1,�

+C9
√

αg ‖u − v‖1,�

(22)

To balance the errors associated with each term in (22), the
weights have been selected as

√
αh ≈ O(1) and

√
αg ≈

O(κ Ns). It has also been shown numerically that κ =
max(λ, μ) gives the optimal accuracy [11] when the Pois-
son’s ratio ν is not close to 0.5. However, when ν approaches
0.5, λ = 2μν

1−2ν
grows unboundedly, and hence κ . As a result,

it leads to an ill-conditioned discrete system with solution
deterioration. A better weight can be selected by consider-
ing the Korn’s inequality [52] for incompressibility limit. It
has been shown that if certain regularity is satisfied [52], the
following estimate holds for a generic constant C which is
independent of λ.

‖v‖2 + λ

μ
‖∇ · v‖1 ≤ C ‖f‖ (23)

This estimate suggests that the divergence of the displace-
ment has a different scale from displacement itself with a
factor of λ

μ
[47]. Therefore, for problems with the Poisson’s

ratio close to 0.5, the weight
√

αg ≈ O(μNs) should be
selected.

Minimizing Eq. (20) is equivalent to solving the following
weighted collocation equations by a least squares method.
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L (G(ξJ )) d = f(ξJ ) ∀ξJ ∈ �√
αhBh (G(ξJ )) d =

√
αhh(ξJ ) ∀ξJ ∈ ∂�h

√
αgBg (G(ξJ )) d = √

αgg(ξJ ) ∀ξJ ∈ ∂�g

(24)

In the matrix form it can expressed as
⎡

⎣
L√

αhBh√
αgBg

⎤

⎦ d =
⎡

⎣
f√
αhh√
αgg

⎤

⎦ (25)

The solution of Eq. (25) can be obtained by minimizing a
least-squares weighted residual to yield:
[
LT W1L + (Bh)T W2Bh + (Bg)T W3Bg

]
d = KT Wf (26)

where the weighting matrices can be chosen as W1 = I,
W2 = √

αhI, and W3 = √
αgI, where I denotes the identity

matrix. It is apparent that the solution of Eq. (26) depends on
the Poisson’s ratio, and, therefore, the locking can be identi-
fied from the first two terms of the LHS.

2.1 Modal analysis

In this section, the modal analysis of a unit square domain
with 3 by 3 points is performed to verify the volumetric lock-
ing in the RBCM. For simplicity, the unit square domain is
considered to be traction-free on all edges, the Young’s mod-
ulus is unity, and the shape parameter 5 and Nc = 5 × 5
are adopted. The modal analysis presented here is then based
on LT W1L + (Bh)T W2Bh in the LHS of Eq. (26). Figure 1
shows the eigen modes for the case ν = 0.4999. The eigen-
values associated with each mode when ν approaches 0.5
are examined in Fig. 2, in which the horizontal axis is
− log10(0.5 − ν) and the vertical axis is log10(Eig.). As can
be seen, all eigenvalues grow exponentially with 1/(0.5 − ν),
demonstrating that the RBCM solution locks in the incom-
pressible limit.

Remark 2.1 Due to lack of linear field reproducibility, the
three rigid body modes in 2D are not associated with zero
eigenvalues. Moreover, while the rotation mode is associated
with lowest eigenvalue, the modes close to the two translation
modes (Mode 17 and 18) are associated with the two highest
eigenvalues in this modal analysis. The linear field repro-
ducibility can be reached if the shape parameter is increased.
As a result, the rigid body mode can be better represented with
a larger shape parameter. Nevertheless, despite failure of rep-
resenting rigid body modes, RBCM still offers exceptionally
accurate results provided the system is well conditioned.

2.2 Locking of RBCM

The locking of RBCM can also be seen in the following
elasticity problem. An infinite long cylinder subjected to an

Mode 1 Mode 2 Mode 3 Mode 4

Mode 5 Mode 6 Mode 7 Mode 8

Mode 9 Mode 10 Mode 11 Mode 12

Mode 13 Mode 14 Mode 15 Mode 16

Mode 17 Mode 18

Fig. 1 Eigen modes of RBCM stiffness matrix

internal pressure is modeled by a 2D quarter model in the
first quadrant under plane strain assumption and symmetric
boundary condition. The geometry and material property of
the cylinder and its RBCM discretization are given in Fig. 3a,
b, respectively.

