
iacm expressions 34/13   11

Quadrature Issues in Galerkin 
Meshfree Methods:  Loss of 
Galerkin Orthogonality Leading to 
Suboptimal Convergence
Meshfree methods introduce new 
approximations for solving PDEs without
using conventional meshing topology, as
shown in figure 1.  This reduces the strong
tie between the quality of the discretization
and the quality of the approximation, and
can ultimately ease the difficulty of mesh
distortion problems.  The functions used 
in meshfree methods such as moving
least-squares (MLS) and reproducing 
kernel (RK) approximations can be con-
structed with arbitrary order of complete-
ness and continuity.  These unique
properties provide the opportunity to solve
problems that are difficult or impossible to
be solved by conventional finite element
methods, and it admits the development of
paradigms for solving PDEs without being
restricted to Galerkin type procedures.

A critical issue in Galerkin meshfree 
methods is domain integration, typically
carried out by Gauss integration (GI) or 
direct nodal integration (DNI).  The MLS
and RK approximations shown in figure 1
are typically rational functions with overlap-
ping supports.  These approximations are
capable of reproducing monomials of 
arbitrary order in arbitrary discretizations;
however, this completeness property does
not guarantee optimal rates of conver-
gence in the Galerkin solution of PDEs if
the domain integration is not sufficiently
accurate.  The quadrature error in the
Galerkin equation also leads to the loss of
Galerkin orthogonality as shown in figure
2, where uh and uhh are the solutions of the

Galerkin equation without and with 
quadrature error, respectively.  Violation 
of Galerkin orthogonality leads to the loss
of the best approximation property of the
Galerkin solution according to Strang’s first
Lemma [1].  This can be demonstrated by
solving a PDE with a linear solution given
in figure 3, where RK approximation with
linear basis is introduced, and the exact
linear solution is not obtained.  Errors in
this linear problem are also reflected in
sub-optimal convergence when solving 
the problem with a higher order solution
shown in figure 4, where optimal conver-
gence rates (2 in the L2 norm and 1 in 
the semi-H1 norm) are not obtained, even
with 5x5 GI.
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Figure 1: 
Meshfree approximation

function and domain 
discretization by points

Figure 2: 
Projection of true solution u into finite 
dimensional space: Galerkin solution uh

without quadrature error and uhh with
quadrature error

Figure 3: 
Linear exactness test of meshfree 
methods with linear basis using various
domain integration methods (red solid
dots: discretization points, cross 
symbols: Gauss quadrature points in GI)
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Recovery of Galerkin Orthogonality 
by Variational Consistency
One of the early attempts to recover
Galerkin orthogonality in meshfree 
methods was the development of stabi-
lized conforming nodal integration (SCNI)
[2, 3], where the Galerkin orthogonality is
approximated by imposing the following
first order integration constraint to achieve
first order Galerkin exactness:

(1)

Here, the superposed “^” denotes the 
numerical integration,  ΨI (x) is the mesh-
free approximation function associated
with point I, and n is the unit outward 
surface normal.  A quadrature rule that 
satisfies the divergence condition in (1) 
recovers first order Galerkin orthogonality.
In SCNI [2], gradient smoothing under an
assumed strain framework has been 
introduced to meet the integration 
constraint (1):

(2)

where AL = I dΩ and ΩL is the 
conforming representative domain of point
L as shown in figure 5(a).  It can be shown
that SCNI recovers quadratic rate of con-
vergence in the L2 norm when a linear
basis is used as shown in figure 5(c).
When SCNI is simplified to stabilized 
nonconforming nodal integration (SNNI) 
[4] with nonconforming smoothing domains
as shown in figure 5(b), Galerkin orthogo-
nality is lost and poor convergence is
again encountered similar to that in GI and
DNI as shown in figure 5(c).  The recovery
of Galerkin orthogonality in SCNI can be
viewed as introducing a corrected finite 
dimensional space for the gradient as
shown in figure 6, to recover the solutions
uh from uhh. The SCNI method has been
enhanced with additional stabilization [5,6],
and has also been applied to meshfree
methods for plates and shells [7, 8, 9] 
and other meshfree methods such as the
natural element method [10].

Figure 4: 
Convergence of the

Galerkin meshfree
method with various 

integration methods for a
Poisson problem with a

higher order solution
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Figure 5: 
(a) Conforming Voronoi smoothing 

domains for SCNI, 
(b) nonconforming smoothing domains 

for SNNI, 
(c) convergence in the L2 norm for various

domain integration methods
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where  ΑαβΙ and  rαΙ are the compo-
nents of the linear system matrix and 
the residual vector, respectively, 
obtained from substituting 

into (3).  The
residual term rαΙ represents the violation
of integration constraint in (3). Here it is
worth noting that with proper selection of
L$ΨI

