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SUMMARY

Model order reduction (MOR) techniques for enriched reproducing kernel meshfree methods are proposed
for analysis of Poisson problems with mild and strong singularities. The employment of an integrated sin-
gular basis function method (ISBFM), in conjunction with the selection of harmonic near-tip asymptotic
basis functions, leads to a Galerkin formulation in which the non-smooth near-tip basis functions appear
only on the boundaries away from the singularity point. This approach avoids the need of integrating the
derivatives of non-smooth functions near the singularity point and yields a discrete system that allows effec-
tive MOR procedures. Under this framework, a decomposed reduction method equipped with two distinct
projections for smooth and non-smooth parts of the finite-dimensional space is proposed. Compared with
the uniform reduction approach using a single projection operator, the decomposed projection on ISBFM
discrete system preserves the singularity behavior of the fine-scale solution in its lower-dimensional approx-
imation. Analytical error estimation and stability analysis show that ISBFM with the decomposed projection
can achieve better accuracy with only a slight increase of condition number compared with the uniform
reduction approach in the reduced-order solution of singularity problems. The numerical tests validate the
effectiveness of the proposed methods. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Model order reduction (MOR) methods have been shown to be effective in solving large-scale sys-
tems [1]. A great number of MOR analyses are based on the SVD [2] and rely on eigenvector
analysis to provide an approximation of the original system. The POD method [3], introduced by
Kosambi [4], determines a lower-dimension approximation of a discrete system by constructing a
projection onto a space spanned by the dominant SVD modes. The POD method was proven to be
the optimal lower-dimension approximation in the mean squared error [5]. Everson and Sirovich [6]
proposed the snapshot POD method that constructs the subspace of the reduced model based on data
collected by snapshots or samples of the solution. The SVD MOR techniques have been applied to
turbulence [7], fluid mechanics [8–10], micro-electromechanical systems [11], and parameterized
static problems [12], among others. However, the method of snapshots is not completely thorough
and requires further investigation. The moment-matching methods, such as the Krylov subspace
method [13, 14], provide a reduced model based on an approximation of the transfer function of the
discrete system in the frequency domain, by the mean of Laplace transform.
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While MOR methods have been proposed for various fields in science and engineering, its appli-
cation to problems with singularities is juvenile. For such problems, the MOR methods need to
consider the lack of regularity in the numerical solution’s finite-dimensional space. Numerical
methods with smooth approximation and polynomial reproducibility, such as reproducing kernel
(RK) particle method [15, 16], often rely on adaptive refinements in the vicinity of the singular-
ity to achieve accuracy [17] or enrichment of smooth approximation. The latter is carried out by
embedding the near-tip characteristics in the smooth approximation [18–20] under the framework
of extended finite-element methods [21–23] or enriched meshfree methods [24–26]. The asymptotic
solutions near the singularity point have been derived explicitly for Poisson problems with mild and
strong singularities [19, 27] and have also been successfully used in the enriched approximation
space [23, 26, 28].

While enriching the approximation with proper singularity characteristics in the basis functions
enhances approximation accuracy, the ability to integrate those non-smooth basis functions to a
desired order of accuracy effectively for the Galerkin procedure is not straightforward. The inte-
grated singular basis function method (ISBFM) [28] has been introduced to address this issue. In
ISBFM, the selected near-tip basis functions satisfy the homogeneous differential equation with par-
ticular conditions on the boundaries adjacent to the singularity point, and the Galerkin equation is
formulated such that the near-tip basis functions do not appear in integrals near the singularity point.
As such, quadrature issues in the domain integral and boundary integrals near the singularity point
are relieved.

In this work, we consider reduced-order modeling of Poisson problems with mild and strong sin-
gularities using enriched RK approximation under the ISBFM Galerkin framework. The employed
near-tip basis functions are global harmonic functions that are homogeneous on the Dirichlet bound-
ary and derivative homogeneous on the Neumann boundary, adjacent to the singularity point. With
additional integration by parts in the Galerkin procedure, the near-tip basis functions appear only on
the boundaries away from the singularity point in the resulting Galerkin equation. Consequently, the
domain integration of the near-tip basis function derivatives near the singularity point is avoided, and
the corresponding discrete system can be partitioned for independent projections of DOFs associated
with smooth and non-smooth approximation functions. With such a discrete system, we introduce
in this paper a block diagonal projection matrix composed of two distinct reduced projections to the
smooth and non-smooth parts of the approximation and considering that the number of non-smooth
basis functions is much smaller than the dimension of the smooth part of the approximation.

Block-preserving MOR methods have been proposed in the field of coupled and interconnected
systems [29–31] to preserve the interconnection relations between subsystems or physical subdo-
mains in the context of linear time-invariant systems. The projection matrix in the block-preserving
MOR is constructed from the matrices associated with each subsystem. In this work, the sub-
matrices associated with the smooth and non-smooth basis functions are not fully decoupled because
of the overlapping supports between the smooth and non-smooth basis functions. As such, our pro-
posed decomposed projection matrix for singularity problems is constructed based on the Schur
complement of the original system, rather than using the sub-matrix associated with the smooth
basis functions. This approach enables significant dimension reduction of the smooth approxima-
tion while capturing the singularity behavior. The analytical estimation of the reduced solution error
and the stability of the reduced system in the form of condition numbers, as well as operation count
of the two reduced-order projection methods, are also provided in this work.

The outline of this paper is as follows. Characteristics and approximation methods for Poisson
problems with singularities are first introduced in Section 2. An overview of the ISBFM along with
enriched RK approximation is given in Section 3. In Section 4, two proposed MOR methods for
Poisson singularity problems that are well suited to the resulting discrete system are introduced.
The strategy of decomposed projection is presented in this section as well. In Section 5, the error
estimation for the two MOR methods is given, and the stability of the reduced systems is analyzed
by the estimated condition numbers of the reduced discrete systems. Section 6 presents numerical
experiments to demonstrate the effectiveness of the proposed methods and the reliability of the error
and stability estimations. Finally, conclusions and remarks are given in Section 7.
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2. PRELIMINARIES

The characteristics of the singularity problems and the associated numerical solution techniques are
first reviewed in this section to allow effective construction of reduced-order formulation.

2.1. Model problem

We consider problems with singularities induced by the following: (i) the roughness in the
non-convex boundary geometry and (ii) the discontinuities in the boundary conditions. For
demonstration purpose, consider the following boundary value problem:

�uC s D 0 in �

u D g on �g
ru � n D h on �h

(1)

where � D r � r ; � is a bounded domain with concave boundary @� D � D �g [ �h, the vector
n is the outward normal of @�, and s; g, and h are smooth functions.

In Figure 1, there is a singularity in the derivative of the solution at point S when ‚ > � . The
order of singularity is affected by the angle ‚ as well as the type of boundary conditions on the two
boundaries �s1 and �s2 connected to the point S , and we denote �s D �s1[�s2. Two combinations
of boundary conditions on �s1 and �s2 are considered: pure Dirichlet (D–D) or mixed Neumann and
Dirichlet (N–D) boundary conditions. The basis functions of the harmonic asymptotic solution [27]
of the problem in (1) near the singularity point have been used as the enrichment functions in the
numerical solution of singularity problems. The forms of the solution near the singularity point for
different singularity problems, presented in Figure 2, are summarized in Table I [32–34], wherein r
is the distance between any point in the domain and the singularity point.