Four levels of discretization with 7×7, 9×9, 11×11, and
13 × 13 radially uniformly distributed source points are per-
formed, and the shape parameters used for each level are 10,
7.5, 6, and 5, respectively. The number of collocation points
is (2N1 − 1) × (2N2 − 1), where Ni is the number of source
points in each direction. The convergence of RBCM in terms
of L2 error norm when ν approaches 0.5 is given in Fig. 4.

Two different selections of
√

αg are tested in Fig. 4. Solid
lines present the results by using

√
αg ≈ O(μNs) whereas

dashed lines present those by
√

αg ≈ O(max(λ, μ)Ns). The
case with

√
αg ≈ O(μNs) gives better results and the solu-

tion converges with a high rate when v = 0.4999. Therefore,
in the elasticity problem, especially nearly incompressible
problem, the weight associated with boundary collocation
equation should be proportional to shear modulus μ and be
independent of ν. Nonetheless, it is evident that for both
selections of

√
αg , locking exists when ν approaches 0.5.

The base η of exponential convergence in the form of η
a
H in

(13) shown in Table 1 clearly demonstrates locking behavior
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Fig. 2 Eigenvalues as ν approaches 0.5. x-axis is − log10(0.5 − ν) and y-axis is log10(Eig.)

Young's Modulus: E=3×107

Inner Radius: 4 
Outer Radius: 10 

Pressure: 100 

Source Points

Collocation Points in Ω
Collocation Points on Γ1

Collocation Points on Γ2

Collocation Points on Γ3

Collocation Points on Γ4

(a) (b)

Fig. 3 Problem description and RBCM discretization of an infinite cylinder subjected internal pressure
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Fig. 4 Convergence of L2 error norm of displacement based RBCM

Table 1 The base η of exponential convergence in RBCM when ν

approaches 0.5

ν = 0.49 ν = 0.499 ν = 0.4999 ν = 0.49999

η 0.56229 0.63201 0.70544 0.84995

in RBCM in the incompressible limit. Hence, an improved
formulation to relieve the locking is necessary for RBCM.

3 Mixed formulation for the radial basis collocation
method (M-RBCM)

In the limit of incompressibility, the boundary value problem
for elasticity is expressed as:

(−pδi j + 2μu(i, j)), j + bi = 0 in � (27)

p/λ + ui,i = 0 in � (28)

(−pδi j + 2μu(i, j))n j = hi on ∂�h (29)

ui = gi on ∂�g (30)

where u(i, j) is the symmetric gradient of displacement. Note
that in the incompressible case p has a physical meaning of
hydrostatic pressure, and is necessary for getting a unique
solution. In the compressible or nearly incompressible prob-
lems, however, p does not carry the meaning of hydrostatic
pressure. When ν = 0.5, Eq. (28) becomes the divergence-
free constraint ui,i = 0 .

We let the displacement and pressure fields be approxi-
mated by different sets of RBFs ḡI , with the corresponding
source points on T = [x1, x2, . . . xN̄ s] ⊆ �̂ as:

u ≈ uh =
Ns∑

I=1

gI dI ≡ Gd (31)

p ≈ ph =
N̄ s∑

I=1

ḡI d̄I ≡ Ḡd̄ (32)

where G and d are defined in (6), and Ḡ = [
ḡ1, ḡ2, . . . , ḡN̄ s

]

and d̄ = [d̄1, d̄2, . . . , d̄N̄ s]T . In the Galerkin type mixed for-
mulation, it is well-known that the choice of the bases for
different variables is most critical to the accuracy and con-
vergence of the method, and inappropriate combination of
bases for different variables could lead to locking or instabil-
ity. In this approach, on the other hand, the choice of RBFs as
the basis functions and the associated source points and shape
parameters can be very straightforward due to the employ-
ment of a strong form collocation method as to be discussed
below.