β , ΑαβΙ can be diagonalized for fast
computation.  Since the type of numerical
integration to be corrected is arbitrary in
(4), several variationally consistent 
methods have been derived under a 
unified framework [11].  
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A general framework for achieving nth order
Galerkin exactness (thus recovering nth

order Galerkin orthogonality) is the recent
work in [11] which introduces the concept
of variational consistency (VC).  VC 
dictates that for achieving nth order
Galerkin exactness, the following general
nth order integration constraints must be
satisfied in addition to using nth order 
completeness of trial functions:

(3)

where  a+A,A,Ω is the quadrature version of
the bilinear form,  +A,A,Ω and  +A,A,MΩ are
the quadrature versions of inner products
of two functions in the domain and on the
boundary, respectively, L and B are the 
differential operator and the Neumann
boundary operator of a boundary value
problem, respectively,  xα is the multi-
dimensional representation of a monomial
with degree  α,  *α* denotes the norm of
multi-dimensional index, and ΨI  is the test
function.  The equation in (3) states that a
numerical integration by parts condition
should hold for the inner product between
test functions and the differential operator
acting on nth order monomials.  It can be
shown that SCNI possesses first order
variational consistency while GI, DNI, 
and SNNI are in general not variationally
consistent with the meshfree approxima-
tion functions [11,12].

Variational Consistency for Recovery 
of Optimal Convergence
VC provides a paradigm for formulating
quadrature rules and test functions to
achieve optimal convergence for a given
PDE, and it can also be used to correct
methods that are variationally inconsistent
via modification of test functions to 
recover Galerkin orthogonality as shown 
in figure 6.  The construction of the 
test function gradients proposed in [11] 
for achieving the nth order integration 
constraint in (3) is performed by introduc-
ing a corrected test function gradient  

, where  
{ΨI ,ΨI

β }n
IβI=1 are linearly independent,

and the coefficients ξβΙ are solved from
the following equation:

(4)
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Figure 6: 
Recovery of Galerkin 
orthogonality by a 
correction of finite 
dimensional space

Figure 7: 
(a)Two dimensional 

linear exactness test, 
(b) L2 errors in various 

domain integration 
methods and their VC 
corrected counterparts, 

(c) L2 convergence rates
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Using the integration schemes shown in
figure 7(a), a PDE with a linear solution
shown in figure 7(b) is solved using the 
RK with linear basis.  The results given 
in figure 7(b) demonstrate VC integration
methods achieve the exact linear solution,
and the results in figure 7(c) demonstrate
the recovery of optimal convergence rates
for domain integration methods corrected
by VC for problems with higher order 
solution. VC recovery of higher order 
convergence for solving PDEs with higher
order basis is also reported in [11].  
Figure 8 demonstrates the application of
the Galerkin meshfree method to problems
involving large deformations, failure and
fragmentation processes [4, 13].

Strong Form Collocation Methods
Using the arbitrary smoothness of the
meshfree approximation functions, 
collocation on the strong form has been
proposed for meshfree methods, such 
as the finite point method [14], radial basis
collocation methods (RBCM) [15, 16, 17,

18, 19, 20], and the reproducing kernel 
collocation method (RKCM) [21, 22].  

These methods directly circumvent the
quadrature issues associated with the
Galerkin methods.  From the standpoint 
of convergence, the compactly supported
RK approximations with monomial 
reproducibility render algebraic 
convergence in RKCM, and the nonlocal
radial basis functions (RBFs) with certain
regularity offer exponential convergence 
in RBCM.  However, two major dis-
advantages have been identified in the
strong form collocation method: (1) the 
unbalanced errors from the domain and
boundary collocation equations lead to 
reduced accuracy and convergence rates,
and (2) the linear system of RBCM is 
typically more ill-conditioned compared 
to those based on compactly supported
approximations. 
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Figure 9:
(a) Convergence in the L2 error norm (numbers associated with W-DCM

denote the weights for the Dirichlet boundary collocation equations), 
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Convergence and Conditioning of 
Collocation Methods
The issue of unbalanced errors of the 
domain and boundary collocation 
equations in the strong form with direct 
collocation method (DCM) was first 
investigated in [20].  This work first showed
that the employment of least-squares func-
tionals with quadrature rules constitutes 
an approximation of the strong form collo-
cation method.  Based on error analysis 
of a least-squares functional, a strong form 
solution procedure using a weighted direct
collocation method (W-DCM) was then
proposed for enhanced accuracy and 
convergence [20].  The analysis given in
[20] concludes that the weight for 
the Dirichlet boundary collocation 
equations should be in the order of
α = (κΝp)2 for optimal convergence,
where κ is the maximum coefficient 
involved in the differential operator and 
the boundary operator, and  Νp is the 
number of discrete points used in the 
discretization.  Consider a Poisson 
problem shown in figure 9 solved by the
strong form collocation method using 
multiquadrics radial basis functions, where
the domain is discretized by 6x6, 8x8, 
and 10x10 discrete points.  It is seen in 
figure 9(a) that the proposed W-DCM with
properly selected weights for the Dirichlet
boundary on the order of  α = (κΝp)2 . 104

yields the best solution accuracy and 
convergence rate, and it is a significant 
enhancement over the DCM solution as
seen in figures 9(b) and 9(c).  The superior
performance of W-DCM over DCM can
also be seen in the tube inflation problem
shown in figure 10. 