Figure 1. Model of general singularity problem.

Figure 2. Different types of geometric singularities.
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Table I. Order of singularity for harmonic solutions of
problems with D–D or N–D types of boundary conditions.

‚ D � ‚ D 3�
2 ‚ D 2�

D–D type O.r/ O
�
r
2
3

�
O
�
r
1
2

�
N–D type O

�
r
1
2

�
O
�
r
1
3

�
O
�
r
1
4

�

Table II. Non-smooth basis functions Fm.

Fm ˛m

D–D type r˛m sin.˛m�/
.m�1/�
‚

N–D type r˛m cos.˛m�/
.m�1=2/�

‚

2.2. Near-tip asymptotic expansion

Different treatments of the numerical approximation, such as adaptive refinement near the singular-
ity point or embedding singularity behavior in the approximation space by the means of enrichments
[19–22], have been investigated to improve the accuracy of the approximated solution, and the lat-
ter is introduced in this study. The asymptotic expansion of the solution near the singularity can be
expressed as follows

u.x/ D

1X
mD1

amFm.x/; asx ! xS (2)

where Fm are asymptotic basis functions as shown in Table II [27] for the corresponding singularity
problems presented in Table I and xS is the coordinate of the singularity point. Each non-smooth
basis function Fm satisfies the following conditions:8̂<

:̂
�Fm D 0 in �

Fm D 0 on �g \ �s

rFm � n D 0 on �h \ �s

(3)

Although in (3) the near-tip bases yield homogeneous boundary conditions, their employment in
approximating general nonhomogeneous boundary conditions in the model problem in (1) can be
achieved by adding the particular solution in the approximation as have been discussed in [27]. Fur-
ther, these near-tip asymptotic basis functions are global functions, and this needs to be considered
in the imposition of boundary conditions away from the singularity point. It is also worth noting
that when these near-tip basis functions are used in the approximation, high-order quadrature rules
are needed near the singularity point. The ISBFM Galerkin formulation [35–37] can be employed
to avoid taking the integration of the near-tip basis functions in the domain and on boundaries near
the singularity point. The detailed formulation of this ISBFM Galerkin formulation is given in the
next section.

3. ISBFM GALERKIN APPROXIMATION

In this section, the ISBFM Galerkin formulation in conjunction with Nitsche’s method for sin-
gularity problems will be introduced. These basic formulations constitute the framework for the
construction of the full model for the proposed reduced-order methods.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 102:1211–1237
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3.1. ISBFM Galerkin formulation

The functional associated with the model problem in (1) is

I D
1

2

Z
�

ru � rud� �
Z
�h

uhd� (4)

where u 2 H1C˛g .�/ with ˛ is the order of asymptotic behavior near the singularity point described
in Table I and considering no source term for clarity. Let the approximation of u, denoted as uh, be
decomposed into a smooth part Nuh and a non-smooth part Ouh as

uh D Nuh C Ouh (5)

Here, an RK approximation is introduced for the smooth solution, while the near-tip asymptotic
functions given in Section 2.2 are employed for the non-smooth part of the solution, and these
will be discussed in Section 3.2. For simplicity, we consider in the following that the Dirichlet and
Neumann boundary conditions are homogeneous on the adjacent boundaries associated with the
singularity point S ; that is, g D 0 on �g \�s , and h D 0 on �h\�s . The case of nonhomogeneous
boundary conditions is discussed in Section 2.2 and referred to [27].

The functional (4) is discretized and modified for imposition of the essential boundary conditions
on �g using Nitsche’s method [38, 39] as

I D
1

2

Z
�

r
�
Nuh C Ouh

�
� r

�
Nuh C Ouh

�
d� �

Z
�h

�
Nuh C Ouh

�
hd�

�

Z
�g

r
�
Nuh C Ouh

�
� n
�
Nuh C Ouh � g

�
d� C

ˇ

2

Z
�g

�
Nuh C Ouh � g

� �
Nuh C Ouh � g

�
d�

(6)

Two boundary integrals on �g are due to Nitsche’s enforcement of essential boundary conditions,
and ˇ is a penalty parameter. Minimizing the functional in (6) leads to the following two Galerkin
equations: Z

�

rı Nuh � r
�
Nuh C Ouh

�
d�

�

Z
�g

�
ı Nuh

�
r
�
Nuh C Ouh

�
� n � ˇ

�
Nuh C Ouh

��
Crı Nuh � n

�
Nuh C Ouh

��
d�

D

Z
�h

ı Nuhhd� �
Z
�g

�
�ı Nuhˇg Crı Nuh � ng

�
d�

(7a)

Z
�

rı Ouh � r
�
Nuh C Ouh

�
d�

�

Z
�g

�
ı Ouh

�
r
�
Nuh C Ouh

�
� n � ˇ

�
Nuh C Ouh

��
Crı Ouh � n

�
Nuh C Ouh

��
d�

D

Z
�h

ı Ouhhd� �
Z
�g

�
�ı Ouhˇg Crı Ouh � ng

�
d�

(7b)

which are referred to as the standard Galerkin formulation. If the basis functions for the non-smooth
part of the solution Ouh are harmonic, that is, � Ouh D 0, the domain integral involving Ouh can be
expressed as a boundary integral by applying integration by parts to yieldZ

�

rv � r Ouhd� D
Z
�

vr Ouh � nd�; 8v 2 V (8)
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Consequently, Equations (7a) and (7b) becomeZ
�

rı Nuh � r Nuhd�C
Z
�

ı Nuhr Ouh � nd�

�

Z
�g

�
ı Nuh

�
r
�
Nuh C Ouh

�
� n � ˇ

�
Nuh C Ouh

��
Crı Nuh � n

�
Nuh C Ouh

��
d�

D

Z
�h

ı Nuhhd� �
Z
�g

�
�ı Nuhˇg Crı Nuh � ng

�
d�

(9a)

Z
�

rı Ouh � r Nuhd�C
Z
�

ı Ouhr Ouh � nd�

�

Z
�g

�
ı Ouh

�
r
�
Nuh C Ouh

�
� n � ˇ

�
Nuh C Ouh

��
Crı Ouh � n

�
Nuh C Ouh

��
d�

D

Z
�h

ı Ouhhd� �
Z
�g

�
�ı Ouhˇg Crı Ouh � ng

�
d�

(9b)

The requirement of harmonic property of the non-smooth basis in Ouh allows the transformation of
the domain integral to a boundary integral in (9b). With the consideration of taking the leading terms
of the asymptotic solution near the singularity point as the basis functions for the non-smooth part
of the solution, we follow from Section 2.2 that Ouh D 0 on �g \ �s and r Ouh � n D 0 on �h \ �s .
The ISBFM Galerkin formulations (9a) and (9b) can be expressed as follows:Z