We now introduce collocation of the equations corre-
sponding to Eqs. (27)–(30) to yield

L̂(G(ξJ ))d + L̄(Ḡ(ξJ ))d̄ = f(ξJ ) ∀ξJ ∈ � (33)

D̂(G(ξJ ))d + D̄(Ḡ(ξJ ))d̄ = 0 ∀ξJ ∈ � (34)

B̂h
(G(ξJ ))d + B̄h

(Ḡ(ξJ ))d̄ = h(ξJ ) ∀ξJ ∈ ∂�h (35)

Bg(G(ξJ ))d = g(ξJ ) ∀ξJ ∈ ∂�g (36)

In two dimensional elasticity as an example, the operator

matrices L̂, L̄, D̂, D̄, B̂h
, and B̄h

are

L̂ =
⎡

⎣
2μ ∂2

∂x2
1

+ μ ∂2

∂x2
2

μ ∂2

∂x1∂x2

μ ∂2

∂x1∂x2
2μ ∂2

∂x2
2

+ μ ∂2

∂x2
1

⎤

⎦ , L̄ =
[

− ∂
∂x1− ∂
∂x2

]

(37)

D̂ =
[

∂
∂x1

∂
∂x2

]
, D̄ = [1/λ] (38)

B̂h =
[

2μn1
∂

∂x1
+ μn2

∂
∂x2

μn2
∂

∂x1

μn1
∂

∂x2
2μn2

∂
∂x2

+ μn1
∂

∂x1

]
,

B̄h =
[−n1

−n2

]
(39)

When the number of source points is larger than that of the
collocation points in Eqs.(33)–(36), a least-squares method
is applied to obtain the solution. This solution is equivalent
to that obtained by the minimization of the following least-
squares functional with quadrature [11]:

E (v, q)= 1
2

∧∫
�

(
L̂v+L̄q − f

)2
d�+ 1

2

∧∫
�

(
D̂v+D̄q

)2
d�

+1
2

∧∫

∂�h

(
B̂h

v+B̄h
q − h

)2
d+ 1

2

∧∫
∂�g

(Bgv−g
)2 d

(40)
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The problem statement is to find uh and ph satisfying:

E
(

uh, ph
)

= inf E
v∈V,q∈V ′

(v, q) (41)

where V and V ′are the finite dimensional space spanned by
RBFs as given in (31) and (32).

3.1 Weighted M-RBCM

For achieving optimal convergence in solving the collocation
equation in (33)–(36) by least-squares method, these four
sets of collocation equations need to be properly weighted.
Considering the first least-squares term in (40) as the base
term, weights for the other three terms in the least-squares
functional are applied as follows:

E(v, q) = 1
2

∧∫

�

(L̂v + L̄q − f)2d� + αd

2

∧∫

�

(D̂v + D̄q)2d�

+αh

2

∧∫

∂�h

(B̂h
v + B̄h

q − h)2d

+αg

2

∧∫

∂�g
(Bgv − g)2d

(42)

Correspondingly, define the following norm:

‖v, q‖B =
(∥∥∥L̂v + L̄q

∥∥∥
2

0,�
+ αd

∥∥∥D̂v + D̄q
∥∥∥

2

0,�

+αh
∥∥∥B̂h

v + B̄h
q
∥∥∥

2

0,∂�h
+ αg

∥∥Bgv
∥∥2

0,∂�g

)1/2

(43)

We have the following error estimate:

‖u − v, p − q‖B

=
(∥∥∥L̂v + L̄q − f

∥∥∥
2

0,�
+ αd

∥∥∥D̂v + D̄q
∥∥∥

2

0,�

+ αh
∥∥∥B̂h

v + B̄h
q − h

∥∥∥
2

0,∂�h
+ αg

∥∥Bgv − g
∥∥2

0,∂�g

)1/2

≤ C

(∥∥∥L̂v + L̄q − f
∥∥∥

0,�
+

√
αd

∥∥∥D̂v + D̄q
∥∥∥

0,�

+
√

αh
∥∥∥B̂h

v + B̄h
q − h

∥∥∥
0,∂�h

+ √
αg

∥∥Bgv − g
∥∥

0,∂�g

)