Standard RBF offers exponential conver-
gence; however the RBCM method suffers
from large condition numbers due to its
"nonlocal" approximation.  The work in 
[23] constructed a localized RBF using a
partition of unity function, such as the RK
function, as a localizing function to yield 
a local approximation with significantly 

enhanced conditioning while maintaining
the exponential convergence of RBF.  
In two-dimensional elasticity, the stability
analysis in [23] shows that the conditioning
number of the RBCM of the order of 
O(h-8) is reduced to O(h-3) in the collocation
method using RK localized RBF.  The RK
localized RBF approach combined with the
subdomain collocation method has been
applied to problems with local features,
such as problems with heterogeneity [24]
and cracks [25].  It has also been shown
that the collocation method with radial
basis function (RBCM) can achieve very
small dispersion error (<1%) compared to
linear and quadratic finite elements [26].
Further, since the discrete system of the
strong form collocation method is typically
overdetermined and is solved by a least-
squares method, mixed approximations
can be introduced for constraint problems
(such as incompressible problems) without
suffering from instability due to violation of
the LBB condition [27].

Comparison of Meshfree Methods 
based on Weak and Strong 
Formulations
The requirement of VC for integration in
the weak formulation to recover Galerkin
orthogonality originates from the introduc-
tion of integration by parts in the construc-
tion of the Galerkin weak equation.  The
strong form collocation method, on the
other hand, does not invoke integration 
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by parts and is thus not subjected to the VC
condition for optimal convergence. A com-
parison of the effectiveness of meshfree
methods based on the Galerkin weak form
approach (denoted with (W)) and 
collocation in the strong form (denoted with
(S)) is shown in figure 11.  In this study, 
RK approximations with linear bases are
employed for the Galerkin weak form 
approach, and quadratic bases are used for
the collocated strong form approach as
necessary for convergence [22].  For the
strong form collocation approach, the 
discrete points used as collocation points is
denoted as DC1, and background colloca-
tion with half the spacing of the nodes 
is denoted as DC2.  The results for the H1

error norm show that the weak formulation
using VC-SNNI and SCNI, and strong 
formulation using DC1 are the most effec-
tive methods for obtaining an accurate 
solution. It is interesting and informative 
to note that similar approaches ((S) DC2
and (W) 2x2 GI, and (S) DC1 and (W) DNI)
can give drastically different results; without
VC integration Galerkin methods can hardly
compare in terms of efficiency.  However
with VC, Galerkin methods compare well 
to strong form collocation, particularly 
SCNI and VC-SNNI.  A comparison of
meshfree methods formulated based 
on weak and strong formulations is 
summarized in table 1. !

Feature                       Meshfree with Galerkin Weak Form          Meshfree with Strong Form Collocation

• RBCM yields exponential convergence 
and nearly zero dispersion error, but the 
discrete systems have high condition 
numbers.

• RKCM is well-conditioned, but requires at
least 2nd order basis in the RK functions.

• No LBB instability in the mixed 
formulation and thus is attractive for 
constrained problems.

• Requires 3rd derivatives in linearized 
equation of nonlinear 2nd order PDE.

• Easy coupling with FEM and has similar 
coding structure.

• Compactly supported approximation 
functions used in weak form yields 
well-conditioned discrete system.

• Very effective for large deformations, 
fracture problems, and h-adaptive 
refinements.

Additional advantages 
/disadvantages

Implementation                Similar to FEM.                                                  Easier than FEM, except for nonlinear      
problems.

Solution accuracy and convergence is
more sensitive to nonuniform point 
distributions than the Galerkin method.

Leads to sub-optimal convergence in the
standard Galerkin method without higher
order quadrature or VC correction.  VC 
corrected integration methods yield good
convergence and the solution is insensitive
to the nonuniformity of the nodal 
distribution.

Nonuniform point 
distributions

Maintains reasonable convergence even
with few collocation points as long as
boundary collocation equations are 
properly weighted.

Too few integration points lead to sub-
optimal convergence for the standard
Galerkin method.  For VC integration 
methods, nodal integration methods are
sufficient for convergence.

Integration/collocation
points

Methods are effective as long as the 
number of collocation points is not too
large.  In particular, DC1 and DC2 are
most effective.

Standard Galerkin methods with integration
such as GI or DNI are not effective unless 
a VC method or a VC corrected integration 
is used. Out of all the methods, SCNI and
VC-SNNI are the most effective.

Overall effectiveness

Table 1:
Advantages and disadvantages of meshfree methods 

based on weak and strong formulations
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