�

rı Nuh � r Nuhd� �
Z
�g

�
ı Nuh

�
r Nuh � n � ˇ Nuh

�
Crı Nuh � n Nuh

�
d�

C

Z
N�h

ı Nuhr Ouh � nd� �
Z
N�g

�
�ı Nuhˇ Ouh Crı Nuh � n Ouh

�
d�

D

Z
N�h

ı Nuhhd� �
Z
N�g

�
�ı Nuhˇg Crı Nuh � ng

�
d�

(10a)

Z
N�h

rı Ouh � n Nuhd� �
Z
N�g

ı Ouh
�
r Nuh � n � ˇ Nuh

�
d�

C

Z
N�h

ı Ouhr Ouh � nd� �
Z
N�g

�
�ı Ouhˇ Ouh Crı Ouh � n Ouh

�
d�

D

Z
N�h

ı Ouhhd� �
Z
N�g

�
�ı Ouhˇg Crı Ouh � ng

�
d�

(10b)

where N�h D �hn�s and N�g D �gn�s . In the preceding equations, the non-smooth function Ouh only
appears on boundaries away from the singularity point S where the basis functions in Ouh are actually
smooth. The ISBFM Galerkin formulation in (10a) and (10b) can be numerically integrated using
lower-order quadrature compared with that of the standard Galerkin formulation in (7a) and (7b).
A comparison of the standard and ISBFM Galerkin formulations using different orders of Gauss
quadrature rule will be discussed in Section 6.

3.2. Discretization of ISBFM Galerkin formulation

Smooth approximation functions are unable to recover the solution of a singularity problem, whereas
adaptive refinement in the vicinity of a singularity can be computationally expensive. In this
approach, the RK approximation [15, 16] is employed for the smooth approximation Nuh in (5) while
the leading terms of the asymptotic expansion near the singularity point as given in Table II are used
to approximate Ouh.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 102:1211–1237
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The RK approximation of Nu, denoted as Nuh, is expressed as

Nuh.x/ D

NNX
ID1

‰I .x/ NdI (11)

where NdI are the coefficients of the approximation, NN is the number of discrete points, and ‰I is
the RK shape function expressed as

‰I .x/ D H
T.0/M�1.x/H .x � xI /ˆa

�
kx � xIk

a

�
(12)

with

M .x/ D

NNX
ID1

H .x � xI /H
T.x � xI /ˆa

�
kx � xIk

a

�
(13)

where xI is the nodal coordinate, H T.x � xI / is the vector containing the complete n-th-order
monomial bases to ensure n-th-order completeness in the approximation, M .x/ is called the
moment matrix, and ˆa is the kernel with compact support a. The kernel function determines the
locality and smoothness (order of continuity) of the approximation, for example, the cubic B-spline,
Gaussian, and exponential functions. It should be noted that the RK approximation is not an interpo-
lation and the RK shape functions do not possess the Kronecker delta properties. This implies that
the imposition of essential boundary conditions needs additional treatment, such as the transforma-
tion method [16, 40], enhancing the shape function to recover the Kronecker delta property [41] and
Nitsche’s method [38, 39].

The approximation of the non-smooth part of the solution Ouh in (5) is constructed by a linear
combination of non-smooth basis functions F as follows

Ouh.x/ D

ONX
mD1

Fm.x/ Odm D F
T.x/ Od (14)

where ON is the number of basis functions Fm as discussed in Section 2.2 and Odm is the coefficient
of the non-smooth approximation. The non-smooth basis functions are harmonic and satisfy²

Fm D 0 on �g \ �s

rFm � n D 0 on �h \ �s
(15)

The properties in (15) enable the ISBFM Galerkin framework presented in Section 3.1.
Substituting (11) and (14) into ISBFM Galerkin equations in (10a) and (10b), the following matrix

equation is obtained

Kd D

2
4 NK

_

K

_

K
T
OK

3
5" Nd
Od

#
D

"
Nf

Of

#
D f (16)

The stiffness matrix K 2 RN�N is a positive definite matrix, where N D NN C ON . The sub-matrix
NK 2 R NN� NN is a sparse matrix,

_

K2 R NN� ON and OK 2 R ON� ON are the sub-matrices resulting from (10a)
and (10b). The entries of those matrices are given as

NKIJ D

Z
�

r‰I � r‰J d� �
Z
�g

.‰Ir‰J � nC r‰I � n‰J / d� C ˇ
Z
�g

‰I‰J d� (17)

OKmn D

Z
N�h

FmrFn � nd� �
Z
N�g

rFm � nFnd� C ˇ
Z
N�g

FmFnd� (18)
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and

_

KInD

Z
N�h

‰IrFn � nd� �
Z
N�g

r‰I � nFnd� C ˇ
Z
N�g

‰IFnd� (19)

The right-hand side vector f 2 RN�1 in (16) consists of two sub-vectors Nf 2 R NN�1 and Of 2 R ON�1

defined as

NfI D

Z
N�h

‰Ihd� �
Z
N�g

.�‰Iˇg Cr‰I � ng/d� (20)

and

Ofm D

Z
N�h

Fmhd� �
Z
N�g

.�Fmˇg CrFm � ng/d� (21)

The discrete equation of ISBFM Galerkin formulation is used to construct the MOR models in the
following section.

4. REDUCED-ORDER MODEL BASED ON ISBFM GALERKIN APPROXIMATION

In this section, we introduce two reduced-order methods for problems with singularity. We consider
that the fine-scale solution is obtained based on the ISBFM Galerkin formulation discussed in
Section 3.

4.1. Uniform and decomposed model reductions

The general form of a reduced-order model of dimension k 6 N is given by

K rdr D f r (22)

whereK r 2 Rk�k denotes the reduced stiffness matrix, f r 2 Rk�1 is the reduced force vector, and
dr 2 Rk�1 is the reduced coefficient vector. The reduced system is obtained from a projection of
the full system. The fine-scale coefficient vector d in (16) is approximated by

d � Pdr (23)

where P 2 RN�k is the projection matrix whose columns are orthonormal vectors and dr is the
reduced coefficient vector. We will study two ways of forming the projection matrix using modal
analysis.

The first MOR method introduces a uniform reduction (UR) of the fine-scale discrete system
constructed from the ISBFM Galerkin formulation, termed ISBFM-UR, where the projection Pur

is applied to all DOFs consisting of the smooth and non-smooth parts of the solution. The reduced
system is of the form

Kurdur D f ur ; Kur D PurTKPur ; f ur D PurTf (24)

where the superscript ur in (24) signifies the UR concept, dur 2 Rk�1 is the reduced coefficient
vector, Kur 2 Rk�k is the reduced stiffness matrix, and f ur 2 Rk�1 is the reduced force vector.
The projection matrixPur is constructed from the orthonormal eigenvectors ¹�iº

k
iD1 corresponding

to the k smallest eigenvalues �1 6 �i 6 �k ofK ; that is,Pur D Œ�1 �2 : : : �k �. The components
of the reduced-order coefficient vector is duri D �T

i f = �i ; i D 1; : : : ; k, and the approximated
fine-scale coefficient vector is obtained from d � Purdur .