= C

(∥∥∥L̂v + L̄q − L̂u − L̄p
∥∥∥

0,�

+
√

αd
∥∥∥D̂v + D̄q − D̂u − D̄ p

∥∥∥
0,�

+
√

αh
∥∥∥B̂h

v + B̄h
q − B̂h

u − B̄h
p
∥∥∥

0,∂�h

+ √
αg

∥∥Bgv − Bgu
∥∥

0,∂�g

)
(44)

With further manipulation, we have

‖u − v, p − q‖B

≤ C1

∥∥∥L̂(v − u)

∥∥∥
0,�

+ C2
∥∥L̄(q − p)

∥∥
0,�

+C3

√
αd

∥∥∥D̂(v − u)

∥∥∥
0,�

+ C4

√
αd

∥∥D̄(q − p)
∥∥

0,�

+C5

√
αh

∥∥∥B̂h
(v − u)

∥∥∥
0,∂�h

+ C6

√
αh

∥∥∥B̄h
(q − p)

∥∥∥
0,∂�h

+C7
√

αg
∥∥Bg(v − u)

∥∥
0,∂�g

≤ C1μ ‖v − u‖2,� + C2 ‖q − p‖1,� + C3

√
αd ‖v − u‖1,�

+C4

√
αd

λ
‖q − p‖0,�

+C5μ
√

αh ‖v − u‖1,∂�h + C6

√
αh ‖q − p‖0,∂�h

+C7
√

αg ‖v − u‖0,∂�g (45)

Here we introduce the following inequalities:

‖v − u‖1,∂�h ≤ C ‖v − u‖2,�

‖v − u‖0,∂�g ≤ C ‖v − u‖1,�

‖q − p‖0,∂�h ≤ C ‖q − p‖1,�

‖v − u‖1,� ≤ C N−1
S ‖v − u‖2,�

‖q − p‖0,� ≤ C N−1
S ‖q − p‖1,� (46)

By introducing (46) into (45), we obtain the following error
bound:

‖u − v, p − q‖B

≤ C1μ ‖v − u‖2,� + C2 ‖q − p‖1,� + C3

√
αd ‖v − u‖1,�

+C4

√
αd

λ
‖q − p‖0,� + C5μ

√
αh ‖v − u‖1,∂�h

+C6

√
αh ‖q − p‖0,∂�h + C7

√
αg ‖v − u‖0,∂�g

≤
(

C1μ + C3

NS

√
αd + C5μ

√
αh + C7

NS

√
αg

)
‖v − u‖2,�

+
(

C2 + C4

√
αd

λNS
+ C6

√
αh

)
‖q − p‖1,� (47)

Imposing error balance in the domain and boundary terms in
the ‖‖B norm and considering λ>>μ, we obtain
√

αd ≈ O(μNs)√
αh ≈ O(1)√
αg ≈ O(μNs) (48)

The optimal solution (uh, ph) has the following error bound:
∥∥∥u − uh, p − ph

∥∥∥
B

≤ C̄1 ‖v − u‖2,� + C̄2 ‖q − p‖1,�

(49)

Remark 3.1 The norm ‖·‖B is equivalent to 2-norm of the
solution:

‖u, p‖B = ‖u‖2,� + ‖p‖1,� (50)

Thus the error is bounded by
∥∥∥u − uh, p − ph

∥∥∥
B

≤ C ′
1η

a/H
u |u|t + C ′

2η
a/H
p |p|t (51)
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where 0<ηu, ηp<1, H is the averaged distance between
source points, and a is the shape parameter of RBF. Since
‖u − v‖1,� ≤ C1 N−1

S ‖u − v‖2,� and ‖p − q‖0,� ≤
C2 N−1

S ‖p − q‖1,�, we have the following error estimate:

‖u − v‖1,� + ‖p − q‖0,� ≤ C N−1
S (‖u − v‖2,�

+‖p − q‖1,�) (52)

where C = max {C1, C2}. Thus, we have
∥∥∥u−uh

∥∥∥
1,�

+
∥∥∥p − ph

∥∥∥
0,�

≤C
′′
1 η̄

a/H
u |u|t + C

′′
2 η̄

a/H
p |p|t

(53)

where η̄u = e
2H
a ln H+ln ηu satisfying 0 < η̄u < ηu < 1,

and η̄p = e
2H
a ln H+ln ηp satisfying 0 < η̄p < ηp < 1. This

result shows that the numerical solution (uh, ph) converges
exponentially to (u, p) as the model is refined.

Remark 3.2 In the Galerkin method, the pressure-displace-
ment mixed formulation leads to a saddle point problem.
Improper combination of pressure and displacement approx-
imations yields either locking or instability in the form of
pressure oscillation. In contrast, the RBCM overdetermined
system of collocation equations solved by a least-squares
method resembles a minimization problem. This convexity in
the discrete system offers stability to the solution and allows
a less restrictive choice of displacement and pressure basis
functions for locking avoidance.

Remark 3.3 Based on the equivalence between the mini-
mization of discretized least-squares functional with quadra-
ture and collocation equations solved by the least-squares
method, the corresponding collocation equations of the min-
imization of the discretized weighted least-squares functional
(42) is

L̂(G(ξJ ))d + L̄(Ḡ(ξJ )) d̄ = f(ξJ ) ∀ξJ ∈ � (54)

√
αdD̂(G(ξJ ))d +

√
αdD̄(Ḡ(ξJ )) d̄ = 0 ∀ξJ ∈ � (55)

√
αhB̂h

(G(ξJ ))d +
√

αhB̄h
(Ḡ(ξJ )) d̄ =

√
αhh(ξJ ) ∀ξJ ∈ ∂�h

(56)

√
αgBg(G(ξJ ))d = √

αgg(ξJ ) ∀ξJ ∈ ∂�g (57)

4 Numerical examples

In this section, we present some numerical examples to
demonstrate the capabilities of the proposed M-RBCM,
and, in particular, to verify the robustness of M-RBCM
in the incompressible limit. The convergence behaviors
of M-RBCM are compared with pure displacement based
RBCM in terms of L2 norm and H1semi-norm defined as
follows.

∥∥∥u − uh
∥∥∥

0
=

⎛

⎝
∫

�

(ui − uh
i )(ui − uh

i )d�

⎞

⎠
1/2

(58)

∣∣∣u − uh
∣∣∣
1

=
⎛

⎝
∫

�

(ui, j − uh
i, j )(ui, j − uh

i, j )d�

⎞

⎠
1/2

(59)

In the following study, IMQ RBFs are used for the approx-
imation of displacement and pressure fields. The source
points and the RBF shape factors for both fields are cho-
sen to be the same for both approximations. The weights
for the weighted RBCM

√
αd = μNs,

√
αh = 1, and√

αg = μNs are employed for the incompressibility con-
straint, Neumann boundary, and Dirichlet boundary colloca-
tion equations, respectively, where Ns is the total number of
source points.

4.1 An infinite long cylinder subjected to an internal
pressure

The same model problem presented in Fig. 3 is revisited by
using M-RBCM method in this section. For simplicity, the
same set of RBFs (IMQ) is adopted for both displacement and
pressure fields. Similarly, four levels of discretization with
7×7, 9×9, 11×11, and 13×13 source points are performed,
and the shape parameters used associated with each level of
discretization are 10, 7.5, 6, and 5, respectively. Also the
same set of (2N1 −1)× (2N2 −1) collocation points is used
for both Eqs. (54) and (55). The collocation points located
on the boundaries are used as the collocation points for the
two sets of boundary collocation equations in (56) and (57).