The second MOR approach considers decomposed reduction (DR) from the fine-scale system
via separate projections for the smooth and non-smooth parts of the fine-scale solution, named
ISBFM-DR. Under this approach, the reduced coefficient vector ddr 2 Rk�1 constitutes a reduced

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 102:1211–1237
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coefficient vector for the smooth part Nd
dr
2 R Nk�1 and a reduced coefficient vector for the non-

smooth part Od
dr
2 R Ok�1 that are obtained from a decomposed projection matrix with superscript

dr denoting the DR approach, given as

d � Pdrddr ; Pdr D

�
NP 0

0 OP

�
2 R

�
NNC ON

�
�
�
NkC Ok

�
(25)

where NP 2 R NN� Nk and OP 2 R ON� Ok are the sub-projections for the smooth and non-smooth parts of
the fine-scale solution, respectively, and the reduced dimension is k D Nk C Ok, with Nk 6 NN and
Ok 6 ON . The corresponding reduced system is given as

"
NP

T
0

0 OP
T

#24 NK
_

K

_

K
T
OK

3
5" NP 0

0 OP

#24 Nddr
Od
dr

3
5 D

"
NP

T
0

0 OP
T

#"
Nf

Of

#
(26)

We rewrite the preceding equation as follows

Kdrddr D f dr (27)

where

Kdr D

2
64 NKdr _

K
dr

_

K
drT
OK
dr

3
75 ; ddr D

2
4 Nddr
Od
dr

3
5 ; f dr D

2
4 Nf dr
Of
dr

3
5 (28)

Here, NK
dr
D NP

T NK NP 2 R Nk� Nk;
_

K
dr

D NP
T _

K OP 2 R Nk� Ok , and OK
dr
D OP

T OK OP 2 R Ok� Ok are the sub-
matrices of the reduced stiffness matrix Kdr , and Nf

dr
D NP

T Nf 2 R Nk�1 and Of
dr
D OP

T Of 2 R Ok�1

are the sub-vectors of the reduced force vector f dr . We assume that sub-matrices OK and OKdr are
nonsingular.

In ISBFM-DR, we first solve the coefficient vector of the reduced smooth solution and then com-
pute the reduced coefficient vector of the non-smooth part. Consider the following decomposition
of the fine-scale equation in (16)

NK
c Nd D Nf

c
; NK

c
D

�
NK�

_

K OK�1
_

K
T
�
Nd ; Nf

c
D Nf �

_

K OK�1 Of (29a)

OK Od D Of
c
; Of

c
D Of �

_

K
T
Nd (29b)

The sub-projections matrices NP and OP in (25) are respectively obtained from the eigenanalysis of
NK
c

and OK from the condensed fine-scale system in (29a) and (29b). That is, NP D Œ N'1 N'2 : : : N' Nk �

and OP D Œ O'1 O'2 : : : O' Ok �, where ¹ N'j ; N	j º
Nk
jD1 and ¹ O'l ; O	lº

Ok
lD1

are the smallest eigenpairs

from matrices NK
c

and OK , respectively. The reduced coefficient vectors are obtained as Nddrj D

N'T
j
Nf
c
= N	j ; j D 1; : : : ; Nk and Oddr

l
D O'T

l
Of
cdr

= O	l ; l D 1; : : : ; Ok, where Of
cdr
D Of �

_

K
T
NP Nd

dr
.

The approximation from the reduced-order solution is then obtained as dT � ŒŒ NP Nd
dr
�T; Œ OP Od

dr
�T�.

Remark 4.1
If the non-smooth DOF is relatively small compared with the number of smooth DOF, one can con-
sider reducing the smooth DOF of the solution only and keeping the non-smooth DOF unprojected.

That is, in the ISBFM-DR method, the dimension Ok D ON and OP D I ON , and Od
dr
2 R ON�1 is

obtained directly from OK Od
dr
D Of

cdr
.
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Table III. Operation counts.

Procedure Operation counts (op)

Block Cholesky
NN3� ON3

6 C 2 NN ON 2 C ON 2 CN 2

.4p C 6k C 9C 
/pN

ISBFM-UR C2k2N C .k C p/3

C.N C 1/k C kN

�
4 Np C 6 Nk C 9C N


	
Np NN

C2 Nk2 NN C
�
Nk C Np

	3
C
�
4 Op C 6 Ok C 9C O


�
Op ON

ISBFM-DR C2 Ok2 ON C
�
Ok C Op

�3
C2 ON 2 C NN ON 2 C NN 2 ON C NN 2

C2 NN ON C NN C ON

C2 Nk NN C 2 Ok ON C Nk C Ok

4.2. Operation counts of reduced model

The total operation counts in applying each of the two proposed MOR methods are presented in
this section and are compared with the operation count in solving the fine-scale system. We assume
that the full solution is obtained when block Cholesky factorization is applied to (16). In this work,
we use the implicitly restarted Lanczos method [42–44] to obtain the approximate eigenpairs. The
operation counts (op) for the two proposed MOR methods are obtained using additions/subtractions
(A/S) and multiplications/divisions (M/D) comparisons [45, 46], where

1.op/ W 1.A=S/C 1.M=D/ (30)

The operational counts for solving the full system, ISBFM-UR, and ISBFM-DR are listed in
Table III.

In Table III, the Schur complement is considered in block Cholesky factorization, and the param-
eter 
 is twice the average number of non-zero entries per row of matrix K in (16), N
 is twice
the average number of non-zero entries per row of matrix NK

c
in (29a), and O
 is twice the average

number of non-zero entries per row of OK . The parameter p is the number of steps in the Lanc-
zos method for ISBFM-UR, and Np and Op are the numbers of steps in Lanczos methods used in
ISBFM-DR.

It appears that the cost in ISBFM-DR is slightly lower than that in ISBFM-UR from the fact that
Nk2 C Ok2 < k2 and Nk3 C Ok3 < k3. Both of these MOR approaches are more efficient than solving
the fine-scale system directly, owing to the fact that NN 2 < N 3 and ON 2 < N 3.

5. ASSESSMENT OF ERROR AND STABILITY OF THE REDUCED-ORDER MODELS

In this section, the error bound and stability analysis of the two proposed MOR methods are given.

5.1. Error bounds estimation

For ISBFM-UR, letˆT D
®
‰T;F T¯ be the collection of RK shape functions and non-smooth basis

functions, and let ˆurT be the projected basis functions from fine-scale basis functions ˆT; that
is, ˆurT D ˆTPur . It follows that the reduced solution is uur D ˆurTdur . The solution error in
vector sup-norm between the full model and the reduced model is given by
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uh � uur



1
D


ˆTd �ˆurTdur




1

6 kˆk1 kd �Purdurk1

6 kˆk1max
i2G

ˇ̌̌
ˇ�T
i f

�i

ˇ̌̌
ˇ

(31)

where G D ¹k C 1; : : : ; N º is a set of indices of the eigenpairs ¹�i ; �iº
N
iD1 satisfying the

eigensystem K�i D �i�i that have been truncated in the projection to the reduced system.
By using the Schwarz inequality and the pairwise orthonormal eigenvectors, we have

max
i2G

ˇ̌̌
ˇ�T
i f

�i

ˇ̌̌
ˇ 6 pN kf k1�kC1

(32)

where �kC1 is the smallest eigenvector beyond the selected eigenpairs ¹�i ; �iº
k
iD1 that form the

projection matrix. The error bound for the ISBFM-UR is expressed as


uh � uur



1
6
p
N��1kC1kˆk1kf k1 (33)

It can be observed that the solution error is related to the smallest remaining eigenvalues not consid-
ered in the construction of the projection Pur . Note that the error bound in (33) would vary when
different numerical techniques for the imposition of boundary conditions are used.