The convergence behaviors of M-RBCM are compared
with the pure displacement based RBCM in Fig. 5a, b, in
terms of L2 norm and H1 semi-norm, respectively. For com-
pressible case (ν = 0.25), solutions from M-RBCM are
more accurate than those from RBCM. The convergence
rates obtained from M-RBCM are slightly higher than those
from RBCM in both L2 norm and H1 semi-norm. For the
incompressible case (ν = 0.5), M-RBCM has the same
exponential convergence as shown in the compressible case,
which indicates no locking is observed in M-RBCM. On the
other hand, RBCM suffers from locking and experiences a
lower convergence rate when Poisson’s ratio approaches 0.5
(ν = 0.4999). The base η of exponential convergence in the
form of η

a
H described in Remark 3.1 for both L2 and H1 semi-

norms are shown in Table 2. The results again conform that
the locking in RBCM is avoided in M-RBCM. Figure 6a, b
show the solutions of stresses σrr , σθθ , and pressure p using
11 × 11 source points obtained by M-RBCM and RBCM,
respectively. The numerical results of M-RBCM agree well
with analytical ones and no pressure oscillation is observed,
whereas those of RBCM have noticeable disagreements from
analytical ones.
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Fig. 5 Convergence of L2 norm and H1 semi-norm for cylinder problem

Table 2 The base η of exponential convergence in the cylinder problem

M-RBCM RBCM

ν = 0.25 ν = 0.5 ν = 0.25 ν = 0.4999

η L2 0.46733 0.48353 0.47853 0.70544

H1 0.52611 0.54230 0.56110 0.70884

4.2 Beam bending

A cantilever beam with length L = 10 and height D = 2
subjected to a parabolic shear traction at the right end shown
in Fig. 7a is analyzed. The resultant of the shear traction is
P = 100, the Young’s modulus of the beam is E = 3 × 107,
and the plane strain condition is assumed. The domain is
discretized uniformly with RBFs as shown in Fig. 7b. Three
levels of discretization with 11 × 3, 16 × 4, 26 × 6 source
points are performed in the convergence study. The shape
parameters for each level of discretization are 30, 20, and 12,

respectively. A total of (2N1 − 1) × (2N2 − 1) collocation
points are used for both Eqs. (54) and (55), which corre-
spond to 21 × 5, 31 × 7, and 51 × 11 collocation points. The
collocation points located on the boundaries are used as the
collocation points for the two sets of boundary collocation
equations in (56) and (57).

The specific boundary conditions imposed are given as
follows:

hi = 0 on 0 ≤ x ≤ L , y = ±D/2
h1 = 0, h2 = P

8I (D2 − 4y2) on x = L , −D/2 ≤ y ≤ D/2
h1 = 0, h2 = − P

8I (D2 − 4y2) on x = 0, −D/2 < y <0,

0< y < D/2
g1 = 0, h2 = 0 at x = 0, y = ±D/2
g = 0, g2 = 0 at x = 0, y = 0

(60)

The analytical solution of this problem [53] is:

u1 = − Py

6Ē I

[
(6L − 3x)x + (2 + ν̄)

(
y2 − D2

4

)]
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Fig. 6 Stress solutions of cylinder problem obtained by a M-RBCM and b RBCM
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Fig. 7 Problem description and RBCM discretization of cantilever beam
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Fig. 8 Convergence of L2 norm and H1 semi-norm of beam problem

u2 = P

6Ē I

[
(3L − x)x2 + 3ν̄y2(L − x) + (4 + 5ν̄)

D2x

4

]

(61)

where P is the resultant of the shear traction, I = D3/12,
Ē = E/(1 − ν2), and ν̄ = v/(1 − v).

Figure 8a, b compare the convergence behaviors of M-
RBCM with RBCM in the L2 norm and H1 semi-norm,
respectively. The solutions from M-RBCM have the same
level of accuracy and similar rate of convergence for both
ν = 0.25 and ν = 0.5 cases, indicating that the M-RBCM is
robust in the incompressible limit, whereas the RBCM yields
lower rate of convergence when ν = 0.4999. The base η of
exponential convergence in the form of η

a
H as described in

Remark 3.1 for both L2 and H1 semi-norms are shown in
Table 3. The results clearly indicate that the locking in RBCM
has been corrected in M-RBCM. Figure 9a, b compare solu-
tions of u1 along y = 0 and σ12 along x = L/2 obtained
by M-RBCM with ν = 0.5 and RBCM with ν = 0.4999
using 26 × 6 source points. Both displacement and stress
numerical results obtained by both methods agree well with
the analytical solutions, although the ones from M-RBCM
show better accuracy than those from RBCM. In particular,
the stress solutions from both methods are smooth without
oscillation in this problem.

Table 3 The base η of exponential convergence in the beam problem

M-RBCM RBCM

ν = 0.25 ν = 0.5 ν = 0.25 ν = 0.4999

η L2 0.07809 0.08816 0.06608 0.33004

H1 0.10796 0.09837 0.07585 0.36917

4.3 Fully constrained block

A fully constrained block in the domain � = (−π/2, π/2)×
(−π/2, π/2) subjected to a body force is studied (cf. [44]).
This study is aimed to examine the pressure oscillation, typi-
cally observed in a highly confined incompressible problem,
using the proposed method. The problem setting is depicted
in Fig. 10a and its RBCM discretization is given in Fig. 10b.
The material properties are assumed to be fully incompress-
ible with shear modulus μ = 104. The specific boundary
conditions imposed are listed at follows:

ui = 0 on x = ±π/2
ui = 0 on y = ±π/2
σi i/3 = 0 at (0,−π/2)

(62)
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Fig. 9 Displacement and stress solutions of beam problem
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Fig. 10 Problem description and RBCM discretization of fully con-
strained block

Further, the following body force is selected:

f1 = μ(cos y)(sin y)(1 − 4 cos2 x) − 2xy(cos(x2 y))

f2 = −μ(cos x)(sin x)(1 − 4 cos2 y) − x2(cos(x2 y)) (63)

The corresponding analytical solution is

u1 = −(cos2 x)(cos y)(sin y)/2

u2 = (cos2 y)(cos x)(sin x)/2 (64)

Since the problem is incompressible with a fully constrained
boundary, it is necessary to prescribe the pressure at one
point in the domain. A zero pressure is prescribed at x =
(0,−π/2), and the corresponding analytical stress solutions
are:

σ11 = 2μ(cos x)(cos y)(sin x)(sin y)

σ22 = −2μ(cos x)(cos y)(sin x)(sin y)

σ12 = μ
[
−(cos2 x)(−1/2 + cos2 y)

+(cos2 y)(−1/2 + cos2 x)
]

(65)

Four levels of discretization with 4 × 4, 6 × 6, 8 × 8, and
10 × 10 source points are performed in the convergence
study. The shape parameters used associated with each level
of discretization are 35/3, 35/5, 35/7, and 35/9, respectively.
The same set of (2N1 − 1) × (2N2 − 1) collocation points
is adopted for both domain and constraint equations, which
corresponds to 7×7, 11×11, 15×15, and 19×19 collocation
points.

The convergence of M-RBCM is compared with that of
RBCM in terms of L2 norm and H1 semi-norm in Fig. 11. The
rates of convergence of M-RBCM are higher for both error
norms although both methods show exponential convergence
in this problem. Figure 12a shows the horizontal displace-
ment solution along y = 0 obtained from M-RBCM. As can
be seen, the M-RKCM displacement solution agrees well
with the analytical solution, indicating no volumetric lock-
ing. The M-RKCM stress and pressure solutions along x = y
using 10×10 source points are given in Fig. 12b. Both nor-
mal stresses as well as the pressure solution are smooth and
in good agreement with the analytical solution. No pressure
oscillation or checkerboard pattern appears in the solutions.