Next, we present the error estimation for ISBFM-DR. From the fine-scale model decoupled in
(29a) and (29b), we have

d D OK
�1 Of

c
D OK

�1
�
Of �

_

K
T
Nd

�
(34)

The reduced system (27) can be decoupled similarly. After solving the coefficient vector of the

smooth part Nd
dr

, the coefficient vector of non-smooth part Od
dr

can be obtained as well; that is,

Od
dr
D
�
OK
dr
��1 �

Of
dr
�
_

K
drT
Nd
dr
�
D OP

C OK
�1
�
Of �

_

K
T
NP Nd

dr
�

(35)

where OP
C

is the pseudo-inverse of non-square matrix OP . By subtracting OP times (35) from (34), it
follows that

Od � OP Od
dr
D OK

�1 _

K
T �
NP Nd

dr
� Nd

�
(36)

In a similar way, we have the error estimation for ISBFM-DR as follows:


uh � udr



1
D



‰T Nd C F T Od �

�
‰T NP Nd

dr
C F T OP Od

dr
�



1

6 k‰k1



 Nd � NP Nddr




1
C kF k1




 Od � OP Oddr



1

6
²
k‰k1 C kF k1





 OK�1 _KT





1

³


 Nd � NP Nddr



1

(37)

We can estimate the order of k OK
�1 _

K
T

k1 from the definition of entries of sub-matrices in
Section 3.2 and from the properties of RK shape functions, k‰Ik1 6 C and kr‰Ik1 6 Ca�1,
where a is the support size of the kernel function. We also consider the regularity of non-smooth
basis functions to yield �

OK
�1 _

K
T
�
IJ

� O .r�˛I / (38)
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where I D 1; : : : ; ON and

˛I D

²
2I=3 for ‚ D 3�=2
I � 1=2 for ‚ D 2�

(39)

Consequently, we have a bound as follows:



 OK�1 _KT





1

6 OC (40)

where OC is a bounded constant. Equation (37) is further manipulated to yield


uh � udr



1
6
�
k‰k1 C OCkF k1

� 


 Nd � NP Nddr



1

6
p
NN N	�1NkC1

�
C C OCkF k1

� 


 Nf c



1

(41)

where NG D
®
Nk C 1; : : : ; NN

¯
is the set of indices of the selected eigenpairs ¹ N'j ; N	j º

NN
jD1 associated

with the eigensystem NK
c
N'j D N	j N'j that are truncated in the construction of the projection matrix

NP .
By inclusion principle and interlacing properties [47], we have the relationship between two sets

of eigenvalues ¹�iºand ¹ N	j º for K and NK
c
, respectively, as follows:

N	i < �iC Ok; 8i 2
®
1; 2; : : : ; NN

¯
(42)

We have the property that N	 NkC1 < �kC1 and that the values �kC1 and N	 NkC1 are very close when
the number of non-smooth basis functions ON is small. The magnitudes of kˆk1 and OCkF k1 are
dependent on the number of non-smooth basis functions used and are usually bounded.

In summary, we have error bounds for ISBFM-UR and ISBFM-DR as follows:


uh � uur



1
6 C1

p
N��1kC1kf k1 (43)




uh � udr



1
6 C2

p
NN N	�1NkC1




 Nf c



1

(44)

where C1 D kˆk1 and C2 D C C OCkF k1. This estimate suggests that the errors of the proposed
reduced approximations are greatly influenced by the values of kf k1 and k Nf

c
k1. The comparison

of numerical results with these error analyses is presented in Section 6.

5.2. Stability analysis

In this section, the stability of the discrete systems obtained from both ISBFM-UR and ISBFM-DR
approaches is studied. We first address the perturbation properties of the reduced system K rdr D
f r . If both matrix and right-hand-side vector are perturbed, then the solution of reduced system
may be expressed as dr C ıdr and satisfies the following equation:

.K r C ıK r/ .dr C ıdr/ D .f r C ıf r/ (45)

The following relative perturbation bound relates the perturbation of the solution to the perturbation
of the left-hand side matrix and the right-hand side vector as

kıdrk

kdrk
6

�
1C
kıf rk
kf rk

�
kıKrk
kKrk

C cond.K r/
kıf rk
kf rk

1 �

�
kıKrk

2

kKrk
2 C .1C cond.K r//

kıKrk
kKrk

� (46)
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Herein, the vector 2-norm is considered; that is, k �k D k�k2; and the condition number is defined as

cond.K r/ D kK rk



.K r/

�1



 D �max .K

r/

�min .K
r/

(47)

We can observe from (46) that this condition number plays a key role in the sensitivity of the solution
to small perturbations. If the left-hand side matrix is not perturbed, that is ıK r D 0, then the bound
in (46) becomes

kıdrk

kdrk
6 cond.K r/

kıf rk

kf rk
(48)

In the following, we investigate the relation between condition numbers of the full system (16) and
the reduced system (22). It can be easily derived that

cond .K r/ D cond
�
PTKP

	
D


PTKP



 


�PTKP
	�1




6


PT



 kKk kPk 

PC

 

K�1

 


�PT	C



6 kKk



K�1

 D cond.K /

(49)

In the preceding inequality, kPk D kPT k D 1 has been considered, as the matrix P has
orthonormal columns.

Next, we consider the reduced matrix K r in (22) obtained from the two MOR methods:

(i) ISBFM-UR: K r D Kur given in (24), where the projection Pur is obtained from K with
the eigenpairs ¹�; �iºNiD1

(ii) ISBFM-DR: K r D Kdr given in (28), where the sub-projections NP and OP are constructed
based on NK

c
and OK with the eigenpairs ¹ N'j ; N	j º

NN
jD1 and ¹ O'l ; O	lº

ON
lD1

, respectively, for the
decomposed smooth and non-smooth discrete equations.