4.4 Driven cavity problem

The driven cavity described in Fig. 13a is a commonly studied
problem for Stocks flow. Although the analytical solution is
not available, we present it here to demonstrate that a smooth
pressure field can be obtained by using M-RBCM. This prob-
lem is governed by the same boundary value problem stated
in Eqs. (27)–(30), with a different physical interpretation. In
Stocks flow, u is the velocity fluid, μ is the viscosity, and
p is the hydrostatic pressure. The fluid along edges of the
domain remains stationary, except along the top with u = 1.
Note that the x-velocity is discontinuous near the top corners.
To make a fair comparison to FEM results, we adopt a linear
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Fig. 11 Convergence of L2 norm and H1 semi-norm and displacement solution of fully constrained problem
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Fig. 13 Problem description and RBCM discretization of driven cavity
problem

variation of x-velocity near the top corners, as described in
Eq. (67). The material is assumed fully incompressible with
unit viscosity. The pressure at the center of the button edge is
set to be zero in order to have a unique solution. The detail of
boundary conditions used in the example is given as follows.

ui = 0 on 0 < x < 1, y = 0
u1 = δ(y), u 2 = 0 on x = 0 and 1, 0 ≤ y < 1
u1 = 1, u2 = 0 on 0 ≤ x ≤ 1, y = 1
σi i/3 = 0 at x = 1/2, y = 0

(66)

where

δ(y) =
{

(y − 0.9)/0.1 0.9 < y < 1
0 0 ≤ y ≤ 0.9

(67)

The domain is discretized by RBF with 11×11 source points
and 21 × 21 collocation points as shown in Fig. 13b. The
shape parameters used for both displacement and pressure
fields are 1.

The pressure contour in the undeformed configuration
is shown in Fig. 14a. As can be seen, the pressure solu-
tion of M-RBCM is smooth throughout the domain. Fig-
ure 14b shows the pressure solution along y = 0.35 (cf.
[33,54]) and y = 0.5 (cf. [55]) in comparison with the solu-
tions obtained from bilinear-displacement constant-pressure
M-FEM (4D-1P) [33,54]. No oscillation is observed in M-
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Fig. 14 Pressure solutions of driven cavity problem

RBCM results, while significant pressure oscillation appears
in M-FEM solutions.

5 Conclusions

While RBCM has been applied to a wide range of bound-
ary value problems, the modal analysis shows that this
method of strong form collocation with displacement field
approximated by the radial basis functions yields volumet-
ric locking in that all eigenvalues grow exponentially when
the Poisson’s ratio approaches 0.5. Proper correction of the
weights associated with the boundary collocation equations
in RBCM, which has given enhanced convergence of RBCM
in other type of boundary value problems, only marginally
relieves the locking in RBCM in the limit of incompress-
ibility. We therefore introduce RBCM with pressure and
displacement fields independently approximated by radial
basis functions for incompressible and nearly incompressible
problems, termed M-RBCM. Similar to RBCM, an essential
step for M-RBCM to achieve optimal convergence, the errors
resulting from collocation equations associated with PDE,
the boundary conditions, and the incompressibility constraint
must be balanced. This is achieved by introducing appropri-
ate weights to the four sets of collocation equations through
error analysis.

Since the strong form collocation in M-RBCM is solved
by a least-squares method when the number of collocation
is chosen to be greater than source points for better accu-
racy, the M-RBCM remains a minimization problem rather
than a saddle point problem in the Galerkin based mixed
formulation. Hence, the choice of basis functions for the dis-
placement and pressure fields is not subjected to the LBB
stability condition [29,30]. As shown in the numerical exam-
ple, the same set of RBFs can be used for both displace-

ment and pressure fields for implementation simplicity. Fur-
ther, the same set of source points and shape parameters for
both displacement and pressure fields can also be employed
for simplicity while maintaining accuracy in the proposed
M-RBCM. The numerical investigation shows that the L2

norm and H1 semi-norm exhibit about the same level of
accuracy with extremely high convergence rates. No lock-
ing has been observed in the numerical study, even in a
fully constrained problem. In addition, pressure oscillation
and the notorious checkerboard pattern were absent in the
numerical tests. The proposed M-RBCM offers a very accu-
rate and robust solution for the incompressible and nearly
incompressible problems. The fact that the same set of basis
functions can be used for displacement and pressure vari-
ables without encountering locking and pressure oscillation
in incompressible problems makes this proposed method
more attractive than other Galerkin type mixed formula-
tions.
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