By means of the Rayleigh quotient [47] of the reduced stiffness matrixK r , we can derive the bound
of condition number for both ISBFM-UR and ISBFM-DR. For ISBFM-UR, the condition number
is given by

cond.Kur/ D
�ur
k

�ur1
D
�k

�1
(50)

where ¹�uri º
k
iD1 are the eigenvalues of Kur . For ISBFM-DR, after some manipulations of the

Rayleigh quotient, a bound of the condition number is obtained using eigenvalues of sub-matrices
of K as

cond
�
Kdr

�
D
�dr
k

�dr1
6
N	 Nk C O	 Ok C "N

�1
(51)

where ¹�dri º
k
iD1 are the eigenvalues of Kdr , which are bounded by the minimum and maximum

eigenvalues of K , that is, �1 6 �dri 6 �N ; 8i 2 ¹1; 2; : : : ; kº. We can deduce the property
�1 6 �dri . We further define "N as the maximal eigenvalue of matrix K 0 defined as follows:

K 0 WD

2
4 _

K OK
�1 _

K
T _
K

_

K
T

0

3
5 (52)

The values of "N and O	 Ok are dependent on the type and the number of non-smooth basis func-
tions used. From the interlacing property in (42), we obtain the relationship between the condition
numbers of the reduced systems from ISBFM-UR and ISBFM-DR as follows:
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cond
�
Kdr

�
6
N	 Nk
�1
C
O	 Ok C "N

�1
6 �k
�1
C
O	 ON C "N

�1
6 cond.Kur/C B (53)

where the term B > 0 is affected by the value of O	 ON due to the use of non-smooth basis functions.
From the analytical analysis of the stability for these two reduced systems, we can conclude

that the ISBFM-DR has a larger bound of condition number than that in ISBFM-UR. The detail of
the eigenspectrum of the different matrices will be presented for the numerical examples studied
in Section 6.

6. NUMERICAL EXAMPLES AND DISCUSSIONS

In the following numerical examples, we demonstrate the effectiveness of the proposed ISBFM-UR
and ISBFM-DR methods. We first consider an example that identifies the performance of ISBFM
Galerkin for a problem with singularity, followed by verification of ISBFM-UR and ISBFM-DR
for Poisson problems with mild and strong singularities. In the following study, RK functions using
linear basis and cubic B-spline kernel function with a normalized support size of a D 1:51 are
chosen for the smooth part of the solution. The non-smooth basis functions described in Section 2 are
employed to represent the singularities in the solution. For Nitsche’s treatment of essential boundary
conditions, ˇ D 100=h is adopted, where h is the minimal spacing of RK nodes.

6.1. Comparison of standard Galerkin and ISBFM Galerkin methods in a cracked beam Poisson
problem

To compare the approximated solutions obtained from standard Galerkin and ISBFM Galerkin for-
mulations, we study a two-dimensional cracked beam Poisson problem as shown in Figure 3 in
which the discontinuity of boundary condition at .0; 0/ yields a singularity of order ˛ D 1 = 2;
according to Table I.

The problem statement of the cracked beam Poisson problem is given as

�u D 0 in �

ujyD0;�1=26x60 D 0; ujyD1=2;�1=26x61=2 D 0:125

@u

@y

ˇ̌̌
ˇ
yD0;06x61=2

D 0;
@u

@x

ˇ̌̌
ˇ
xD1=2;06y61=2

D 0;
@u

@x

ˇ̌̌
ˇ
xD�1=2;06y61=2

D 0

(54)

where � D .�1=2; 1=2/ � .0; 1=2/. The non-smooth basis functions of this problem are chosen
from the harmonic near-tip functions presented in Table II with N–D type of boundary conditions
and ‚ D � ,

Fm.r; �/ D r
2m�1
2 cos

�
2m � 1

2
�

�
; m D 1; 2; : : : (55)

Figure 3. Model of cracked beam problem.
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where r D
p
.x � x0/2 C .y � y0/2 and � D tan�1 ..y � y0/ = .x � x0//, which also possess the

properties Fm D 0 on �1 and @Fm
@y
D 0 on �2 near the singularity point .x0; y0/:

For the assessment of convergence, the normalized errors in L2 and H 1 norms are considered as
follows:

e0 D
ku � uhkL2
kukL2

; e1 D
ku � uhkH1

kukH1
(56)

The solution errors of standard Galerkin and ISBFM Galerkin formulations obtained by using a
48� 24 uniform discretization with one non-smooth basis function . ON D 1/ are shown in Figures 4
and 5, where different orders of the Gauss quadrature rule for the domain and boundary integrals
have been used. The results indicate that, for the same Gauss quadrature rule, the solution from
ISBFM Galerkin formulation provides better accuracy in both L2 and H 1 norms. The distributions
of the absolute errors of solutions over the domain are compared in Figure 6 where an eighth-order
of Gauss quadrature rule has been used in the Galerkin equations to properly integrate non-smooth
functions. The error from the standard Galerkin formulation is localized around the singularity point
and is much bigger than the error from the ISBFM Galerkin method.

The convergence of standard and ISBFM Galerkin formulations in normalized L2 error norm
is shown in Figure 7 using different numbers of Gauss points (GP) in the quadrature rule. The

Figure 4. Normalized L2 error norm in the cracked beam Poisson problem using different Galerkin
formulations and different orders of Gauss quadrature. ISBFM, integrated singular basis function method.

Figure 5. Normalized H1 error norm in the cracked beam Poisson problem using different Galerkin
formulations and different orders of Gauss quadrature. ISBFM, integrated singular basis function method.
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Figure 6. Absolute error distribution of solutions from standard Galerkin and integrated singular basis
function method (ISBFM) Galerkin formulations.

Figure 7. Convergence plot in normalized L2 error norm of standard Galerkin and ISBFM Galerkin
formulations with different orders of Gauss quadrature.

Table IV. Rate of convergence in L2 norm of standard Galerkin and integrated singular basis
function method (ISBFM) Galerkin formulations with different orders of Gauss quadrature.

Standard Galerkin ISBFM Galerkin

Order of Gauss quadrature 2 4 8 12 2 4 8 12
Rate of convergence 1.03 1.05 1.06 1.12 1.04 1.08 1.80 2.04

asymptotic rates of convergence of the approximation are presented in Table IV. The ISBFM
Galerkin formulation improves the accuracy of the approximation and also the rate of convergence.

This cracked beam Poisson problem demonstrates that the ISBFM Galerkin method provides a
more accurate approximation compared with the standard Galerkin method and allows using a lower
order of Gauss quadrature for problems with singularities. The ISBFM Galerkin formulation is also
well suited for the proposed MOR approaches, as the singularity behavior is better preserved than
that of the standard Galerkin formulation in constructing the reduced-order space.

6.2. Reduced-order modeling of an L-shaped Poisson problem

6.2.1. Problem statement and numerical results. In the following example, the proposed ISBFM-
UR and ISBFM-DR methods are considered for the reduced-order modeling of a Poisson problem
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Figure 8. Model of the L-shaped Poisson problem.

with mild singularity, shown in Figure 8. The problem statement of this L-shaped Poisson problem
is given as follows:

�u D 0 in �

ujxD0;�16y60 D 0; u
ˇ̌
yD0;06x61 D 0

@u
@y

ˇ̌̌
yD�1;�16x60

D 0; @u
@x

ˇ̌̌
xD1; 06y61

D 0; @u
@y

ˇ̌̌
yD1;�16x61

D 50; @u
@x

ˇ̌̌
xD�1;�16y61

D 50

(57)

where � D .�1; 1/ � .�1; 1/n.0; 1/ � .�1; 0/.
The ISBFM-DR method is introduced with order reduction only on the smooth solution, and no

order reduction on the enriched solution; that is, OP D I ON and k D Nk C ON . The normalized errors
in L1; L2, and H 1 norms between the reduced solution ur and the full solution uh given in the
following are considered in the accuracy assessment of the reduced models:

e1 D
kuh � urkL1
kuhkL1

; e0 D
kuh � urkL2
kuhkL2

; e1 D
kuh � urkH1

kuhkH1
(58)

The harmonic functions shown in the following are obtained from Table II with a D–D type of
boundary conditions and ‚ D 3 = 2� and are used as non-smooth basis functions:

Fm.r; �/ D r
2
3m sin

�
2

3
m�

�
; m D 1; 2; : : : (59)

The non-smooth basis functions satisfy Fm D 0 on �6 and Fm D 0 on �1 near the singularity point
.0; 0/ according to (57). In this numerical example, the fine-scale solution is obtained for a uniform
discretization 49 � 49 . NN D 1825/ with one non-smooth basis function . ON D 1/.

The approximated solution of the fine-scale model and its derivatives along y D 0:001 are shown
in Figure 9. A comparison of the absolute error along y D 0:001 between the fine-scale solution and
the approximated reduced solutions obtained from ISBFM-UR and ISBFM-DR for various reduced
dimensions k, where k = N D 5%; 10%; 20%, is presented in Figure 10. We first observe that the
ISBFM-UR method approximates the fine-scale solution poorly even when using a reduced model
with 20% of the full DOF. On the other hand, the reduced-order solution from ISBFM-DR yields a
much smaller error, especially in the derivatives of the solution, where the error near the singularity
point is not significant.
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Figure 9. Fine-scale approximation along y D 0:001 of the solution of the L-shaped Poisson problem.

6.2.2. Discussion on error and stability in the reduced systems. The normalized errors in L1; L2
and H 1 norms are shown in Figures 11–13, respectively, where the ISBFM-DR method provides
better accuracy than the ISBFM-UR method. Even in the case where the reduced DOF is 80% of the
full DOF, the error of the reduced solution from ISBFM-UR is still of the order O.10�1/. On the
other hand, the solution of ISBFM-DR is much more accurate, where even just using k = N D 5%
of the full DOF, the normalized error is of the order O.10�2/ when one and two non-smooth basis
functions are used . ON D 1 and 2/ and O.10�3/ when five non-smooth basis functions are used
. ON D 5/. This property in ISBFM-DR can be understood from the fact that when more non-smooth
basis functions are used, the need for the smooth part of the approximation to approximate the
singularity is reduced and thus leads to a more effective reduced-order approximation. This is not
the case for ISBFM-UR, where the uniform projection of both smooth and non-smooth parts of
the approximation significantly reduces its ability to approximate the singularity behavior in the
reduced-order space as evidenced in Figures 11–13.

The error bounds provided in (43) and (44) show that the errors in sup-norm are related to the
right-hand-side vector of the reduced discrete system with dimension k according to Equations (29a)
and (29b). The numerical results described earlier demonstrate that the error from ISBFM-DR is
dominated by the smooth part of the solution while the error from ISBFM-UR is dominated by the
non-smooth solution. Table V compares the error bounds of ISBFM-UR and ISBFM-DR for the
case when NN D 1825 and ON D 1 based on the analytical derivation in (43) and (44), respectively.
These analytically predicted error ratios of the two reduced-order approaches are in the order of
O.10�3/, which agrees quite well with the numerically calculated error results shown in Figure 11.

We also make the following observation: the L1 error norm of the ISBFM-DR method is about
O.10�3/ of that from the ISBFM-UR method, regardless of the reduced-order dimension k. This
can be understood from (43) and (44) in conjunction with the following reasons: (i) the eigenvalues
�kC1 of K and N	 NkC1 of NK

c
, shown in Table V, are quite similar; (ii) the ratio

p
N = NN has a

marginal influence on the error ratio when a small number of non-smooth basis functions are used;
and (iii) the most influential factors on the error are the norms of the right-hand-side vector of the
reduced systems, in this case, kf k1 D 178:86 and k Nf

c
k1 D 0:60, which essentially dominate

the error bounds.
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Figure 10. Absolute error distribution along y D 0:001 of the reduced solutions for the L-shaped Poisson
problem with different percentages of k = N . DR, decomposed reduction; ISBFM, integrated singular basis

function method; UR, uniform reduction.

Figure 11. Normalized error in L1 norm for the L-shaped Poisson problem. DR, decomposed reduction;
ISBFM, integrated singular basis function method; UR, uniform reduction.
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Figure 12. Normalized error in L2 norm for the L-shaped Poisson problem. DR, decomposed reduction;
ISBFM, integrated singular basis function method; UR, uniform reduction.

Figure 13. Normalized error in H1 norm for the L-shaped Poisson problem. DR, decomposed reduction;
ISBFM, integrated singular basis function method; UR, uniform reduction.

Table V. Analytically predicted error ratios between integrated singular basis function methods
with decomposed reduction and uniform reduction for the L-shaped Poisson problem.

k = N

0.5% 1% 5% 10% 20%

�kC1 4:50 10�2 9:92 10�2 5:16 10�1 9:01 10�1 1:27 100

N	 NkC1 3:91 10�2 9:89 10�2 5:01 10�1 8:98 10�1 1:27 100

C2

p
NN N��1
NkC1




 Nf c



1

C1
p
N��1

kC1
kf k1

1:75 10�3 1:53 10�3 1:57 10�3 1:53 10�3 1:52 10�3

Next, we perform a stability analysis of the reduced systems obtained from the ISBFM-DR and
ISBFM-UR methods. The condition numbers of the reduced systems with various reduced dimen-
sions are presented in Figure 14, and the ones of the fine-scale system are shown in Table VI. From
the analytical predictions given in (49), the reduced systems from both MOR methods are bet-
ter conditioned than the fine-scale system, which is in good agreement with the numerical results
shown in Figure 14 and Table VI. It is worthy to note that the reduced system from ISBFM-UR has
a slightly smaller condition number than the ones from ISBFM-DR shown in the numerical results
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Figure 14. Condition number for the L-shaped Poisson problem. DR, decomposed reduction; ISBFM,
integrated singular basis function method; UR, uniform reduction.

Table VI. Condition numbers of the full system for the L-shaped Poisson problem.

NN D 1825; ON D 1 NN D 1825; ON D 2 NN D 1825; ON D 5

cond.K / 3:73 107 6:98 108 1:43 1011

Figure 15. Model of cracked beam Poisson problem with prescribed traction.

in Figure 14. This was also predicted from our estimation of the condition numbers given in (53) in
Section 5.2 when . O	 Ok C "N / = �1 is sufficiently large.

6.3. Reduced-order modeling of a cracked beam Poisson problem

6.3.1. Problem statement and numerical results. The differential equation and boundary conditions
of a cracked beam Poisson problem are given as follows:

�u D 0 in �

ujyD0;�1=26x60 D 0

@u
@y

ˇ̌̌
yD0; 06x61=2

D0; @u
@x

ˇ̌̌
xD�1=2; 06y61=2

D0; @u
@y

ˇ̌̌
yD1=2;�1=26x61=2

D50; @u
@x

ˇ̌̌
xD1=2; 06y61=2

D0

(60)

where � D .�1=2; 1=2/ � .0; 1=2/. This cracked beam Poisson problem, described in Figure 15,
possesses a stronger singularity than in the previous L-shaped Poisson problem.

The harmonic non-smooth basis functions Fm used in this problem are the same as in
Equation (55) in the cracked beam Poisson problem of Section 6.1. In this model problem, the
fine-scale solution is obtained from a 48 � 24 uniform nodal distribution . NN D 1152/ with one
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Figure 16. Fine-scale approximation along y D 0:001 of the solution of the cracked beam Poisson problem.

non-smooth basis function . ON D 1/.
The solution approximation of the full model and its approximate derivatives are shown along

y D 0:001 near the singularity point in Figure 16. Figure 17 presents a comparison of the absolute
error distributions of reduced solutions from ISBFM-UR and ISBFM-DR for different percentages
of reduction k = N D 5%; 10%; and 20%, along y D 0:001. Compared with the ISBFM-UR
approach, ISBFM-DR has a much smaller absolute error for all reduced dimension k. For low
reduced dimension k = N D 5%, the reduced solution from ISBFM-UR poorly approximates the
fine-scale solution, although with improvement when k = N D 10%. Note that in the L-shaped
case, the error of the ISBFM-UR solution remains large unless a much larger reduced system
is used.

6.3.2. Discussion on error and stability in the reduced system. From Figures 18–20, we can con-
firm that ISBFM-DR provides better accuracy in L1; L2, and H 1 norm, especially in the cases
where the dimension of the fine-scale system is greatly reduced. In this test, the reduced solution
from ISBFM-UR approaches the full model with error in the order of O.10�2/ when the reduced
dimension k is greater than 20% of the full dimension N . However, for k = N less than 10%,
the solution from ISBFM-UR still produces significant errors. On the other hand, the accuracy of
the reduced solution from ISBFM-DR is superior to that from ISBFM-UR in all ranges of order
reduction.

The ratios of the analytical error bound of ISBFM-DR in (44) and the one of ISBFM-UR in (43)
are given in Table VII for the case of NN D 1152 and ON D 1. Again, the analytical results show that
the error in ISBFM-DR is smaller than that in ISBFM-UR, with the error ratio of the orderO.10�2/,
which is consistent with the numerical results shown in Figure 18. The error ratio between the two
methods is mainly due to the norms kf k1 D 25:90 and k Nf

c
k1 D 0:90 following the analytical

error bounds given in (43) and (44).
The condition numbers of the reduced system for this cracked beam Poisson problem can also be

observed in Figure 21, and similar observations as that in the L-shaped Poisson problem are found.
Compared with the condition numbers of the fine-scale system shown in Table VIII, we can see that
the reduced systems are better conditioned, consistent with the analytical prediction in Section 5.
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Figure 17. Absolute error distribution along y D 0:001 of the reduced approximations for the cracked beam
Poisson problem with different percentages k = N . DR, decomposed reduction; ISBFM, integrated singular

basis function method; UR, uniform reduction.

Figure 18. Normalized error in L1 norm for the cracked beam Poisson problem. DR, decomposed
reduction; ISBFM, integrated singular basis function method; UR, uniform reduction.
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Figure 19. Normalized error inL2 norm for the cracked beam Poisson problem. DR, decomposed reduction;
ISBFM, integrated singular basis function method; UR, uniform reduction.

Figure 20. Normalized error inH1 norm for the cracked beam Poisson problem. DR, decomposed reduction;
ISBFM, integrated singular basis function method; UR, uniform reduction.

Table VII. Analytically predicted error ratios between integrated singular basis func-
tion methods with decomposed reduction and uniform reduction for the cracked beam

Poisson problem.

k = N

0.5% 1% 5% 10% 20%

�kC1 4:46 10�2 1:05 10�2 4:85 10�1 8:65 10�1 1:22 100

N	 NkC1 4:02 10�2 9:27 10�2 4:84 10�1 8:65 10�1 1:22 100

C2

p
NN N��1
NkC1




 Nf c



1

C1
p
N��1

kC1
kf k1

2:23 10�2 2:28 10�2 2:02 10�2 2:02 10�2 2:02 10�2

In this case, the condition numbers of both reduced models ISBFM-UR and ISBFM-DR are very
similar, even though the reduced system from ISBFM-UR is slightly better conditioned than the one
from ISBFM-DR.
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Figure 21. Condition number for the cracked beam Poisson problem.

Table VIII. Condition numbers of the full system for the cracked beam
Poisson problem.

NN D 1152; ON D 1 NN D 1152; ON D 2 NN D 1152; ON D 5

cond.K / 2:94 106 5:71 108 2:33 109

7. CONCLUSIONS

Model order reduction techniques for enriched meshfree methods for problems with singularities
and discontinuities have been presented in this paper. The characteristic of the model problem is
that the accuracy of the reduced approximations is greatly affected by the singularity behavior of
the full solution. In the proposed approach, the full approximation consisting of a smooth part from
the RK approximation and a non-smooth part using asymptotic basis functions near the singularity
point has been reduced by a standard MOR method and a new proposed MOR method. Analytical
investigations on the errors, stability, and efficiency of the reduced systems from the proposed MOR
methods have also been provided.

Under the framework of ISBFM, a modified Galerkin formulation is obtained in which the non-
smooth basis functions appear only on integrals on the boundaries away from the singularity point.
This approach avoids the need of higher-order integration in the domain and provides enhanced
accuracy of the approximation, and it allows an effective DR method. Two ISBFM-based reduced-
order projections have been developed for problems with singularities. The first MOR method is a
UR method, termed ISBFM-UR, which projects all smooth and non-smooth DOFs to the reduced-
order space. The second MOR method is a DR method, named ISBFM-DR, which intends to retain
the singular behavior of the full solution in the reduced-order system. Because the number of non-
smooth bases used is relatively small compared with the smooth DOF, the reduction of only the
smooth part of the solution with Schur complement of the full system offers good performance. The
analytical investigation of accuracy and stability of the reduced models has also been presented in
this work.

The proposed MOR methods have been applied to Poisson singularity problems such as cracked
beam problem and L-shaped problem. Error bounds of the proposed ISBFM-UR and ISBFM-DR
methods have been derived and validated with numerical results. The numerical examples showed
that keeping the non-smooth bases unprojected in the ISBFM-DR allows the reduced discrete sys-
tem to properly capture the singularity behavior of the model problems. Numerical results showed
that ISBFM-DR offers much better accuracy and faster convergence than ISBFM-UR with uniform
projection for the entire approximation space. It has also been demonstrated numerically that the
condition number of the reduced model from ISBFM-DR is only slightly increased compared with
the one from ISBFM-UR method.
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